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Abstract

Background/Aims: Despite the published evidence implicating phosphoinositide 3-kinase (PI3-

kinase) in the regulation of islet function, limited information is available on the putative 

contributory roles of its downstream signaling steps, including the phosphatidylinositol-3,4,5-

trisphosphate-dependent Rac exchange factor 1 (P-Rex1) signaling pathway in the islet β-cell. 

Therefore, we investigated potential roles for P-Rex1 in glucose-stimulated Rac1 activation and 

insulin secretion in insulin-secreting (INS-1 832/13) β-cells.

Methods: Glucose-stimulated Insulin secretion (GSIS) was quantified by ELISA. Expression of 

endogenous P-Rex1 and RhoG was suppressed by siRNA transfection using the DharmaFect1 

reagent. Total membrane and cytosolic fractions were isolated using the Mem-PER Plus 

Membrane Extraction Kit. The degree of activation of Rac1 was determined by the pull-down 

assay.

Results: P-Rex1 is expressed in INS-1 832/13 cells, normal rat islets and human islets. 

siRNA-mediated knockdown of P-Rex1 attenuated glucose-induced Rac1 activation, membrane 

association and insulin secretion. RhoG, which has been implicated in PI3-kinase-mediated Rac1 

activation in other cell types, appears not to contribute to GSIS since the siRNA-mediated 

knockdown of RhoG failed to exert significant effects on GSIS. LY294002, a known inhibitor 

of PI3-kinase, potentiated GSIS without affecting glucose-induced Rac1 activation.
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Conclusion: Based on these findings, we conclude that P-Rex1 plays a novel regulatory role in 

glucose-induced Rac1 activation and insulin secretion.
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Introduction

Insulin secretion from the pancreatic β-cell is regulated precisely by the ambient 

concentration of glucose [1, 2]. However, the molecular and cellular mechanisms underlying 

the stimulus-secretion coupling of glucose-stimulated insulin secretion (GSIS) remain only 

partially understood. Available evidence along these lines suggests that GSIS is mediated 

largely via the generation of hydrophobic (e.g., diacylglycerol, phosphatidylinositol and 

lysophospholipids) as well as hydrophilic (e.g., inositol triphosphates, cyclic nucleotides) 

second messengers. In addition, alterations in cationic events (e.g., intracellular calcium 

levels) have also been shown to play a critical regulatory role in the cascade of events 

leading to GSIS [3–7].

It is noteworthy that, in addition to adenine nucleotides (ATP), several earlier studies 

have documented evidence in support of critical regulatory roles for GTP in physiological 

insulin secretion [8, 9]. For example, using specific inhibitors for inosine monophosphate 

dehydrogenase (e.g., mycophenolic acid), Metz and coworkers have demonstrated regulatory 

roles for GTP in GSIS [8, 10, 11]. Furthermore, GTP has been shown to be necessary for 

the regulation of islet β-cell functions, including proliferation and GSIS via activation of a 

variety of heterotrimeric and small molecular mass GTP-binding proteins (G proteins) [12]. 

In this context, numerous studies have established that small G proteins (e.g., Arf6, Cdc42, 

Rac1, RhoA and Rap1) play significant roles in cytoskeletal remodeling thereby favoring 

mobilization of secretory granules to the plasma membrane for fusion and release of their 

cargo into circulation in a glucose-stimulated β-cell [reviewed in [13–15]]. Furthermore, 

small G proteins belonging to the Rab G protein family (e.g., Rab3, Rab27A) have been 

shown to regulate insulin secretion by promoting insulin-granule translocation and fusion 

with the plasma membrane [13–15]. Lastly, in addition to small G proteins, glucose has 

been shown to mediate activation of heterotrimeric G proteins either via classical (canonical) 

G protein-coupled receptor (GPCR)-mediated mechanisms or via non-canonical signaling 

pathways involving activation of novel histidine kinase-derived signaling mechanisms [15, 

16].

It is well established that G proteins undergo an activation-deactivation cycle between their 

inactive (GDP-bound) and active (GTP-bound) conformations, which are tightly controlled 

by specific regulatory proteins/factors [13–15]. At least three major types of regulatory 

proteins/factors have been described for activation-deactivation of small G proteins (e.g., 

Rac1; the focus of the current investigation). The first group is comprised of guanine 

nucleotide exchange factors (GEFs), which facilitate the conversion of the GDP-bound 

(inactive) forms to their corresponding GTP-bound (active) forms. The second group that 
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regulates small G proteins is the GDP-dissociation inhibitors (GDIs), which prevent the 

dissociation of GDP from G proteins, and hence are considered negative modulators of 

the G protein activation cascade. Lastly, the third group represents the GTPase-activating 

proteins (GAPs); these proteins promote the conversion of the GTP-bound G proteins to 

their GDP-bound (inactive) conformation to complete the GTP hydrolytic cycle. Recent 

studies from several laboratories including our own have identified GEFs, GDIs and GAPs 

for small G proteins, including Rac1 in the islet β-cell. These aspects of beta cell biology 

have been reviewed in [13–15].

Earlier evidence suggests that P-Rex1, a GEF for the Rho subfamily of G proteins, 

specifically Rac1, plays critical regulatory roles in cell function [17, 18]. This predominantly 

cytosolic GEF is activated by phosphatidylinositol-3,4,5-trisphosphate (PIP3), which is 

generated via the activation of PI3-kinase, and the βγ subunits of heterotrimeric G proteins 

in a GPCR-dependent fashion [17–20]. Along these lines recent studies have shown 

regulatory roles for PI3-kinase in cell motility in islet morphogenesis [21] and insulin 

secretion from the islet β-cell [22–24]. Using two structurally distinct inhibitors of PI3-

kinase (Wortmannin and LY294002), Kolic and associates have demonstrated modulatory 

roles for PI3-kinase in insulin secretion, which appear to involve cellular homeostasis of 

cAMP. They also presented evidence for PI3-Kγ in insulin secretion induced by glucose-

dependent insulinotropic polypeptide [25, 26].

