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ABSTRACT

Chronic kidney disease (CKD) is a risk factor for premature cardiovascular disease. As kidney function declines, the
presence of left ventricular abnormalities increases such that by the time kidney replacement therapy is required with
dialysis or kidney transplantation, more than two-thirds of patients have left ventricular hypertrophy. Historically, much
research in nephrology has focussed on the structural and functional aspects of cardiac disease in CKD, particularly
using echocardiography to describe these abnormalities. There is a need to translate knowledge around these imaging
findings to clinical outcomes such as unplanned hospital admission with heart failure and premature cardiovascular
death. Left ventricular hypertrophy and cardiac fibrosis, which are common in CKD, predispose to the clinical syndrome
of heart failure with preserved left ventricular ejection fraction (HFpEF). There is a bidirectional relationship between
CKD and HFpEF, whereby CKD is a risk factor for HFpEF and CKD impacts outcomes for patients with HFpEF. There have
been major improvements in outcomes for patients with heart failure and reduced left ventricular ejection fraction as a
result of several large randomized controlled trials. Finding therapy for HFpEF has been more elusive, although recent
data suggest that sodium-glucose cotransporter 2 inhibition offers a novel evidence-based class of therapy that
improves outcomes in HFpEF. These observations have emerged as this class of drugs has also become the standard of
care for many patients with proteinuric CKD, suggesting that there is now hope for addressing the combination of HFpEF
and CKD in parallel. In this review we summarize the epidemiology, pathophysiology, diagnostic strategies and
treatment of HFpEF with a focus on patients with CKD.
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BACKGROUND

It is well recognized that chronic kidney disease (CKD) is a risk
factor for premature cardiovascular disease (CVD), and that CVD
is the leading cause of death in patients with all stages of CKD
[1, 2]. Although CKD increases the risk of all subtypes of CVD,
as the estimated glomerular filtration rate (eGFR) declines, the
risk of heart failure (HF) and cardiac death increases compared
with that of myocardial infarction (MI) and stroke [3]. This aligns
with the increasing prevalence of left ventricular hypertrophy
(LVH) as eGFR declines such that more than two-thirds of pa-
tients with eGFR <30 mL/min/1.73 m2 have been reported to
have LVH [4].While left ventricular systolic dysfunction certainly
is common, affecting 16% of patients at the commencement of
dialysis, with LVH as the dominant ventricular lesion, it stands
to reason that the driver of HF events in patients with CKD, in-
cluding those on dialysis, is the syndrome of heart failure with
preserved ejection fraction (HFpEF) [5, 6]. Effective HF treatments
have not been assessed reliably in advanced CKD and dialysis.
Patients with advanced CKD are often excluded from trials in
HF [7–9]. There have been significant developments in our un-
derstanding of risk factors for and outcomes of HFpEF in patients
with andwithout CKD. In this review,we describe the epidemiol-
ogy, pathophysiology, diagnostic strategies and new evidence for
therapies inmanaging HFpEF,with a particular focus on patients
with CKD.

HFpEF in the general population

The European Society of Cardiology (ESC) clinical practice guide-
lines recommend categorizing HF into distinct phenotypes
based on the left ventricular ejection fraction (LVEF) [10]. His-
torically, the basis for this is the original landmark treatment

trials that showed improved outcomes in patients with HF and
LVEF <40% and this group is described as heart failure with re-
duced ejection fraction (HFrEF). Patients with heart failure and
mildly reduced ejection fraction (HFmrEF; LVEF 41–49%) resem-
ble patients with HFrEF in terms of outcomes and response to
therapies [11, 12]. Patients with HFpEF (LVEF ≥50%) have essen-
tially a ‘normal’ ejection fraction. Table 1 highlights the differ-
ences between HFrEF and HFpEF.

The diagnosis of HF requires the presence of typical signs
(e.g. pulmonary crackles, raised jugular venous pressure) and
symptoms (e.g. fatigue, breathlessness) in the context of cardiac
structural or functional abnormality and further corroborated
by elevated concentrations of circulating natriuretic peptides or
evidence of cardiogenic pulmonary or systemic congestion [13].
Myocardial dysfunction is the most common cause of HF and
can be divided into systolic, diastolic or both [10].

