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ABSTRACT
◥

Patient-derived xenograft (PDX) models are an effective pre-
clinical in vivo platform for testing the efficacy of novel drugs and
drug combinations for cancer therapeutics. Here we describe a
repository of 79 genomically and clinically annotated lung cancer
PDXs available from The Jackson Laboratory that have been
extensively characterized for histopathologic features, mutational
profiles, gene expression, and copy-number aberrations. Most of
the PDXs are models of non–small cell lung cancer (NSCLC),
including 37 lung adenocarcinoma (LUAD) and 33 lung squa-
mous cell carcinoma (LUSC) models. Other lung cancer models
in the repository include four small cell carcinomas, two large cell
neuroendocrine carcinomas, two adenosquamous carcinomas,
and one pleomorphic carcinoma. Models with both de novo and
acquired resistance to targeted therapies with tyrosine kinase
inhibitors are available in the collection. The genomic profiles of

the LUAD and LUSC PDX models are consistent with those
observed in patient tumors from The Cancer Genome Atlas and
previously characterized gene expression-based molecular sub-
types. Clinically relevant mutations identified in the original
patient tumors were confirmed in engrafted PDX tumors. Treat-
ment studies performed in a subset of the models recapitulated
the responses expected on the basis of the observed genomic
profiles. These models therefore serve as a valuable preclinical
platform for translational cancer research.

Significance: Patient-derived xenografts of lung cancer retain
key features observed in the originating patient tumors and show
expected responses to treatment with standard-of-care agents,
providing experimentally tractable and reproducible models for
preclinical investigations.

Introduction
Lung cancer is the leading cause of cancer deaths worldwide (1).

Non-small cell lung cancer (NSCLC) differs from most other cancer

types both quantitatively and qualitatively for its high level of
mutational burden and genomic complexity. Further, the two
major histologic subtypes of NSCLC: lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC), have distinctive
genomic alteration signatures, pathway disruption, and immune host
response (2, 3). Transcriptional subtypes for both LUAD and LUSC
have been reported that are associated with differences in patient
prognosis, response to treatment, and survival (4, 5).

Genomic characterization of tumors has been instrumental
in precision medicine strategies for NSCLC through the identification
of “druggable” oncogene drivers, which, in turn, has expanded
treatment options and a growing number of targeted therapy
approaches (6). A prominent example of molecularly-guided therapy
in NSCLC relates to the finding of activating mutations in the EGFR
gene, resulting in constitutive, ligand-independent receptor activity
and a high degree of sensitivity to EGFR-targeted tyrosine kinase
inhibitors (TKI; refs. 7, 8). Targeted therapies have also been effective
in treating other molecular subtypes, including ALK-EML4 and ROS1
fusions (9). Although advances in targeted therapies for NSCLC have
transformed treatment options, not all patients respond to treatment
and the development of acquired resistance is almost universal.
Resistance mechanisms in some treatment settings for oncogene-
driven NSCLC are well established, such as development of the
T790M “gatekeeper” mutation after therapy with first- and second-
generation EGFR TKIs (10). However, resistance mechanisms are
much more complex in most other therapeutic settings, generally
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characterized as either secondary mutations or bypass mechanisms.
Testing novel treatment strategies and new therapeutic agents to
overcome acquired resistance remains a high priority for translational
cancer research.

Human tumors or circulating tumor cells (CTC) engrafted into
transplant-compliant recipient mouse hosts to produce patient-
derived xenografts (PDX) and circulating tumor cell-derived explant
models (CDX) retain critical biological properties of a patient’s tumor,
including tumor heterogeneity and genomic complexity (11, 12).
PDXs have demonstrated utility as preclinical models for testing
therapeutic strategies for many cancers, including lung cancer. Pre-
vious studies have demonstrated that lung cancer PDX models reca-
pitulate faithfully many aspects of the original patient tumor for
histology, karyotype, and genomics (13, 14), as well as expected
sensitivity and resistance patterns to targeted therapies, including
clinical responses observed in patients. These models have provided
insights into therapies on the basis of othermolecularmarkers (15, 16).
Collections of PDX models have allowed further studies on under-
standing the contributing factors affecting engraftment rates, new
treatment combinations for lung cancer models that developed resis-
tance, and discovery of new biomarkers for lung cancer treatment
(12, 17, 18).

In collaboration with the University of California Davis Compre-
hensive Cancer Center and Northern Light Eastern Maine Medical
Center, we generated and characterized (19) a repository of 79 lung
cancer PDXmodels to use as a platform for research for basic research
on mechanisms of treatment response and to facilitate translational
pre-clinical and co-clinical trial research. The PDX models were
generated using the NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse
strain as the host and includes models of high clinical relevance,
including EGFR- and KRAS-mutated LUADs and PI3K-mutant
LUSCs. Clinical demographic information, histology, IHC images,
summarized genomic data, and treatment response data for these PDX
models are freely available from The Jackson Laboratory (JAX) PDX
web portal hosted by the Mouse Models of Human Cancer database
(MMHCdb, http://tumor.informatics.jax.org/mtbwi/pdxSearch.do;

ref. 20) and from PDX Finder, a global catalog of thousands of PDX
models (21).