Despite the above evidence implicating PI3-kinase in the regulation of islet function, 

including mitogenesis and insulin secretion, very little is known about potential regulatory 

roles of its downstream signaling steps, including the P-Rex1-Rac1 signaling pathway in the 

islet β-cell. Therefore, we undertook the current investigation to examine the P-Rex1-Rac1 

signaling module in GSIS in insulin-secreting INS-1 832/13 cells. We present evidence to 

support the hypothesis that P-Rex1 serves as a GEF for Rac1 in the cascade of events 

leading to GSIS.

Materials and Methods

Materials

P-Rex1 antibody was from R&D Systems (Minneapolis, MN, USA). Antisera directed 

against RhoG was from Santa Cruz Biotechnology (CA, USA). E-Cadherin, GAPDH 

and HRP-conjugated secondary antibodies were from Cell Signaling (Danvers, MA, 

USA). Rac1 antibody was from EMD Millipore (Burlington, MA, USA). Rat high 

range insulin ELISA was from ALPCO (Salem, NH, USA). Target sequence for 

the ON-TARGETplus Non-targeting siRNA#1 (Catalog Item- D-001810–01-20) is: 

UGGUUUACAUGUCGACUAA. The target sequences for the ON-TARGETplus Rat 

Prex1(311647) siRNA-SMARTpool (Catalog Item L-093719–02-0010 that has 4 sequences 

that it targets) are: GCAUGGAGCGCGACGCAUA, CAACAACAACGGCGAGUAU, 

UCCUGAAAGUCAACGGCAA and CCAUCAACGCCCUGGACGA. The above on-target 

P-Rex1siRNA SMARTpool and non-targeting control siRNA (Con-si), as well as 

DharmaFect1, were from Dharmacon (Lafayette, CO, USA). Antibody for β-actin and all 

other reagents used in the current studies were from Sigma Aldrich (St. Louis, MO, USA). 

Mem-PER Plus Membrane Extraction Kit was from Thermo Fisher Scientific (Waltham, 
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MA, USA). The pull down assay kit used for the Rac1 activation was from Cytoskeleton 

(Denver, CO, USA).

Cell culture and treatment conditions

INS-1 832/13 cells were cultured in RPMI-1640 medium containing 10% FBS 

supplemented with 100 IU/ ml penicillin and 100 IU/ml streptomycin, 1 mM sodium 

pyruvate, 50 μM 2-mercapto-ethanol, and 10 mM HEPES (pH 7.4). The cultured cells were 

sub-cloned twice weekly. Cells were starved overnight in a low glucose /low serum growth 

medium prior to the treatment with different concentrations of glucose (2.5 or 20 mM) for 

various time points, as indicated in the text. For inhibitor studies, cells were pretreated with 

either Wortmannin (100 nM) or LY294002 (10 μM) and then exposed to LG (2.5 mM) and 

HG (20 mM) for indicated time points. DMSO was used as a vehicle control.

Islets isolation

All protocols involving animal care and use were reviewed and approved by Wayne State 

University and John D. Dingell VA Medical Center Institutional Animal Care and Use 

Committees. Islets from 8 to 10-week-old male Sprague–Dawley rats were isolated by the 

collagenase digestion method [27–29]. Human islets were from Prodo Labs (Aliso Viejo, 

CA). Studies involving human islets were approved by the Biosafety Committee at the John 

D. Dingell VA Medical Center.

siRNA-mediated knockdown of expression of P-Rex1 and RhoG

Expression of endogenous P-Rex1 or RhoG was suppressed by siRNA transfection as per 

manufacturer’s protocol. Cells were transfected with siRNA at a final concentration of 

100 nM using the DharmaFect1 reagent. To assess the specificity of RNA interference, 

cells were transfected (as above) with non-targeting siRNA (i.e., control siRNA) duplexes 

specific for rat genome. Transfected cells were maintained in complete growth medium for 

48 hrs. Cells were washed with ice-cold PBS and collected in RIPA lysis buffer containing 

protease inhibitors. Efficiency of the knockdown was determined by immunoblotting of 

lysates derived from control siRNA and P-Rex1 siRNA transfected cells. Actin was used as 

a loading control.

Insulin secretion assay

Following a 60 min pre-incubation at 37°C in the presence or absence of inhibitors, the cells 

were exposed to LG (2.5 mM) or HG (20 mM) for 45min. Insulin released into the medium 

was quantified by ELISA per the manufacturer’s instructions. Data were expressed as ng/ml 

insulin secreted in the medium.

Isolation of membrane and cytosolic fractions

Total membrane and cytosolic fractions were isolated using Mem-PER Plus Membrane 

Extraction Kit, as per manufacturer instructions, and used for the determination of relative 

abundance of P-Rex1 in these fractions by Western blotting. The purity of cytosolic and 

membrane fractions was assessed by enrichment of these fractions with specific protein 

markers, namely GAPDH and E-Cadherin, respectfully [29].
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Rac1 activation assay

The degree of activation of Rac1 was determined using a pull-down assay kit [28–30]. In 

brief, INS-1 cells were exposed to basal (2.5 mM) or high (20 mM) glucose concentrations 

for 15min in Krebs-Ringer buffer. Lysates were clarified by centrifugation and p21-binding 

domain of p21-activated kinase beads were added to the supernatant. The mixture was 

rotated for 1 h at 4°C and pelleted by centrifuging at 4,000g for 3 min. The pellets were 

washed once with wash buffer then reconstituted in Laemmli buffer and boiled for 5min. 