The diagnosis of HFpEF can be challenging, especially in the
context of coexisting non-cardiac causes of dyspnoea, including
obesity and chronic lung disease. There is also substantial
phenotypic heterogeneity. Approximately three-quarters of
unrecognized cases of HF are in patients with HFpEF [14], hence
the true prevalence of HFpEF may be underestimated.

Epidemiology of HFpEF and HFrEF and associated
outcomes

HFpEF accounts for ∼50–60% of HF cases in the commu-
nity [15–17] and similar proportions are reported in hospital-
ized patients [18–20]. Compared with patients with HFrEF or
HFmrEF, those with HFpEF are more often female and tend to
be older [20, 21]. Table 1 highlights some clinical and epidemio-
logical differences between HFrEF and HFpEF. Relative to HFrEF,

Table 1. Summary of demographic, pathophysiological, diagnostic and therapeutic differences between HFrEF and HFpEF

Characteristics HFpEF HFrEF

Demographics Older age, female
predominance

Younger age, male
predominance

Risk factors Ageing, hypertension, obesity,
physical inactivity

Ischaemic heart disease,
smoking

Pathophysiology Coronary microvascular
inflammation

Direct cardiomyocyte injury
and loss

Natriuretic peptides Lower levels Higher levels
LV morphology and other

properties
LVEF ≥50% <50%

LV remodelling Concentric remodelling Eccentric remodelling
LV volumes Normal Increased
Systolic dysfunction (other
than EF)

+ ++

Diastolic dysfunction ++ +
Aortic stiffness ++ +
Disturbance of LV relaxation or
compliance

++ +

Response to HF therapy ACEia − ++
ARBa − ++
SGLT2 inhibitorsb ++ ++
ARNI − ++
Bteablockers − ++
MRA + ++

Cause of death Predominantly non-CV death Predominantly CV death

aTrials have not demonstrated clinically meaningful benefit in HFrEF but ARBs/ACEis have proven long-term benefits in the progression of CKD.
bLower risk of HF hospitalization in HFpEF.



2188 Mark et al.

the incidence and prevalence of HFpEF have been growing by
10% every 10 years [21, 22] and this widening gap is thought to
reflect the ageing population and the growing prevalence of obe-
sity, diabetes, hypertension and other conditions linked to the
development of HFpEF [21]. The prevalence of atrial fibrillation,
CKD and other non-cardiovascular comorbidities is higher in pa-
tients with HFpEF than in HFrEF. There is growing evidence for
the central role of inflammation [19, 23] as well as coronary mi-
crovascular and macrovascular disease [24] in the pathogenesis
of HFpEF.

Although some studies report that mortality rates for pa-
tients with HFpEF and HFrEF are similar [25–27], others report
lower mortality in HFpEF [15, 17, 19, 28]. Consistent with the ob-
servation that the prevalence of non-cardiovascular comorbidi-
ties is higher in patients with HFpEF than it is in HFrEF, patients
with HFpEF tend to have higher non-cardiovascular mortality
than patients with HFrEF. Conversely, cardiovascularmortality is
higher in patients with HFrEF. These findings are observed both
in clinical trial populations [29] and in epidemiological studies
[30]. Rates of hospitalization and the duration of hospitalizations
[31] are similar for HFpEF and HFrEF and the decrease in quality
of life in the two groups appears similar and substantial [32].

Diagnosis of HFpEF

Diagnostic algorithms based on clinical assessment, electrocar-
diogram (ECG) and echocardiography have been produced by the
Heart Failure Association (HFA) to diagnose HF in the presence of
preserved ejection fraction and to document whether diastolic
dysfunction is present. Fig. 1 highlights diagnostic algorithms for
HFpEF, which have been tailored to the assessment of suspected
HF in CKD.