Materials and Methods
Establishing xenografts

An overview of the PDX model generation process is shown
in Fig. 1. All animal procedures were performed at The Jackson
Laboratory Sacramento facility under IACUC protocol 12027. Tumor
samples from biopsies, pleural effusions, or surgical resections were
obtained from patients with lung cancer and implanted subcutane-
ously by trocar in the right flank of up to five, 6- to 8 week-old female
NSG (JAXStock 005557)micewithout intervening in vitro culturing of
the tumor cells.Written informed consent was obtained for patients by
the donating institution to allow creation and unrestricted use of the
models and associated data. Only tissues in excess of the materials
needed for pathology evaluation (i.e., “surgical waste”) were provided
for PDX model generation. Most tumor samples were implanted
within 24 hours of surgery and themaximumpostsurgery time allowed
for implantation was 48 hours. Solid tumors were divided into 3 to 5
mm3 fragments in RPMI medium before implantation. Pleural effu-
sion samples were centrifuged, and the supernatant was removed with
a pipet. Pellets were then resuspended in Dulbecco’s PBS (DPBS), and
200 mL were implanted subcutaneously into the host mouse as a 1:1
bolus of pleural effusion cells in RPMI media and growth factor free
Matrigel. Matrigel was not used for subsequent passages.

When an implanted tumor reached 2,000mm3, it was harvested and
subdivided into 3 to 5mm3 fragments, which were implanted into five,
6- to 8-week-old female NSG mice for expansion to P1. For quality
control assessment (see below), a 50 mm3 fragment was collected in
10% neutral-buffered formalin and a formalin-fixed, paraffin-
embedded block was generated. The remaining fragments were cryo-
preserved in 10%DMSO.When P1 tumors reached�2,000mm3, they
were harvested and subdivided into 3 to 5mm3 fragments, which were
subsequently embedded in FFPE for quality control, snap-frozen for
genomics, placed into RNALater (Ambion) for RNA sequencing

Figure 1.

Schematic overview of the process for PDX model generation and characterization for the JAX PDX Resource.
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(RNA-seq), and viably cryopreserved in a solution of 10% DMSO in
DMEM with 1% penicillin–streptomycin.

To establish cohorts of tumor-bearing mice for drug treatment
studies, 3 to 5 mm3 tumor fragments or 40 mL of minced tumor were
subcutaneously implanted in the right rear flank ofNSGmice by trocar
or a 14-gauge disposable needle. Low passage tumor fragments (P3–
P6) were used to establish cohorts of tumor-bearing animals for dosing
studies. Tumor volumes were monitored with ULTRA-Cal IV digital
calipers (Fowler). Individual tumor-bearing mice were randomized
into treatment cohorts of 8 to 12 mice each on an accrual (asynchro-
nous growth) basis once individual tumors reached an initial volume of
70 to 300 mm3. For some studies, tumors were removed and divided,
with half of the material preserved in neutral-buffered formalin and
half flash-frozen.

PDX model quality control
The quality control procedures employed for PDXmodels included

testing the patient tumor for lymphocytic choriomeningitis virus
(LCMV) and bacterial contamination. Engrafted tumors at P0 and
P1 were DNA fingerprinted using a short tandem repeat (STR)
assay (22) and then compared with the profile of the patient sample
to ensure correct tissue provenance. IHC for human CD45 antibodies
(IR75161–2; Agilent Technologies) was performed on FFPE blocks
of engrafted tumors to identify cases of lymphomagenesis, which
have been reported previously in PDXs (23). IHC for human Ki67
(IR62661–2; Agilent Technologies) was used to ensure the propagated
tumors were comprised of human cells. Hematoxylin and eosin
sections of engrafted tumors were evaluated by a board-certified
pathologist (RGE) to verify the concordance of the morphologic
features of the engrafted tumor to the patient tumor. Engrafted tumors
were assessed by sequencing or digital droplet PCR to determine if
diagnostic/therapeutic molecular markers identified in patient sam-
ples were present in the engrafted tumors (Supplementary Table S1).

Genomic characterization of engrafted tumors
The DNA and RNA of engrafted tumors were characterized at the

P0 and/or P1 passage (Fig. 1) using a targeted gene panel [JAX
Cancer Treatment Profile (CTP)] sequencing (24), Affymetrix
Human SNP array 6.0, and expression microarrays or RNA-seq.
Detailed protocols for nucleic acid extraction, library preparation,
and data analysis are described elsewhere (19). The JAX Clinical
Knowledge Base (CKB) was used to annotate clinical relevance of
variants and gene expression (25).

Analysis of genomic data from engrafted tumors
Mutation, copy number (CN) and gene expression analyses were

performed as described in Woo and colleagues (19). Tumor mutation
burden (TMB) was calculated using variants that met all quality
criteria (coverage, strand bias, mapping quality, and read rank
position) and were not present on a curated list of false-positive
variants (loci prone to sequencing and analysis errors and/or associ-
ated with highly polymorphic genes: MUC4, MUC5B, MUC16,
MUC17, and HLA-A). Only somatic mutations on the basis of germ-
line filtering criteria that were predicted with high or moderate
functional impact (i.e., nonsynonymous changes, frame shifts, stop
losses/gains, and splice-site acceptor/donor changes) were retained.
TMB was estimated by dividing the number of variants that met the
quality criteria by the length (in Mb) of the CTP gene panel. High
TMB was defined as 22 mutations/Mb (calculated on the basis of the
TMB distribution of all PDX models analyzed as follows: third
quartile þ 1.5 � interquartile range). The MSIsensor2 (26) algo-

rithm was used to determine microsatellite instability (MSI) status
of engrafted tumors. Tumors with MSI percentage >20% were
classified as MSI-High and those <20% as MSI-Stable.