Proteins were resolved by SDS-PAGE, transferred to a nitrocellulose membrane, and the 

relative abundance of Rac1 was determined by Western blotting.

Statistical analysis

Data are presented as mean ± SD of at least three independent experiments. Statistical 

analysis for differences between groups was done using the Student t-test. A p value of < 

0.05 was considered statistically significant.

Results

P-Rex1 is expressed in INS-1 832/13 cells, normal rat and human islets, and siRNA-
mediated knockdown of P-Rex1 attenuates GSIS in INS-1 832/13 cells

At the outset, we determined, by Western blotting, the expression of P-Rex1 in INS-1 

832/13 cells, normal rat islets and human islets. Data in Fig. 1 (Panel A) indicate that 

P-Rex1 is expressed in all three insulin-secreting cells studied. We next investigated the 

role of P-Rex1 in GSIS. To address this, we employed siRNA-P-Rex1 to deplete the 

expression of endogenous P-Rex1 in INS-1 832/13 cells. Data depicted in Fig. 1 (Panel 

B) indicate a significant reduction in the expression of P-Rex1 following the transfection 

of siRNA-P-Rex1. Transfection of these cells with control siRNA did not exert any effect 

on the expression of P-Rex1 under these experimental conditions. Data from GSIS studies 

(Fig. 1; Panel C) indicated significant reduction in GSIS in INS-1 832/13 cells transfected 

with siRNA-P-Rex1, but not control siRNA. No significant effects of control siRNA or 

siRNA-P-Rex1 were seen on basal insulin secretion. Together, these data demonstrate that 

P-Rex1 plays a contributory role in the stimulus-secretion coupling of GSIS.

siRNA-mediated knockdown of P-Rex1 inhibits glucose-induced Rac1 activation in INS-1 
832/13 cells

Next series of studies were aimed at understanding potential roles for P-Rex1 as a GEF in 

the cascade of events leading to glucose-induced activation of Rac1, which has been shown 

to be a requisite for GSIS to occur [13, 28, 31]. To address this, we quantified activation 

of glucose-induced activation of Rac1 in INS-1 832/13 cells under mock, control siRNA, 

or P-Rex siRNA transfection conditions. Data shown in Fig. 2 (Panel A) indicate a modest, 

but insignificant increase in Rac1 activation under basal conditions in cells transfected with 

either control siRNA or P-Rex1 siRNA. In line with previously published evidence [31], 

exposure of these cells to stimulatory glucose (20 mM for 15 min) markedly increased Rac1 

activation under mock and control siRNA conditions. Depletion of P-Rex1 expression in 

these cells significantly suppressed glucose-induced Rac1 activation. Taken together, these 
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findings suggest that P-Rex1 mediates glucose-induced Rac1 activation. Pooled data from 

multiple experiments are shown in Fig. 2 (Panel B).

siRNA-mediated depletion of P-Rex1 inhibits glucose-induced membrane association of 
Rac1 in INS-1 832/13 cells

Previous studies in pancreatic beta cells have shown membrane targeting of Rac1 following 

exposure to stimulatory glucose conditions [29, 32]. Therefore, given our findings of 

glucose-induced P-Rex1 mediated activation of Rac1 (Fig. 2), we asked if P-Rex1 mediates 

targeting of Rac1 to the membrane fraction in the glucose-stimulated beta cell. To address 

this, relative abundance of Rac1 was determined, by Western blotting, in the cytosol 

and membrane fractions in INS-1 832/13 cells transfected with either control-siRNA or 

P-Rex1-siRNA under basal or glucose-stimulated conditions. The purity of cytosol and 

membrane fractions was assessed by determining the abundance of GAPDH and E-cadherin, 

respectively. Data in Fig. 3 (panel A) show that both cytosolic and membrane fractions 

isolated for these studies were pure. Furthermore, we noted that P-Rex1 is predominantly 

(~ 80% of total; n=5 experiments) cytosolic in distribution. We also observed a significant 

reduction in P-Rex1 expression in both cytosolic and membrane fractions following P-

Rex1-siRNA transfection. In addition, we observed a modest, but significant, increase 

in membrane-associated Rac1 in glucose-stimulated INS-1 832/13 cells transfected with 

control-siRNA compared to basal conditions. More importantly, significant inhibition of 

membrane-associated Rac1 was seen in cells exposed to stimulatory, but not basal glucose 

(Fig. 3; Panel A). Pooled data from multiple experiments are shown in Fig. 3; Panel B. 

Taken together, data represented in Fig. 1–3 suggest that P-Rex1 might play contributory 

roles in glucose-induced membrane association and activation of Rac1 culminating in insulin 

secretion. In the next series of investigations, we explored potential mechanisms downstream 

to P-Rex1-mediated activation of Rac1 and stimulation of insulin secretion.

RhoG, a known regulator of P-Rex1-Rac signaling axis, is expressed in INS-1 832/13 cells, 
normal rat and human islets, but exerts minimal effects on GSIS in INS-1 832/13 cells

Earlier studies by Damoulakis and coworkers have implicated activation of RhoG, a small 

G protein, in P-Rex1-mediated G protein coupled receptor-driven activation of Rac1 and 

actin cytoskeletal polarity in neutrophils [17]. Data from these investigations have suggested 

that P-Rex1 plays the role of a GEF for RhoG activation thereby regulating downstream 

signaling steps including Rac1 activation and cytoskeletal functions. Therefore, we next 

explored the roles of RhoG signaling pathway in GSIS. Data in Fig. 4 (Panel A) provide the 

first evidence for the expression of RhoG in INS-1 832/13 cells, normal rat and human islets. 

