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ABSTRACT: We demonstrate efficient, stable, and fully RoHS-compliant near-
infrared (NIR) light-emitting diodes (LEDs) based on InAs/ZnSe quantum dots
(QDs) synthesized by employing a commercially available amino-As precursor. They
have a record external quantum efficiency of 5.5% at 947 nm and an operational
lifetime of ∼32 h before reaching 50% of their initial luminance. Our findings offer a
new solution for developing RoHS-compliant light-emitting technologies based on
Pb-free colloidal QDs.

Light-emitting diodes (LEDs) operating in the near-
infrared (NIR) range (700−1700 nm) are of importance
for telecommunications and optical diagnostic as well as

for remote sensing and in vivo imaging.1 So far, all reported
efficient NIR LEDs are based on PbS quantum dots (QDs)2,3 or
on a Pb-containing halide perovskite host matrix.4 However, due
to the European Union’s “Restriction of Hazardous Substances”
(RoHS) directive, these toxic materials cannot be approved for
optoelectronic applications.1 For this reason, the search for
appropriate Pb-free and RoHS-compliant compositions is an
important focus in the development of QD-based NIR LEDs.
Colloidal indium arsenide (InAs) QDs are among the few

RoHS-compliant materials having high potential for application
in NIR optoelectronic devices. Yet, the integration of InAs QDs
into optoelectronic devices such asNIR LEDs lags far behind the
PbS-based ones. Themain reasons for such limited advancement
are the complex synthesis and poor optical properties of InAs
QDs,5 along with limited material design and device engineering
when using such material.6,7 Electroluminescence (EL) from
InAs QDs films has been demonstrated only very recently in
QDs coated with multiple shells, a relatively elaborate
architecture based on a In(Zn)As/In(Zn)P/GaP/ZnS system
synthesized via pyrophoric and expensive tris(trimethylsilyl)-
phosphine and tris(trimethylsilyl)arsine precursors.8 The NIR-
emitting LEDs fabricated using such QDs had an external
quantum efficiency (EQE) of 4.6% at 850 nm. It is hence evident
that many fundamental challenges (synthesis, operating wave-
length, EQE, and operation stability) need to be addressed
before InAs QD-based NIR LEDs can gain equivalent attention
in NIR technology as the “state of the art” PbS-based devices.

In this work, we demonstrate a fully RoHS-compliantQDNIR
LED operating at 947 nm based on InAs/ZnSe core/shell QDs.
Key ingredients in our device are InAs/ZnSe QDs synthesized
following our recently developed protocol5 based on commer-
cially available tris-dimethylamino arsine (amino-As), alane
N,N-dimethylethylamine as reducing agent, and ZnCl2 as
additive. ZnCl2 plays a double role: (i) it improves the size
distribution of InAs QDs, acting as a Z-type ligand, and (ii) it
enables the in situ overgrowth of a thin ZnSe shell on the InAs
QDs, thanks to the formation of an In-Zn-Se interlayer at the
interface (see Figure S1 for QDs characterization).
Figure 1a presents a schematic of the fabricated LEDs and a

scanning electron microscopy (SEM) image of the champion
device (i.e., the device presenting the highest EQE). The
champion device architecture comprises a thin layer (∼35 nm)
of PEDOT:PSS deposited onto an indium tin oxide (ITO) pre-
patterned substrate (Figure 1b). A 25 nm thick poly(N,N′-bis-4-
butylphenyl-N,N′-bisphenyl)benzidine (poly-TPD) layer was
spin-coated on the PEDOT:PSS, thus completing the hole
injection and transport side of the architecture. The InAs/ZnSe
QD film was deposited via spin-coating on top of poly-TPD, and
the obtained layered structure was transferred into a thermal
evaporator where TPBi, LiF, and Al layers were deposited. The
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LEDs were designed based on the ultraviolet photoelectron
spectroscopy (UPS) analysis of InAs/ZnSe core/shell and InAs
core-only QDs (Figures S2 and S3). The flat band energy
diagram is reported in Figure 1c, and values for ITO,
PEDOT:PSS, poly-TPB, TPBi, and LiF/Al were taken from
the literature.9 The highest occupied molecular orbital of poly-
TPD matches very closely the valence band maximum of the
InAs/ZnSe QD film. Therefore, we do not expect a considerable
energy barrier for the injection of holes into the active layer. On
the other hand, the flat band diagram suggests a small energy
barrier of 0.4 eV for electrons at theTPBi/QDfilm interface. Yet,
such energy barrier is due to the thin ZnSe shell,5 whereas a
favorable alignment between the lowest unoccupied molecular
orbital of TPBi and the conduction band maximum of the InAs
core is observed.
The current density and radiance curves vs applied bias (JVR)

for the champion device are reported in Figure 1d. The LED has
a turn-on voltage of 2.4 V (estimated at a radiance of 8.17× 10−5