To summarize the mutations prevalent in the PDX models, onco-
plots (maftools v2.2.10; ref. 27) for both subtypes were created using all
the somatic and clinically relevant point mutations and indels that
occurred at a frequency >30%. For PDXs with more than one
sequenced sample data from all samples were combined to derive a
unique list of mutations per model. Gene mutation frequencies of
LUAD and LUSC in The Cancer Genome Atlas (TCGA) PanCancer
Atlas were obtained from cBioPortal (28) for comparison with the
PDX data. Genes were classified as oncogenes or tumor suppressor
genes (TSG) based on OncoKB annotations (download date: 2020/9/
17; ref. 29).

CN data were visualized using GenVisR (30) on a per-sample basis
and an overall gain and loss frequency basis within the subtypes. For
frequency calculation, one sample was selected to represent each
model, and log2(CN ratio) ¼ �0.5 was used as a cut-off to call CN
gain and loss.

To summarize the expression data, the percentile rank z-score
values from stranded RNA-seq, nonstranded RNA-seq, and micro-
array platforms were combined and a correlation heatmap was plotted
using the Pretty Heatmaps package in R (https://cran.r-project.org/
web/packages/pheatmap/index.html).

Gene expression-based subtypes of LUAD and LUSC PDXs
To determine if previously identified transcriptional subtypes for

LUAD (TRU: terminal respiratory unit, PIF: proximal inflammatory,
PPR: proximal proliferative) and LUSC (CLA: classical, PRI: primitive,
BAS: basal, and SEC: secretory) were represented in our repository of
lung cancer PDX models, we used nearest template prediction (NTP)
implemented in the R package CMScaller. We selected genes from
publicly available RNA-seq data to enrich for classification of the
subtypes, following similar methods reported in Eide and collea-
gues (31). TCGA raw gene expression data (nonstranded RNA-Seq)
were downloaded from the Broad GDAC Firehose repository for
LUAD (7) and LUSC (32). Molecular subtype annotations for LUAD
and LUSC samples from TCGA were downloaded using the TCGA-
query_subtype function in the R package TCGAbiolinks (33). Gene
expression data were harmonized between TCGA and PDX samples
and filtered for lowly expressed genes (mean normalized expression
≤1). We estimated differential expression between subtypes in TCGA
samples using the R package DESeq2 v. 1.28.1 (34). Genes were
classified as differentially expressed for each subtype using a threshold
of an FDR-adjusted P value of ≤0.01 and an absolute log2 fold-change
value >1. All differentially expressed genes that showed discrimination
between at least one subtype and the others (i.e., not commonly
identified as differentially expressed among all subtypes) were includ-
ed to generate custom templates for NTP. We also selected genes that
showed a large range of expression values among LUADand LUSC cell
lines in the Cancer Cell Line Encyclopedia (35) and highly expressed in
at least a subset of the cell lines. Finally, we selected genes to exclude
from the training set by performing a differential expression analysis
between matched patients with lung cancer (seven samples) and PDX
samples (41 samples) obtained from the NCI patient-derived model
repository (PDMR; NCI-Frederick, Frederick National Laboratory for
Cancer Research, https://pdmr.cancer.gov/), using DESeq2. The genes
with an absolute log2 fold change ≥1 were excluded from the model
training set as they may be lost upon engraftment.

The final list of genes used to train the NTP classifiers included
3,525 genes for LUAD and 3,544 genes for LUSC. Raw expression data
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from TCGA for these genes were used to generate templates for NTP.
TCGA samples were split randomly into 80% training and 20%
validation sets stratified by labeled subtype. Custom templates were
then prepared for LUAD and LUSC training sets using subDEG and
ntpMakeTemplates in the R package CMScaller. Subtype prediction
performance was estimated using the validation sets with the function
ntp in the CMScaller, specifying 1,000 permutations. Performance of
subtype predictions fromNTP was calculated using 20% of the labeled
TCGA data held back for validation. For each subtype, the perfor-
mance of the NTP classification wasmeasured by precision, recall, and
F1-score. The overall accuracy of the predictions was calculated as the
unweighted average of the proportion of true positives to samples of
each subtype. Finally, we used the custom templates to generate
subtype predictions for the unlabeled PDX models with non-
stranded RNA-seq data, and we considered high confidence subtype
classifications with FDR-adjusted P values <0.05.