Transfection of INS-1 832/13 cells with siRNA-RhoG, but not control siRNA, markedly 

suppressed the endogenous expression of RhoG in these cells (Fig. 4; Panel B). Interestingly, 

however, no significant effects of RhoG knockdown were seen on either basal insulin 

secretion or GSIS (Fig. 4; Panel C). These findings rule out potential regulatory roles 

for RhoG in GSIS. They also suggest that RhoG is not downstream to glucose-induced 

P-Rex1-sensitive signaling mechanisms involved in GSIS.
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PI3-kinase inhibitors exert differential effects on GSIS in INS-1 832/13 cells without 
significantly affecting glucose-induced Rac1 activation in INS-1 832/13 cells

It is well established that functional activation of P-Rex1 is downstream to PI3-kinase 

activation [18–20]. Despite compelling evidence on roles of PI3-kinase in GSIS [23, 24, 26], 

putative roles of PI3-kinase-Rac1 signaling axis in GSIS remain unknown. Therefore, we 

undertook a series of investigations to determine the roles of PI3-kinase in glucose-induced 

Rac1 activation and insulin secretion via two different experimental approaches. In the first, 

we quantified GSIS in INS-1 832/13 cells in the absence and presence of two structurally 

distinct inhibitors of PI3- kinase, namely Wortmannin [33] and LY294002 [34]. In the 

second set of experiments, we determined the effects of these two inhibitors on glucose-

induced Rac1 activation in INS-1 832/13 cells.

Data in Fig. 5 (Panel A) demonstrate no significant effects of either of these inhibitors 

(following one-hour pre-incubation) on basal insulin secretion. A robust stimulation of 

insulin secretion was seen in the presence of stimulatory glucose. Wortmannin failed to 

exert any effect on GSIS under our current experimental conditions. However, we observed 

a significant potentiation of GSIS in cells exposed to the LY294002 inhibitor (Panel A). 

Similar potentiating effect, by LY294002, of GSIS was noted in cells following overnight 

pre-incubation of INS-1 832/13 cells to the inhibitor (data not shown). A modest, but 

significant increase in basal insulin secretion was seen in cells incubated with Wortmannin 

following one hour pre-exposure conditions (Panel A). However, in a manner akin to 

findings in Panel A, we observed no effects of Wortmannin on GSIS even after exposure 

of the cells overnight with the inhibitor (not shown). Together, these findings demonstrate 

differential effects of two structurally distinct inhibitors of PI3-kinase on insulin secretion 

from INS-1 832/13 cells.

Next, we wanted to know if LY290042-mediated potentiation of GSIS (Fig. 5; panel A) 

involves Rac1 activation. To address this, the degree of glucose-induced Rac1 activation 

was quantified in INS-1 832/13 cells incubated (60 min pre-incubation) in the absence and 

presence of LY290042. Data in Fig. 5 (panel B) indicate significant activation of Rac1 in 

these cells exposed to stimulatory glucose. However, glucose-induced Rac1 activation was 

not affected by the inhibitor (Panel B). Under these conditions, we detected no significant 

changes in total Rac1 (Fig. 5; panels C and D). Furthermore, no significant differences in the 

expression of P-Rex1 were noticed in INS-1 832/13 cells under basal or glucose-stimulated 

conditions in the absence or presence of LY290042 (Fig. 5; panels E and F). Together, these 

data suggest that the potentiating effect, by LY290042, on GSIS might not involve activation 

of Rac1.

Discussion

A growing body of evidence supports the overall hypothesis that small G proteins (e.g., 

Rac1) play regulatory roles in islet β-cell function, including insulin secretion [13–15]. 

Extant studies have suggested regulatory roles for Rac1 in islet function including the 

recruitment of secretory granules through actin cytoskeletal reorganization for GSIS and 

islet morphogenesis [21, 31, 35]. For example, studies of Asahara et al. have shown 

that Rac1-null [βRac1−/−] mice exhibited impaired glucose tolerance and hypoinsulinemia. 
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Glucose-, but not KCl-induced insulin secretion, was markedly attenuated in islets from the 

Rac1 null mice. The β-cell mass or islet density remained unaltered in these mice. Based on 

these findings, it was concluded that Rac1 plays a key regulatory role in insulin secretion 

primarily through regulating cytoskeletal reorganization [35]. Altogether, the above studies 

provide significant support to the viewpoint that Rac1 plays a positive modulatory role in 

islet function including GSIS.

One of the goals of the current studies was to determine the roles of P-Rex1 as a GEF 

for Rac1 in the cascade of events leading to insulin secretion. Our findings indicate that 

P-Rex1 is expressed in INS-1 832/13 cells and normal rodent and human islets. siRNA-

mediated knockdown of expression of endogenous P-Rex1 attenuated GSIS in INS-1 832/13 

cells. Our findings also suggest that depletion of P-Rex1 expression results in significant 

inhibition of glucose induced activation of Rac1 in these cells. It is noteworthy that, 

we observed a significant reduction in the abundance of membrane-associated Rac1 in 

INS-1 832/13 cells exposed to stimulatory glucose, suggesting potential roles for P-Rex1 in 

membrane association of Rac1. Together, these data affirm that P-Rex1 might sub-serve the 

function of a GEF for Rac1 in the cascade of events leading to GSIS.

Damoulakis et al. have reported novel roles for RhoG, a small G protein, in P-Rex1-

mediated regulation of cellular functions. They demonstrated that P-Rex1 serves as a 

GEF for RhoG in vitro as well as in fMPLP-stimulated (i.e., GPCR-mediated) primary 

mouse neutrophils. Interestingly, inhibition of either P-Rex1 or RhoG functions resulted in 

a marked reduction in GPCR-mediated Rac1-NADPH oxidase signaling axis suggesting that 

P-Rex1-RhoG module plays regulatory roles upstream to Rac1 activation [17]. Based on 

these observations we asked if RhoG plays a contributory role(s) in the events leading to 

GSIS. This has not been addressed before. In this context, we provide the first evidence 

for the expression of RhoG in normal rodent and human islets and INS-1 832/13 cells. 