W·sr−1·m−2) which is relatively high compared to the emission
wavelength of the LED (Figure 1e, λEL = 947 nm, 1.31 eV).
Noticeably, the LED features a limited leakage current (6.26 ×
10−5 mA·cm−2 at 1 V), thus indicating the lack of parasitic
channels which can have a detrimental impact on the device
efficiency. The champion device has amaximum radiance of 0.15
W·sr−1·m−2 at 8 V; such radiance value is still low compared to
the best PbS (9W·sr−1·m−2)10 or In(Zn)As/In(Zn)P/GaP/ZnS
(8.2W·sr−1·m−2)8 QDLEDs. Yet, ourQDLED shows a reduced
current density with respect to those devices.8,10 Such reduced
current could originate from the relatively thick layers employed
in the champion LED demonstrating the highest EQE as
reported for InP-based LEDs as well.11 On the other hand, poly-
TPD has a hole mobility of 1× 10−4 cm2·V−1·s−1,9 and we expect
a reduced electron and hole mobility in the InAs/ZnSeQD layer
considering the presence of long-chain ligands (oleylamine ∼2.5
nm).12 Overall, the JVR of our LEDs indicates that the fabricated
devices are quite resistive (high turn-on voltage and low
maximum current density), and improving further the
conductivity could lead to higher radiance in the future. The
EL spectra at increasing applied bias (Figure 1e) evidence a clear

band-edge EL at 947 nmwith a fwhmof 119 nm.As expected, the
EL spectrum of our QD LEDs is red-shifted with respect to the
photoluminescence (PL) (947 nm vs 931 nm, Figure S4). The
champion device has a maximum EQE of 5.5% (Figure 1f).
Importantly, while this manuscript was under review, an article
by Zhao et al. appeared online demonstrating an EQE of 13.3%
for InAs QDs synthesized via a tris(trimethylsilyl)arsine (TMS-
As) route.13 The EQE from our champion device drops to ∼1%
at the maximum current density. Yet, such radiance roll-off is
similar to that of state-of-the-art NIR LEDs.2,4 The average
maximum EQE calculated from 64 different pixels (Figure 1g) is
3.9%, only 30% lower than that of the champion device, thus
underlining the reproducibility of the discussed results. The
functional stability of LEDs is also an important figure of merit,
and hybrid devices embedding organic layers and colloidal QDs
often have a limited lifetime.14 Indeed, many detrimental
phenomena can occur during driving of the LED.15 We tested
the functional stability of a typical NIR LED by applying a
constant current of 1 μA (corresponding to the maximum EQE,
Figure 1h) for over 40 h in air without any LED encapsulation.
The radiance shows a fast drop during the first hour of operation
(20% drop, T80 = 1.34 h) after which the decrease is less
sustained. In fact, it requires 32 h to reach 50% (T50) of the initial
radiance value. This is an improved operational stability
compared to the literature.8 We can tentatively attribute the
durability of our LEDs to the rational device optimization and
the high stability of the InAs/ZnSe QD layer.
The LEDs discussed in Figure 1 are based on the best-

performing LED architecture we have identified. Poly-TPD was
employed as the hole transport layer (HTL) as it leads to an
improved EQE compared to other standard HTL materials. For
example, when employing diphenylamine (TFB) as the HTL,
the maximum EQE we could reach was 4.2%, with a TPBi
thickness of 80 nm (Figure S5). In addition, we found that the
thickness of the TPBi layer plays a crucial role in the final device
performance for both TFB and poly-TPD HTLs (Figure S6).
In conclusion, we demonstrated efficient, stable, and fully

RoHS-compliant NIR LEDs based on InAs/ZnSe QDs. Thanks
to the rational device design and efficient QDs, we achieved an

Figure 1. (a) Schematic, (b) SEM cross-sectional image, (c) flat energy-level diagram as a function of the device thickness, (d) current density
(gray solid curve) and radiance (red solid curve) versus applied bias, (e) EL spectra at increasing applied bias, (f) EQE vs current density, (g)
histogram of the EQEs of 64 pixels, and (h) stability test of the champion NIR LED.
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EQEof 5.5% and a corresponding radiance of 0.15W·sr−1·m−2 at
947 nm. Our results demonstrate that InAs QDs prepared via
amino-As route have reached a level of development that allows
their exploitation in efficient NIR light sources. The devices
presented here are only the first example of efficient NIR LEDs
based on InAs QDs, and future development of more complex
device architectures, as well as improvements in the QD
synthesis will lead to more efficient RoHS-compliant NIR LEDs.
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