PDX treatment studies
Tumor-bearing mice at low passage (P3–P6) were assigned to

cohorts (8–10 mice per treatment group) and treated with single
and combination agent therapies depending on the lung cancer
subtype and presence of targetable molecular markers. Vehicle-
treated mice were used as controls. Treatment was initiated when
tumors reached approximately 70 to 300 mm3. Tumors were
monitored until the end of the dosing study (typically 28 days) or
when the tumors reached 2,000 mm3. To monitor for toxicity effects
from treatment, animal body weight was monitored three times
weekly throughout the study, and percent body weight loss was
calculated for each mouse. Animals with >20% body weight loss
were euthanized and recorded as treatment-related deaths. Tumor
volumes were calculated from digital caliper raw data by using the
formula: Volume (mm3) ¼ (l � w2)/2.

Treatment responses were calculated on the basis of the percentage
of tumor volume change (DVol) at the final study day (i.e., seven days
after the last treatment) compared with the baseline tumor volume
at Day 0 or Day 1. Responses were classified using a modified
RECIST method adapted from Gao and colleagues (36). Classification
method details are available from the PDX data portal via MMHCdb.
Graphical summaries of treatment responses for individual models
were generated using custom software (https://github.com/TheJack
sonLaboratory/PDX-SOC) are also available fromMMHCdb. Graph-
ical summaries of treatment responses across all models were gener-
ated using the R package Xeva (version 1.6.0; ref. 37).

Western blots
Immunoblotting was performed on treated tumors using methods

described previously (38).

Data availability
Information and data for the PDX models described in the article

and its supplementary data are freely available from theMouseModels
of Human Cancer database (MMHCdb, http://tumor.informatics.jax.
org/mtbwi/pdxSearch.do) and from PDX Finder (https://www.pdxfin
der.org/data/search) using the model identifiers included in Supple-
mentary Table S1.

Results
Enrollment and patient characteristics

The clinical and demographic data for the patients from whom the
lung PDX models were generated are summarized in Table 1.

The median age for patients was 63 (range 42–85). Slightly more
female (n ¼ 44) versus male patients (n ¼ 35) are represented in the
patient population fromwhich themodels were derived.Most patients
(80%) reported their race asWhite. The self-reported smoking status of
the patient cohort was as follows: former (44%), current (20%), and
never (8%). Most of the patients (30 of 33) diagnosed with LUSC were
treatment na€�ve at the time their tumor tissue was acquired to generate
a PDX model. For LUAD, half of the patients (19 of 37) were
treatment-na€�ve at the time of PDX model generation.

PDX models
A summary of the 79 lung PDX models described in this report is

presented in Supplementary Table S1. The collection of models is
comprised mostly of LUAD (37 models) and LUSC (33 models). The

Table 1. Summary of clinical and demographic data for patients
whose tumor material was used to generate the JAX collection of
lung cancer PDX models.

Characteristics
Adenocarcinoma
(LUAD)

Squamous
cell carcino-
ma (LUSC)

All other
lung cancers

N ¼ 37 33 9
Age

Median (range) 58 (42–79) 67 (50–85) 60 (50–780
Sex

Female/male 24/13 12/21 8/1
Race/ethnicity

White/Not
Hispanic

22 16 6

White/Not
reported

5 11 1

White/Hispanic 1 0 0
Asian or Pacific
Islander/Not
Hispanic

5 1 0

American Indian
or Alaskan
Native/Not
Hispanic

1 1 0

American Indian
or Alaskan
Native/Hispanic

0 1 0

Not Reported/
Not Hispanic

1 1 0

Not Reported/
Not reported

2 2 2

Tumor type
Primary/relapse/
metastatic

22/1/14 31/1/1 7/0/2

Stage
I (A,B) 4 7 2
II (A,B) 5 9 0
III (A,B) 5 9 3
IV (A,B) 23 4 3
Not reported 0 4 1

Smoking status
Smoker 7 6 3
Former 15 17 3
Never 6 0 0
Unknown 9 10 3

Treatment na€�ve?
Y/N/unknown 19/16/2 30/2/1 5/3/1
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collection includes two LUAD models developed from a primary and
metastatic lesion from the same patient (TM00233 and TM01357).
Models for other lung cancer types available from the repository
include four small cell carcinomas, two large cell neuroendocrine
carcinomas, two adenosquamous carcinomas, and one pleomorphic
carcinoma. Only the LUAD and LUSC models were used in the
analyses described in this report. On average, 38% of implantations
resulted in successful engraftment, similar to other reports on lung
cancer PDXs (34%–39%; ref. 17).

Quality control
All patient tumor samples were negative for LCMV. All engrafted

tumors demonstrated positive labeling for human Ki67 protein.
Results of STR analysis for each model confirmed the engrafted tumor
originated from the expected patient tumor. All models for which
hematoxylin and eosin–stained slides were available for both patient
and engrafted tumors data were determined to have moderate to high
concordance following visual evaluation of the images by a board-
certified pathologist (RGE).

Of 95 tumors engrafted, 13 (16%) were identified as lymphoid
tumors based on positive staining for human CD45 antigen. These
tumors likely arose from transplanted Epstein–Barr Virus (EBV)-
infected human B cells (39). The corresponding PDX models were
removed from the JAX repository, resulting in thefinal set of 79models
described here.A similar percentage of lymphomagenesis was reported
in another PDX lung cancer model collection (40).