Interestingly, however, the siRNA-mediated knockdown of RhoG expression exerted no 

effects on GSIS, thus ruling out potential contributory roles of RhoG at least under acute 

regulatory conditions.

In an effort to determine potential roles of PI3-kinase in glucose-induced Rac1 activation 

and insulin secretion, we utilized two structurally distinct inhibitors of PI3-kinase for their 

effects on GSIS and glucose-induced activation of Rac1. Compatible with observations 

of Collier and coworkers, we observed significant amplification of GSIS in cells exposed 

to LY294002, but not Wortmannin [24]. Interestingly, however, LY294002 failed to exert 

significant regulatory effects on glucose-induced activation of Rac1, thereby suggesting 

that the amplification of GSIS consequential to PI3-kinase inhibition does not involve (or 

require) activation of Rac1. Instead, the amplification process might involve an increase 

in intracellular cAMP (due to inhibition of specific isoforms of phosphodiesterase) and 

activation of protein kinase A signaling steps [36, 37].

In the light of current observations, it may be germane to point out that, previous studies 

have identified Tiam1 and Vav2 as GEFs for Rac1 in clonal β-cells and normal rodent and 

human islets [15, 38]. These studies have provided compelling evidence for Tiam1-Rac1 

and Vav2-Rac1 signaling modules not only in physiological insulin secretion, but also 
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in the constitutive activation of Rac1 by increasing the intracellular oxidative stress and 

pathogenesis of islet β-cell dysfunction under conditions of metabolic stress [30, 39]. Our 

current study identifies P-Rex1 as yet another GEF for Rac1 in signaling events leading 

to GSIS. This raises an important question of why does the β-cell need more than one 

GEF to activate Rac1? It is likely that these regulatory proteins/factors are involved in 

spatiotemporal regulation of candidate G proteins (e.g., Rac1) for optimal cell function. This 

has been reported in platelets recently [40]. Interestingly, recent proteomic analysis of the 

regulation of Rac1 signaling by GEFs (e.g., Tiam1 and P-Rex1) by Marei and associates 

have identified distinct sets of interacting partners for Rac1 following its activation by each 

of these GEFs; such a difference in Rac1 interactome could explain for its differential 

regulatory roles in eliciting its anti-or pro-migratory effects [41, 42]. It has also been 

suggested that both of these GEFs sub-serve the functions of not only activating Rac1, but 

also in dictating Rac1-driven biological outcomes that govern cell migration and invasion 

[42]. In a manner akin to this, studies of Omelchenko and coworkers have demonstrated 

regulatory control of spatial localization of Rac1 by β-Pix, a known GEF for Rac1, in 

facilitating the migration of anterior visceral endoderm cells [43]. Therefore, such non-GEF-

dependent functions of GEFs could include the association of Rac1 with its intracellular 

target/effector proteins in the membrane. Along these lines, using quantitative proteomics 

approach we have identified novel interaction partners for Rac1 in INS-1 832/13 cells under 

basal and glucotoxic conditions [44]. Future proteomics investigations along the lines of 

identification of Rac1 interactome in pancreatic β-cells under conditions of its activation by 

each of these GEFs (Tiam1, Vav2 and P-Rex-1) should yield valuable insights into these 

pathways in β-cells in health and metabolic stress.

Conclusion

Based on our observations, we conclude that glucose-induced Rac1 activation and insulin 

secretion are mediated, in part, via P-Rex1, and such a signaling step(s) might not require 

the intermediacy of RhoG. Although not tested in our current studies, these signaling steps 

might involve recently reported non-canonical activation of P-Rex1, which is mediated 

via binding of the regulatory subunit of protein kinase A (i.e., PKA-Riα) to P-Rex1 

thereby promoting its catalytic activation culminating in the activation of Rac1 [37]. This 

postulation needs to be tested experimentally in the context of GSIS in the pancreatic 

β-cell. Further, additional signals (i.e., non-canonical) might underlie glucose-induced P-

Rex1/Rac1 activation in the stimulus-secretion coupling of GSIS. These might comprise of 

non-receptor-mediated functional regulation of individual subunits of trimeric G proteins 

[recently reviewed in [15]], including the post-translational carboxylmethylation of the 

γ-subunits [45] and histidine phosphorylation of the β-subunits [46] leading to the activation 

of the putative trimeric G protein(s) that couples PI3-kinase for the activation of P-Rex-1-

Rac1 signaling pathway culminating in GSIS. These questions are being addressed in our 

laboratory currently.
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Cdc42 Cell division control protein 42

GAP GTPase-activating protein

GDI GDP dissociation inhibitor

GEF Guanine nucleotide exchange factor
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GSIS Glucose-stimulated insulin secretion

PI3-kinase Phosphatidylinositol 3-Kinase

P-Rex1 Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac 

exchange factor 1
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References

1. Malaisse WJ: Insulin secretion: multifactorial regulation for a single process of release. The 
Minkowski award lecture delivered on September 7, 1972 before the European Association for 
the study of Diabetes at Madrid, Spain. Diabetologia 1973;9:167–173. [PubMed: 4368828] 

2. Mayer J: Glucostatic mechanism of regulation of food intake. N Engl J Med 1953;249:13–16. 
[PubMed: 13063674] 

3. MacDonald MJ: Elusive proximal signals of beta-cells for insulin secretion. Diabetes 
1990;39:1461–1466. [PubMed: 2245873] 

4. Newgard CB, McGarry JD: Metabolic coupling factors in pancreatic beta-cell signal transduction. 
Annu Rev Biochem 1995;64:689–719. [PubMed: 7574498] 