More advanced imaging techniques (stress testing, invasive
haemodynamic measurements, cross-sectional imaging) may
assist in the workup [33]. The first step is pretest assessment
(‘P’) involving clinical assessment, ECG, basic echocardiography
and functional/anatomical ischaemia testing (if indicated). This
step excludes patients with significant coronary artery disease,
valvular heart disease, chronic lung disease or anaemia. This is
followed by a diagnostic workup (‘E’) centring on echocardiogra-
phy and natriuretic peptide quantification. If ‘E’ is inconclusive,
then F1 should be considered invasive or non-invasive stress
testing for diastolic dysfunction. An aetiological search should
be carried out (F2) [33, 34].

Echocardiography is advised to assess the breathless patient
with a clinical suspicion of HF [35, 36]. Table 2 summarizes
echocardiographic parameters and their relevance to diagnos-
ing HFpEF, while Fig. 2 demonstrates imaging indicators of HF-
pEF graphically.

The LVEF should be quantified using three-dimensional [5]
or Simpson’s biplane and a cut-off of ≥50% (HFA) used to iden-
tify preserved LVEF [1, 6, 33, 37] and measurements made to en-
sure the left ventricle (LV) is not dilated (LV end-diastolic vol-
ume, LV end-diastolic dimension). The so-called HFpEF pheno-
type is a non-dilated LV, with preserved LVEF, LVH and a dilated
left atrium (LA). These findings support but do not exclude HF-
pEF [38].

The additional echocardiographic measurements recom-
mended to support a diagnosis of HFpEF [33] are identical to the
recommendations for the identification of LV diastolic dysfunc-
tion [39, 40]—mitral flow velocities, mitral annular e′ velocity,
E:e′ ratio, peak velocity of tricuspid regurgitation (TR) jet and left
atrial maximum volume index (LAVI). Through a combination
of measurements, one can identify if LV filling pressure is

normal or abnormal and using cut-offs specified by the HFA
can diagnose HFpEF if ≥5 points are present. Besides LVEF,
global longitudinal strain (GLS) measurement is a more subtle
measure of LV dysfunction [41] in HFpEF [42] and is a marker
of adverse outcomes [43]. Diastolic metrics include the early
diastolic velocity of mitral annular motion (e′) and in HFpEF the
values are decreased. Mitral flow velocities (E/A) represent the
pressure gradient between the left atrium (LA) and LV and are
affected by changes in LV relaxation, LA pressure (E wave) and
LV compliance and LA contractile function (A wave) [44]. The E:e′

ratio is an indirect estimate of mean pulmonary capillary wedge
pressure [39] and associates with LV fibrosis [45]. Correlation be-
tween E:e′ and invasive filling pressure in HFpEF vary widely in
correlation strength (r= 0.02–0.87) but has prognostic utility [46].

A peak tricuspid regurgitation jet >2.8 m/s is an indi-
rect marker of LV diastolic dysfunction and indicates increased
pulmonary artery systolic pressure (PASP) [39].

LAVI or the LAmaximal volume indexed to body surface area
is associated with LV filling pressures [39] and increases with
worsening measures of diastolic dysfunction [47].

Diastolic stress testing

Patients with diastolic dysfunction may not be able to increase
LV relaxation with exercise compared with healthy controls and
hence have increased LV filling pressures to achieve the re-
quired cardiac output, i.e. exercise unmasks diastolic dysfunc-
tion. Guidelines are available for further investigation of sus-
pected HFpEF [39, 48, 49] utilizing stress echocardiography.

Invasive measurements

Catheter measurements provide direct measurements of LV di-
astolic pressures and can be done at rest or with exercise [10, 50].
Utilizing left heart catheterization, demonstration of impaired
LV relaxation at rest, tau (the time constant of LV relaxation
τ >48 ms) or elevated LV filling pressures at rest (LV end dias-
tolic pressure ≥16mmHg) confirms definite evidence of HFpEF
[33].With right heart catheterization, demonstration of elevated
mean pulmonary capillary wedge pressure confirms HFpEF [10].