The Xenome (41) algorithm was used to determine human and
mouse origins of sequence data generated from engrafted tumor
samples. The average percentage of human sequences was 87%
(53%–99%) and 79% (50%–89%) for the CTP assay and RNA-seq,
respectively (Supplementary Fig. S1). The average percentage ofmouse
sequences identified by Xenome were �12% (0.5%–47%), and the
percentage of sequence reads that were classified as “both” or “ambig-
uous” were <0.2% and �0.6% for both platforms, respectively. The
“neither human nor mouse” category averaged 0.04% for CTP and
7.8% for RNA-seq. The observed differences in the percentages of
mouse and human sequences are likely due to platform differences
(sequence capture method for CTP compared with direct sequencing
for RNA-seq). The difference between the platformswas significant for
human reads (Welch two sample t test; P value¼ 2.19� 10�8) but not
for reads classified as mouse.

Genomic characterization: somatic mutation
Genes on the JAXCTPpanel thatweremutated in at least 30%of the

LUAD and LUSC PDX models are summarized in Fig. 2A and B (see
Supplementary Table S2 for complete gene list). As has been observed
previously in many human cancers, TP53 is the most commonly
mutated gene in both LUAD and LUSC (7, 32).

An evaluation ofmutation frequencies between LUADand LUSC in
the JAX PDX repository revealed that mutation frequencies in some
genes are characteristic of theNSCLC subtype (Fig. 2C). Because of the
relatively small number of PDX models in this analysis, these trends
cannot be considered definitive. However, several of the patterns in the
JAX collection are also observed in the TCGA PanCancer Atlas from
cBioPortal (Fig. 2D; ref. 28). Genes that are more frequently mutated
in LUSC in both JAX PDX and TCGA datasets includeNFE2L2, TP53,
andMUC4. Genes that show higher mutation frequencies in LUAD in
both datasets include KRAS, EGFR, NOTCH4, HMCN1, andMUC17.
Other genes identified as being characteristic of LUAD and LUSC in
one but not both data sets. For example, mutations in AURKA and
FER1L5were characteristic of LUAD tumor in the JAX data set but not

TCGA; mutations in TET2 were characteristic of LUAD in the JAX
data but is reported as being more frequently mutated in LUSC in the
TCGA data; ALK mutations were higher in LUSC tumor in the JAX
data but occurmore frequently in LUAD tumors in the TCGAdata set.
Several factors could explain these differences. First, the JAX PDX
samples were sequenced at very high coverage (mean coverage¼ 941x)
compared with the whole-exome sequencing of TCGA samples
(�100�; ref. 42). Second, the types of samples used to generate the
two resources differ. The tumor types used to generate the JAX
resource were often selected by collaborating clinical oncologists based
on known clinical (e.g., stage, prior treatment,metastasis, relapse) and/
or genomic features. Finally, a greater proportion of late-stage tumors
(stage II or later) are found in the JAX PDX models (LUAD: 89%,
LUSC: 63%) compared with TCGA PanCancer Atlas (LUAD: 41%,
LUSC: 51%; Supplementary Fig. S2).

For 22 of the LUAD PDX models, genomic testing data for the
patient tumor was provided. All the engrafted tumors retained the
clinically relevant mutations of the donor patient’s tumor (Supple-
mentary Table S1). For model TM01244, the expected EGFR T790M
mutationwas not observed in the sequence data from the CTP targeted
gene panel, but the presence of the mutation was confirmed by droplet
digital PCR (ddPCR). The failure of the targeted gene sequencing to
identify themutation in this case could be due to the random sampling
of subclones from a heterogeneous patient tumor in the sample used to
establish the PDX model (11, 43).

Although patients with LUSC have limited targeted treatment
options compared with those diagnosed with LUAD, recent find-
ings of recurrent genomic alterations that are characteristic of this
histologic subtype, including activating alterations in PIK3CA,
KRAS, and MET, provide future therapeutic avenues for research
(44). Within the JAX PDX collection, clinically relevant alterations
of these genes were found in 26 of the LUSC models (Supplemen-
tary Table S1).

Patient tumor genomics was tested before establishing the PDX
model, in which the KRAS G12C mutation was also observed in the
engrafted tumor (TM00231). Patient tumors of TM01243 and
TM01448 were assayed on the same platforms, and two of four of
the alterations can be detected in the PDXs.

Considering both LUAD and LUSCmodels, 97% (n¼ 68/70) of the
engrafted tumors harbored clinically relevant alterations based on
annotations from the JAX CKB database (25). As TMB and MSI are
used as biomarkers for immunotherapy response (45–49), we observed
trends similar to other lung cancer data sets, where lung tumors are
rarelyMSI-high, but do have high TMB scores (Supplementary Fig. S3;
Supplementary Table S1). Within the JAX PDX collection, none of the
lung cancer PDXmodels areMSI-high (MSI score > 20), whereas 10 of
the models are classified as high tumor mutation burden (TMB score
>22). TheMSI andTMB scores are similar acrossmultiple samples and
passages of the same model, indicating that these genomic features are
maintained throughout passaging and expansion.