5. Prentki M, Matschinsky FM, Madiraju SR: Metabolic signaling in fuel-induced insulin secretion. 
Cell Metab 2013;18:162–185. [PubMed: 23791483] 

6. Berggren PO, Leibiger IB: Novel aspects on signal-transduction in the pancreatic beta-cell. Nutr 
Metab Cardiovasc Dis 2006;16:S7–10. [PubMed: 16530130] 

7. Gilon P, Chae HY, Rutter GA, Ravier MA: Calcium signaling in pancreatic β-cells in health and in 
Type 2 diabetes. Cell Calcium 2014;56:340–361. [PubMed: 25239387] 

8. Metz SA, Rabaglia ME, Pintar TJ: Selective inhibitors of GTP synthesis impede exocytotic insulin 
release from intact rat islets. J Biol Chem 1992;267:12517–12527. [PubMed: 1352288] 

9. Komatsu M, Noda M, Sharp GW: Nutrient augmentation of Ca2+-dependent and Ca2+-independent 
pathways in stimulus-coupling to insulin secretion can be distinguished by their guanosine 
triphosphate requirements: studies on rat pancreatic islets. Endocrinology 1998;139:1172–1183. 
[PubMed: 9492052] 

Thamilselvan et al. Page 10

Cell Physiol Biochem. Author manuscript; available in PMC 2022 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Meredith M, Rabaglia ME, Metz SA: Evidence of a role for GTP in the potentiation of Ca(2+)-
induced insulin secretion by glucose in intact rat islets. J Clin Invest 1995;96:811–821. [PubMed: 
7635976] 

11. Metz SA, Meredith M, Rabaglia ME, Kowluru A: Small elevations of glucose concentration 
redirect and amplify the synthesis of guanosine 5’-triphosphate in rat islets. J Clin Invest 
1993;92:872–882. [PubMed: 8349822] 

12. Kowluru A: Roles of GTP and Rho GTPases in pancreatic islet beta cell function and dysfunction. 
Small GTPases 2020:1–13. [PubMed: 29363391] 

13. Kowluru A: Small G proteins in islet beta-cell function. Endocr Rev 2010;31:52–78. [PubMed: 
19890090] 

14. Wang Z, Thurmond DC: Mechanisms of biphasic insulin-granule exocytosis - roles of the 
cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 2009;122:893–903. [PubMed: 
19295123] 

15. Kowluru A: GPCRs, G Proteins, and Their Impact on β-cell Function. Compr Physiol 
2020;10:453–490. [PubMed: 32163203] 

16. Kowluru A: Emerging roles for protein histidine phosphorylation in cellular signal transduction: 
lessons from the islet beta-cell. J Cell Mol Med 2008;12:1885–1908. [PubMed: 18400053] 

17. Damoulakis G, Gambardella L, Rossman KL, Lawson CD, Anderson KE, Fukui Y, et al. : P-Rex1 
directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils. J 
Cell Sci 2014;127:2589–2600. [PubMed: 24659802] 

18. Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, et al. : 
P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for 
Rac. Cell 2002;108:809–821. [PubMed: 11955434] 

19. Barber MA, Donald S, Thelen S, Anderson KE, Thelen M, Welch HC: Membrane translocation of 
P-Rex1 is mediated by G protein betagamma subunits and phosphoinositide 3-kinase. J Biol Chem 
2007;282:29967–29976. [PubMed: 17698854] 

20. Hill K, Krugmann S, Andrews SR, Coadwell WJ, Finan P, Welch HC, et al. : Regulation of 
P-Rex1 by phosphatidylinositol (3,4,5)-trisphosphate and Gbetagamma subunits. J Biol Chem 
2005;280:4166–4173. [PubMed: 15545267] 

21. Freudenblum J, Iglesias JA, Hermann M, Walsen T, Wilfinger A, Meyer D, et al. : In vivo imaging 
of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet 
morphogenesis. Development 2018;145:dev158477. [PubMed: 29386244] 

22. Pigeau GM, Kolic J, Ball BJ, Hoppa MB, Wang YW, Rückle T, et al. : Insulin granule recruitment 
and exocytosis is dependent on p110gamma in insulinoma and human beta-cells. Diabetes 
2009;58:2084–2092. [PubMed: 19549714] 

23. Zawalich WS, Zawalich KC: A link between insulin resistance and hyperinsulinemia: inhibitors 
of phosphatidylinositol 3-kinase augment glucose-induced insulin secretion from islets of lean, but 
not obese, rats. Endocrinology 2000;141:3287–3295. [PubMed: 10965900] 

24. Collier JJ, White SM, Dick GM, Scott DK: Phosphatidylinositol 3-kinase inhibitors reveal a unique 
mechanism of enhancing insulin secretion in 832/13 rat insulinoma cells. Biochem Biophys Res 
Commun 2004;324:1018–1023. [PubMed: 15485656] 

25. Kolic J, Manning Fox JE, Chepurny OG, Spigelman AF, Ferdaoussi M, Schwede F, et al. : PI3 
kinases p110α and PI3K-C2β negatively regulate cAMP via PDE3/8 to control insulin secretion in 
mouse and human islets. Mol Metab 2016;5:459–471. [PubMed: 27408772] 

26. Kolic J, Spigelman AF, Smith AM, Manning Fox JE, MacDonald PE: Insulin secretion induced 
by glucose-dependent insulinotropic polypeptide requires phosphatidylinositol 3-kinase gamma in 
rodent and human beta-cells. J Biol Chem 2014;289:32109–32120. [PubMed: 25288806] 

27. Veluthakal R, Arora DK, Goalstone ML, Kowluru RA, Kowluru A: Metabolic Stress Induces 
Caspase-3 Mediated Degradation and Inactivation of Farnesyl and Geranylgeranyl Transferase 
Activities in Pancreatic β-Cells. Cell Physiol Biochem 2016;39:2110–2120. [PubMed: 27802439] 

28. Syed I, Kyathanahalli CN, Jayaram B, Govind S, Rhodes CJ, Kowluru RA, et al. : Increased 
phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human 
islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. 
Diabetes 2011;60:2843–2852. [PubMed: 21911753] 

Thamilselvan et al. Page 11

Cell Physiol Biochem. Author manuscript; available in PMC 2022 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Thamilselvan V, Kowluru A: Paradoxical regulation of glucose-induced Rac1 activation and insulin 
secretion by RhoGDIβ in pancreatic β-cells. Small GTPases 2019:1–8.