Cardiac magnetic resonance imaging (CMRI)

CMRI is a non-invasive diagnostic test for cardiac anatomy, func-
tion and pathology [33, 51, 52]. CMRI is more accurate at measur-
ing LVEF, LV mass and LAVI [53] and has utility in the context of
patients with suboptimal acoustic windows. CMRI can identify
the presence of coronary syndromes by identifying suben-
docardial scarring and perfusion defects due to epicardial or
microvascular disease [24]. Several pathologies can present with
HFpEF.CMRI has utility in differentiating between these patholo-
gies, including hypertrophic, infiltrative, restrictive cardiomy-
opathies [54, 55], myocarditis [51] and other aetiologies [10, 33].

HFpEF in patients with CKD

HF is highly prevalent in patients with CKD, with HFpEF
accounting for half of these cases [56]. CKD and HF oc-
cur in a bidirectional fashion, with 55% of patients with
HFrEF and HFpEF having CKD stage G3a or higher in a large
meta-analysis [57]. The prevalence of HF increases with the
severity of CKD and it is present in up to 44% of patients on
haemodialysis (HD; 10% with HFpEF, 13% with HFrEF and 21%
with unspecified) [58]. In patients with a kidney transplant,
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Breathless patient with CKD

Typical risk factors
(older age, obesity, hypertension, DM, AF)

Rule out other cardiac/non-cardiac causes

Correct renal anaemia,
acidosis, volume overload

No significant heart valve
disease or cardiac ischaemia

Absence of lung disease or
pulmonary hypertension

Phenotype

Standard
diagnostic tests

Electrocardiographic abnormalities (LVH, LA enlargement)^

Standard echocardiography (LVEF ≥ 50%, non-dilated LV,
concentric remodelling or LVH, LA enlargement)

Elevated natriuretic peptides
(BNP ≥ 80 pg/mL or NT-proBNP > 220 pg/mL)^

Comprehensive
echocardiography

Functional domains
E/e' ratio ≥ 15 or

TR peak velocity > 2.8 m/s (PASP > 35mmHg)

Morphological domains
LAVI > 34 mL/m2 or

LVMI ≥ 149/122 g/m2 (m/w) and RWT > 0:42

Inconclusive Diagnostic

Cardiovascular MRI, cardiac or non-cardiac biopsies,
scintigraphy/CT/PET, genetic testing

Aetiological 
work-up

HFpEF confirmed

Non-invasive correlates
Exercise stress echocardiography (diastolic stress test)

Invasive haemodynamic measurements
Left and right heart catheterisation at rest or during exercise

Functional
testing

AbnormalNormal

Search for other
cardiac/non-cardiac causes

FIGURE 1: Diagnostic algorithm for approaching a patient with CKD and suspected HFpEF. DM, diabetes mellitus; AF, atrial fibrillation; TR, tricuspid regurgitation; PASP,
pulmonary artery systolic pressure; RWT, relative wall thickness.
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Table 2. Summary of echocardiographic indices and their role in diagnosis of HFpEF and HFrEF

Evaluation systolic function Interpretation

LVEF Contour endocardial borders in end-diastole
and systole on apical 4 and 2 chamber

Systolic function—preserved in HFpEF [1,
6, 33, 37]

Left ventricular end diastolic volume
(LVEDV)

Contour LV endocardium in end diastole Chamber size—normal or decreased in
HFpEF

Global longitudinal strain Contour endocardial borders in end diastole
and systole on apical 4, 3 and 2 chamber

Systolic function—may be decreased in
HFpEF [41, 42, 43].

Diastolic function
E′ septum and E′ lateral wall Tissue Doppler sample volume at septal and

lateral basal LV regions
Early diastolic velocity of mitral annular
motion—decreased in HFpEF

Mitral flow velocities (E/A) PW Doppler sample volume at the tips of the
mitral valve leaflets to gain peak velocity in
early diastole (E wave), peak velocity in late
diastole (A wave)

Progressive diastolic dysfunction: delayed
relaxation (E/A <0.8),
pseudonormalization (E/A 0.8–1.5) and
restrictive pattern (E/A ≥2) [39, 40, 44]

E:e′ ratio Ratio of peak mitral valve inflow velocity
during early diastole (E wave) to the average
septal/lateral mitral annular early diastolic
velocity (e′)

Increased in HFpEF and
when >15, diagnostic of increased LV
filling pressures [39, 45, 46]