Genomic characterization: copy-number alteration
Recurrent gains and losses of chromosomal regions have been

documented in NSCLC previously, including gains in MYC, EGFR,
CCND1 and losses in LRP1B and CDKN2A (7, 32). In LUSC, gains in
3q and losses in 3p and 5q occur more frequently than in LUAD (50).
An overview of the gains and losses observed in engrafted tumors from
LUAD and LUSC PDX models is provided in Fig. 3A and B, respec-
tively. Gain and loss frequencies of individual genes are provided in
Supplementary Table S3. The frequently amplified and deleted chro-
mosomal regions are consistent with previous studies.
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Copy-number profiles of individual PDX samples for LUAD, LUSC,
and other lung cancer subtypes are shown in Supplementary Figs.
S4A–S4C, respectively. Amplifications reported for patient tumors
were also observed in the corresponding PDX model. For example,
MET,EGFR, andMYC amplifications reported in a patient tumorwere
recapitulated in the corresponding PDX model (TM00784). Different
engrafted tumor samples derived from the same PDX model had high
concordance in copy number (11).

Genomic characterization: transcriptional profiling
Unsupervised hierarchical clustering of gene expression data for

engrafted tumors revealed that samples clustered primarily by the

platform (RNA-seq or microarray) and then by the diagnosis
(Fig. 4A). Tumor samples derived from the same PDX model were
highly correlated regardless of platform (Supplementary Fig. S5),
indicating that the expression profile is retained during engraftment,
expansion, and passaging.

Consistent with previous reports we observed a positive correlation
between the copy number of amplified and deleted genes and
gene expression level across 63 lung PDX tumor samples assayed for
both copy number and expression profiles (Pearson correlation coef-
ficient ¼ 0.54; P < 10�15) for a subset of frequently amplified and
deleted genes in both LUAD and LUSC PDX models (Supplementary
Fig. S6A; ref. 51). Supplementary Fig. S6B shows the concordance

Figure 2.

A and B, Oncoplot of the most frequently mutated genes in LUAD (A) and LUSC (B) PDX models. The oncoplot shows the PDX models in a horizontal
orientation, annotated with smoking status, gender, treatment na€�ve status, stage of cancer, and tumor type. Genes with mutation frequency >30% are shown
on the vertical axis. The barplot at the top has the frequency of mutations for each PDX model, whereas the right barplot has the frequency of mutations in
each gene. Colors in the oncoplot columns indicate different mutation types (see legend for details). The bottom panel shows the classification of the SNPs
into transitions and transversions. Model IDs in red originate from the same patient. C, Comparison of gene mutation frequency in LUAD and LUSC PDX models
(frequency >30%). D, Comparison of gene mutation frequency in LUAD and LUSC TCGA samples (left, frequency >10%; right, frequency < 10%). Oncogene and
TSG annotations from OncoKB.
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between gene expression and the copy number for these genes
individually.We observed that most tumors with copy-number altera-
tions in oncogenes exhibit both copy number and expression gains.
Conversely, tumor samples with copy-number alterations in TSGs
exhibit both copy number and expression losses. On the basis of these
examples, it is evident that the amplification status elevates the gene
expression levels of these frequently amplified oncogenes. Similarly,
the deletion status decreases the gene expression levels of these
frequently deleted TSGs.

The patient tumor associated with model TM01244 was noted as
having elevated MET expression, but this property was only recapit-
ulated as low-level overexpression (percentile rank z-score ¼ 0.44–
0.51) in the engrafted tumors. Given that the EGFR T790M mutation
present in the patient tumor was detected in the PDX tumor only after
ddPCR, it is plausible that the patient tumor fragment used to establish
the model was not representative of the clonal population used for
genomic testing of the patient or that the tumor cells that were positive
for the markers were out competed by other cancer cells in the mouse
host.

Transcriptional subtyping
We adapted a PDX molecular subtyping tool developed for

colorectal cancer PDX models, CMScaller (31), to classify the
expression subtypes for the LUAD and LUSC models (4, 5, 52).
Using the training set from TCGA yielded 793 and 1,224 template
genes to classify LUAD and LUSC subtypes, respectively (Supple-
mentary Tables S7 and S8), resulting in high accuracies of 93% and
92% for the TCGA validation set (Supplementary Table S4). For the
JAX PDX models, 31 of 36 LUAD samples and 24 of 24 LUSC
samples were classified in expression subtype categories with high

confidence (FDR-adjusted P values < 0.05; Supplementary Tables S5
and S6). Among the LUAD samples, 32% were classified as PIF, 32%
as PPR, and 35% as TRU. Among the LUSC samples, 38% were
classified as BAS, 38% as CLA, 8% as PRI, and 17% as SEC. For
models with multiple samples, all were predicted as the same
subtype within each model, except for LUSC model TM01448 in
which PT and P0 were classified as BAS and SEC, respectively. We
hypothesize that spatial tumor heterogeneity in the tumor sample
that was used to establish the PDX model is the source of these
classification differences (53). The patient and P0 tumor samples of
this model share the same clinically relevant mutations except for a
PTEN nonsense mutation that was detected only in the PT sample.