30. Sidarala V, Veluthakal R, Syeda K, Vlaar C, Newsholme P, Kowluru A: Phagocyte-like 
NADPH oxidase (Nox2) promotes activation of p38MAPK in pancreatic β-cells under glucotoxic 
conditions: Evidence for a requisite role of Ras-related C3 botulinum toxin substrate 1 (Rac1). 
Biochem Pharmacol 2015;95:301–310. [PubMed: 25881746] 

31. Kowluru A: Friendly, and not so friendly, roles of Rac1 in islet β-cell function: lessons learnt from 
pharmacological and molecular biological approaches. Biochem Pharmacol 2011;81:965–975. 
[PubMed: 21300027] 

32. Kowluru A, Veluthakal R: Rho guanosine diphosphate-dissociation inhibitor plays a negative 
modulatory role in glucose-stimulated insulin secretion. Diabetes 2005;54:3523–3529. [PubMed: 
16306371] 

33. Arcaro A, Wymann MP: Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role 
of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J 1993;296:297–301. 
[PubMed: 8257416] 

34. Vlahos CJ, Matter WF, Hui KY, Brown RF: A specific inhibitor of phosphatidylinositol 3-kinase, 
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994;269:5241–
5248. [PubMed: 8106507] 

35. Asahara S, Shibutani Y, Teruyama K, Inoue HY, Kawada Y, Etoh H, et al. : Ras-related C3 
botulinum toxin substrate 1 (RAC1) regulates glucose-stimulated insulin secretion via modulation 
of F-actin. Diabetologia 2013;56:1088–1097. [PubMed: 23412604] 

36. Nunoi K, Yasuda K, Tanaka H, Kubota A, Okamoto Y, Adachi T, et al. : Wortmannin, a PI3-
kinase inhibitor: promoting effect on insulin secretion from pancreatic beta cells through a cAMP-
dependent pathway. Biochem Biophys Res Commun 2000;270:798–805. [PubMed: 10772905] 

37. Holz GG, Chepurny OG, Leech CA: “A-kinase” regulator runs amok to provide a paradigm shift in 
cAMP signaling. J Biol Chem 2019;294:2247–2248. [PubMed: 30765510] 

38. Kowluru A: Tiam1/Vav2-Rac1 axis: A tug-of-war between islet function and dysfunction. Biochem 
Pharmacol 2017;132:9–17. [PubMed: 28202288] 

39. Syed I, Jayaram B, Subasinghe W, Kowluru A: Tiam1/Rac1 signaling pathway mediates palmitate-
induced, ceramide-sensitive generation of superoxides and lipid peroxides and the loss of 
mitochondrial membrane potential in pancreatic beta-cells. Biochem Pharmacol 2010;80:874–883. 
[PubMed: 20493824] 

40. Aslan JE: Platelet Rho GTPase regulation in physiology and disease. Platelets 2019;30:17–22. 
[PubMed: 29799302] 

41. Marei H, Malliri A: GEFs: Dual regulation of Rac1 signaling. Small GTPases 2017;8:90–99. 
[PubMed: 27314616] 

42. Marei H, Carpy A, Macek B, Malliri A: Proteomic analysis of Rac1 signaling regulation by 
guanine nucleotide exchange factors. Cell Cycle 2016;15:1961–1974. [PubMed: 27152953] 

43. Omelchenko T, Rabadan MA, Hernández-Martínez R, Grego-Bessa J, Anderson KV, Hall A: β-Pix 
directs collective migration of anterior visceral endoderm cells in the early mouse embryo. Genes 
Dev 2014;28:2764–2777. [PubMed: 25512563] 

44. Damacharla D, Thamilselvan V, Zhang X, Mestareehi A, Yi Z, Kowluru A: Quantitative 
proteomics reveals novel interaction partners of Rac1 in pancreatic β-cells: Evidence for increased 
interaction with Rac1 under hyperglycemic conditions. Mol Cell Endocrinol 2019;494:110489. 
[PubMed: 31202817] 

45. Kowluru A, Li G, Metz SA: Glucose activates the carboxyl methylation of gamma subunits of 
trimeric GTP-binding proteins in pancreatic beta cells. Modulation in vivo by calcium, GTP, and 
pertussis toxin. J Clin Invest 1997;100:1596–1610. [PubMed: 9294129] 

46. Kowluru A, Seavey SE, Rhodes CJ, Metz SA: A novel regulatory mechanism for trimeric GTP-
binding proteins in the membrane and secretory granule fractions of human and rodent beta cells. 
Biochem J 1996;313:97–107. [PubMed: 8546716] 

Thamilselvan et al. Page 12

Cell Physiol Biochem. Author manuscript; available in PMC 2022 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Expression of P-Rex1 in clonal INS-1 832/13 cells, rodent islets and human islets cells and 

siRNA mediated knockdown of P-Rex1 significantly attenuates GSIS in INS-1 832/13 cells. 