To further confirm the reliability of the classifications, we compared
the expression of the template genes between TCGA samples with
known subtype labels and the predicted subtypes of the samples of the
PDXmodels. We observed high correlation within the template genes
of each respective LUAD or LUSC subtype (Fig. 4B). This confirms
that the expression level of the template genes is replicated in the lung
cancer PT/PDX samples. The subtypes were also enriched in other
genomic alteration profiles (5, 7, 32, 52). Despite the limited number of
samples, we observed higher proportion in some of the reported
subtype-enriched alterations within the respective predicted PDX
subtypes (Fig. 4C). In particular, the LUADPPR subtype was reported
to be enriched in STK11 andKRAS alterations in other PTdatasets, and
the PDX models classified as PPR subtype showed higher frequencies
of these alterations compared other subtypes. The same observation
can also be made for the NFE2L2 alteration enriched in LUSC CLA
subtype. As such, the PDX models displayed subtype-specific expres-
sion and/or alteration profiles similar to those reported in patient
tumor subtyping studies.

Figure 3.

Frequency of copy-number gain and loss for LUAD (A) and LUSC (B) PDX models. CN gain, log2(CN/ploidy) > 0.5; CN loss, log2(CN/ploidy) <�0.5. One sample per
model was used to calculate the frequency.
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Figure 4.

Gene expression in lung cancer PDX models. A, Hierarchical clustering of gene expression percentile rank z-score for all lung cancer PDX samples and
platforms. The heatmap is based on correlation values of expression percentile rank z-score expression for LUSC and LUAD PDX samples from sequencing and
array platforms. The top horizontal color bars indicate the library preparation methods and platforms, subtype designation, and passage number. Sample
labels are indicated by model ID, sample ID, and library preparation/platform. B, Expression (quantile-normalized raw RSEM counts) correlation of nearest
template prediction genes between TCGA (LUAD, n ¼ 230; LUSC, n ¼ 178) and PDX (LUAD, n ¼ 36; LUSC, n ¼ 24) samples for LUAD and LUSC. The color bars
indicate the subtype labels for TCGA and subtype predictions for PDX. C, Proportion of PDX models with mutations reported to be enriched in LUAD and
LUSC subtypes as indicated on the left. LUAD subtypes: proximal-inflammatory (PIF), proximal-proliferative (PPR), terminal respiratory unit (TRU). LUSC
subtypes: basal (BAS), classical (CLA), primitive (PRI), and secretory (SEC).
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Treatment responses in PDX models
Many of the tumors submitted for PDX generation were selected on

the basis of the presence of clinically relevant mutations per National
Comprehensive Cancer Network (NCCN) guidelines (Supplementary
Table S1; refs. 10, 25, 54). Cohorts of tumor-bearing mice of a subset of
the lung cancer PDXmodels were enrolled in dosing studies to evaluate
responses to drug treatment. A summary of treatment responses is
illustrated for LUADmodels (Supplementary Fig. S7A), LUSCmodels
(Supplementary Fig. S7B), and other lung models in the collection
(Supplementary Fig. S7C).

Targeted treatment of EGFR-mutant PDXs
Nine PDXmodels in the JAX collection harbor activatingmutations

in EGFR (L858R, exon 19 deletion, exon 20 insertion) and were tested
for response to TKI. Six of the models (TM00199, TM00204,
TM00219, TM00253, and TM00784) were derived from patients at
the time of progression on either single-agent or combinations of
erlotinib; two of the models (J000100672 and TM00193) were derived
from treatment-na€�ve patients. Both TM00204 and TM00219 harbor
the EGFR T790M mutation, and TM00784 harbors MET amplifica-
tion. These markers are associated with acquired resistance to treat-
ment with TKIs (10, 54). J000100672 harbors the exon 20 insertion
associated with de novo resistance to TKI inhibitors (55). TM00253
harbors the mutation EGFR V834L, which is associated with
decreased response to erlotinib (56). Cohorts of tumor-bearing
mice of these models, except for TM00193, were treated with
single-agent erlotinib. TM00199 displayed partial response (PR),
TM00253 displayed stable disease (SD), and the other four models
with TKI treatment resistance mutations displayed progressive
disease (PD; Fig. 5A; Supplementary Figs. S7A and S8). The lack
of complete response (CR) recapitulated the treatment response
observed in the patients and the response expected from the EGFR
mutation status of these models.

Two models (TM00199 and TM00219) were tested using second-
generation agents to evaluate treatment options following the devel-
opment of resistance to first-generation TKIs (56). The models were
treated with a combination of afatinib and cetuximab along with
single-agent erlotinib, afatinib, cetuximab, and vehicle controls. As
expected, TM00199 did not exhibit significant tumor growth inhibi-
tion upon treatment with erlotinib. Single-agent afatinib-treated ani-
mals subsequently progressed after a succession of treatment, whereas
animals treated with cetuximab (with or without afatinib) exhibited
CR. The treatment effects on EGFR expression and phosphorylation
were examined at 6- and 24-hour time points (Fig. 6). After a
single treatment, the EGFR TKIs erlotinib and afatinib resulted in
notable downregulation of EGFR phosphorylation within six hours,
rebounding to control levels after 24 hours (Fig. 6A; Supplementary
Fig. S11). In contrast, cetuximab showed evidence of moderate
downregulation by 6 and 24 hours accompanied by diminished total
protein expression. The combination of afatinib plus cetuximab
resulted in ablated phosphorylation at 6 hours in two of three
models, maintained at the 24 hours time points, associated with
reduced protein expression.