Panel A: Lysates from INS-1 832/13 cells, rat and human islets were analyzed for P-Rex1 

protein expression by Western blot analysis. Actin was used as loading control. Panel B: 

INS-1 832/13 cells were transfected with Con-siRNA or siRNA targeted to P-Rex1 (P-Rex1-

si). Cell lyates were analyzed by Western blotting for the expression of P-Rex1. Actin was 

used as loading control. A representative blot from three independent experiments is shown 

here. Panel C: GSIS was quantified in mock, Con-si and P-Rex1-si transfected INS-1 832/13 

cells (see Methods for additional details). Data are mean ± SD from three experiments. The 

data are expressed as fold change relative to LG-Mock. (* p< 0.05) Comparisons shown: 

a -significant compared with LG treated mock; b - significant compared with LG-treated 

Con-si; c- significant compared with LG-treated P-Rex1-si; d: significant compared with 

HG-treated mock.
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Fig. 2. 
Knockdown of P-Rex1 expression inhibits glucose-stimulated Rac1 activation in INS-1 

832/13 cells. Panel A: INS-1 832/13 cells were transfected with Con-si or P-Rex1-si as 

described in the Methods section. After 48 hours of transfection, cells were subjected to 

overnight starvation and then were treated with LG (2.5 mM) or HG (20 mM) for 15 

mins. Rac1 activation was quantified by Rac1 pull down assay. Expression of total Rac1, 

P-Rex1 and actin in respective cell lysates is also provided. Representative blots from three 

independent studies are provided. Panel B: Densitometric quantitation of activated Rac1 

in Panel A is shown here. The results from three independent experiments are presented 

as means ± SD. The data are expressed as fold change relative to LG-mock. (* p< 

0.05) Comparisons shown: a - significant compared with LG-treated mock; b - significant 

compared with LG treated Con-si; c - significant compared with LG treated P-Rex1-si; d - 

significant compared with HG treated mock.
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Fig. 3. 
Depletion of P-Rex1 suppresses glucose-induced membrane targeting of Rac1 in INS-1 

832/13 cells. Panel A: INS-1 832/13 cells were transfected with con-si or P-Rex1-si 

and exposed to either low glucose (LG, 2.5 mM) or high glucose (HG, 20 mM) for 15 

minutes. Following incubation, total membrane and cytosolic fractions were isolated using a 

commercially available kit (see Methods), and relative abundance of P-Rex1 and Rac1 was 

determined by Western blotting. Purity of the cytosol and membrane fractions was assessed 

by expression of GAPDH and E-Cadherin in those fractions, respectively. A representative 

blot from five independent studies is shown. Panel B: Densitometric analysis of relative 

abundance of Rac1 in the membrane fraction obtained from studies described in Panel A. 

Data are expressed as mean ± SD from three experiments. (* p< 0.05) Comparisons shown: 
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a- significant compared with LG Con-si; b- significant compared with LG P-Rex1-si; c- 

significant compared with HG Con-si.
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Fig. 4. 
Lack of effects of Rho G, a known regulator of P-Rex1-Rac1 module, on GSIS in INS-1 

832/13 cells. Panel A: Lysates from INS-1 832/13 cells, rats and human islets were analyzed 

for RhoG protein expression by Western blot analysis. Actin was used as loading control. 

Panel B: INS-1 832/13 cells were transfected with Con-si or RhoG-si as described in 

Methods. Cell lysates were analyzed by Western blotting for the expression of RhoG. 

Actin was used as loading control. A representative blot from three independent studies is 

shown here. Panel C: Following 48 hours of transfection, cells were subjected to overnight 

starvation and then were treated with LG (2.5 mM) or HG (20 mM) for 45 mins. Insulin 

secretion in the media was determined as described in the Methods section. Data are mean 

± SD from three experiments. The data are expressed as fold change relative to LG-Mock. 

(* p< 0.05). Comparisons shown: a - significant compared with LG-treated mock; b – 

significant compared with LG-treated Con-si; c - significant compared with LG-treated 

RhoG-si.
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Fig. 5. 
LY294002, but not Wortmannin, potentiates GSIS but elicits no significant effects on 

glucose- induced Rac1 activation in INS-1 832/13 cells. Panel A: INS-1 832/13 cells 

were treated 1hr with LY294002 (10 μM) or Wortmannin (100nM) and subjected to LG 

(2.5mM) or HG (20mM) treatment for 45 mins. DMSO was used as a vehicle control. 

Amounts of insulin secreted into the media was quantified as described under Methods. 

The graph is a representative experiment performed in a single run. Data are mean ± 

SD from four replicates and expressed as fold change relative to LG DMSO control. 

(* p< 0.05) Comparisons shown: a - significant compared with LG DMSO control; b - 

significant compared with LG LY294002; c- significant compared with LG Wortmannin; 

d- significant compared with HG DMSO control. Panel B: INS-1 832/13 cells were treated 
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with LY294002 (10 μM) for 1hr and subjected to LG (2.5 mM) or HG (20 mM) treatment 

for 15 mins. Rac1 activation was quantified by Rac1 pull down assay. Representative 

blots from four independent studies are provided. Panel C: Densitometry quantitation 

of activated Rac1 (shown in Panel B) is depicted. The results from four independent 

experiments presented as fold change relative to LG DMSO and as means ± SD. (* p< 

0.05) Comparisons shown: a - significant compared with LG-treated DMSO control. Panel 

D: Densitometry quantitation of total Rac1 in Panel B is shown here. Panel E: INS-1 832/13 

cells were treated with LY294002 (10 μM) for 1hr and subjected to LG (2.5mM) or HG 

(20mM) treatment for 15 mins. Expression of P-Rex1 in the cell lysates was detected by 

Western blotting. A representative blot from three independent studies is provided. Panel 

F: Densitometry quantitation of P-Rex1 in studies described in Panel E is shown here. # 

denotes not significant from LG with diluent (means ± SD; n=4 experiments).
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