The TM00219 model was derived from a patient at the time of
erlotinib progression, associated with the emergence of the T790M
EGFR resistance mutation, which was observed in both the patient
post-erlotinib treatment biopsy and the engrafted tumor. This model
showed no benefit from erlotinib or cetuximab, with marginal activity
from afatinib. In this unresponsive model, none of the EGFR-targeted
agents could entirely suppress EGFR phosphorylation at 6 or 24 hours
(Fig. 6B; Supplementary Fig. S11).

Targeted treatment of an EML4–ALK fusion PDX model
LUAD model TM00206 harbors the EML4–ALK fusion and, as

expected, had a robust response to treatment with the ALK TKI,
crizotinib (Fig. 5A; Supplementary Figs. S7A and S9; ref. 57).
The response at the cohort level was categorized as a CR. However,
2 of the 9 mice in the treatment cohort were classified as PR.
Acquired crizotinib resistance has been reported in ALK-rearranged
NSCLCs (58) and the clinical records for the patient reveal that the
individual’s cancer progressed while on treatment. The variability in
the response in the corresponding individual mice may be due to the
presence of resistant subclones. Although the treated PDXs were not
tested for known resistance variants, the genomic data from two
early passage (P0) tumors for this model revealed the presence of
reported resistance mutations at a subclonal level. The ALK
L1196M mutation was detected at an allele frequency of 22% and
a low-level KIT amplification [log(CN/ploidy) ¼ 0.43] was detected
in one of the P0 tumors (LG0812PE1330P0), whereas low-level
amplification in ALK and EML4, possibly the fusion, was detected in
another P0 sample (LG0812PE1332P0).

Treatment of KRAS-mutant PDXs
Twelve models in the collection harbor loss-of-function KRAS

mutations that result in downstream pathway activation (Supplemen-
tary Table S1) and were treated with aMEK1/2 inhibitor (trametinib).
Trametinib acts through the inhibition the MAPK pathway down-
stream of KRAS. Although most models exhibited no growth inhibi-
tion from trametinib and no cohort-level responses surpassed the
threshold of PD, the per animal response data for five of the models
(TM00226, J000095635, TM00186, TM00203, TM00233) had at least 2
animals in the cohort with a response classification of SD (Supple-
mentary Fig. S7A), suggesting moderate activity of the drug in some
animals. This result is consistent with clinical trials that demonstrated
single-agent trametinib showed no improved efficacy compared with
docetaxel in patients with advanced KRAS-mutant NSCLC (Fig. 5B;
Supplementary Fig. S7A; ref. 59). PR was observed for the combi-
nation of docetaxel and trametinib for model J000095635 (KRAS
G12D) compared with single-agents (SD and PD, respectively). For
model J000096652 (KRAS G12C), the combination docetaxel and
trametinib showed no additional benefit over single-agent doce-
taxel. Both treatment arms were classified as PR (Fig. 5A; Supple-
mentary Figs. S7A and S10).

Discussion
The treatment of NSCLC has rapidly evolved, with chemotherapy

being replaced by either targeted therapies or immunotherapy inmany
cases. For treatment advances to continue, preclinical models that
accurately reflect the complexity and heterogeneity of human cancers,
as well as being predictive of drug sensitivity and resistance patterns
observed in patients, are mandatory. Given the complexities of drug–
tumor interactions together with inter- and intra-patient tumor
heterogeneity, PDX models stand apart in the preclinical arena as
experimentally tractable and reproducible models that recapitulate the
clinically relevant genomic properties and treatment responses of the
patient tumors from which they are derived.

The repository of lung cancer PDX models described here was
generated, characterized, and annotated in collaboration with clinical
investigators. For models with corresponding patient tumor genomic
data, the implanted tumors in the lung PDXsmaintained the histologic
characteristics and genomic properties of patient tumors from which
they were derived. Treatment responses for targeted agents in the
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models were consistent with expectations based on the presence of
specific molecular targets and also recapitulated the treatment
responses of patients treated with the same agents. The PDX models
available from the JAX repository are a validated resource for

preclinical investigations into the efficacy of new cancer treatments
and for basic research into the mechanisms of acquired resistance to
target-directed therapies and for developing strategies to overcome
treatment resistance.

Figure 5.

Summary of treatment responses in lung PDX models. LUAD (A), LUSC (B), and all other lung cancer types (C). Treatment responses were calculated as percent
change in tumor volume for each animal as V: [(end_volume – start_volume)/start_volume) � 100] at day 21. Within each group the minimum (Vm) and average
volume (Va) were calculated with response classifications calculated as follows: CR, Vm <�95%,Va <�40%; PR, Vm <�50%, Va <�20%; SD, Vm < 35%, Va < 30%; PD,
anything else. The number of treatments in each RECIST category is shown at the top, and number of models in each RECIST category is shown on the right side of
each plot. The color bar at the bottom indicates the treatment na€�ve and mutation status (KRAS, EGFR, and EML4-ALK fusion) of each model. Plots were generated
with the R package Xeva (version 1.6.0).
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