Peak TR jet velocity Peak velocity through tricuspid valve during
systole, measured by using continuous wave
(CW) Doppler aligned over colour flow to
obtain the highest velocity

TR velocity >2.8 m/s is an indi-
rect marker of LV diastolic dysfunction
and indicates increased pulmonary artery
systolic pressure (PASP) [39]

LAVI, or the LA maximal volume indexed
to body surface area

Measured using two orthogonal long-axis
views

Increased in HFpEF [39, 47]

LVH [LVMI, regional wall thickness (RWT)] LVMI uses 2-dimensional measurements in
one view while RWT allows classification
into concentric (>0.42) or eccentric
hypertrophy (≤0.42).

May be increased in HFpEF

HF risk decreases compared with dialysis but the exact
prevalence of HFpEF is unknown, as HF is most commonly
reported using administrative data rather than diagnostic
testing.

The diagnosis of HFpEF in patients with CKD is chal-
lenging. Typical HF manifestations overlap with symptoms
of fluid overload due to sodium and water retention as a
result of CKD itself. Serum brain natriuretic peptide (BNP)
levels require different threshold levels in CKD and typical
echocardiographic findings (such as concentric remodelling or
LVH and left atrial enlargement) are common but might not
represent an incident HF event [59].

CKD andHFpEF share common risk factors, such as older age,
diabetes, hypertension and cardiovascular disease. Although
they may evolve independently of one another, the presence of
one condition appears to accelerate the presentation and pro-
gression of an other. Experimental studies suggest a common
pathway of endothelial dysfunction and inflammation leading
to both cardiac and renal fibrosis [60, 61].More interestingly, sev-
eral observations suggest CKD in the pathogenic processes lead-
ing to HFpEF [62]. In the Prevention of Renal and Vascular End-
stage Disease (PREVEND) trial [63], baseline elevations in urinary
albumin excretion and cystatin C (in addition to atrial fibrilla-
tion and female sex) increased the risk of new-onset HFpEF but
not HFrEF. In another study from the Swedish Heart Failure Reg-
istry, CKD was more common in HFpEF than in HFrEF but less
strongly associated with mortality, suggesting that it represents
one of many comorbidities and may have more of a bystander
role than it does in HFrEF [64]. Decreased eGFR is independently
associated with an increased risk of all-cause mortality, cardio-

vascular mortality and hospitalization in patients with HFpEF
[64–66].

Imaging the heart in CKD

Early studies with echocardiography showed that at the time of
commencing renal replacement therapy, themajority of CKDpa-
tients had normal LVEF and cardiac dimensions, but 32% had
LV dilation with preserved systolic function and 74% had con-
centric LVH [67, 68]. The association of CKD with abnormalities
in cardiac structure is now well established [4]. Cardiac struc-
tural abnormalities common to CKD include LVH, ventricular
dilation and myocardial fibrosis [6]. The development of these
features, in association with decreased cardiac function, often
without coronary artery disease, is consistent with cardiomy-
opathy specifically related to CKD—sometimes termed ‘uraemic
cardiomyopathy’ [69].Decreased LVEF is a late finding of uraemic
cardiomyopathy [70], however, earlier abnormalities in myocar-
dial function can be demonstrated by echocardiographic assess-
ment of GLS. In CKD, echocardiographic assessment of GLS has
been shown to associate with histologically confirmed myocar-
dial fibrosis [71] and to be predictive of clinical outcomes [71,
72]. So echocardiography is of great utility in CKD. Echocardiog-
raphy has limitations, requiring suitablewindows for ultrasound
and, in advanced CKD, dialysis associated fluid shifts may lead
to overestimation of ventricular indices [73]. CMRI is an invalu-
able tool in the assessment of cardiac structural and functional
changes in CKD.
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FIGURE 2: Imaging findings non echocardiography to consider in assessment of HFpEF.

CMRI can detect altered GLS in patients with CKD, which
has been associated with outcomes [74]. In a study of HD
patients, CMRI-GLS was associated with left ventricular mass
index (LVMI) and negatively correlated with LVEF [75]. Improve-
ments in cardiac strain have been demonstrated following kid-
ney transplantation [76]. In contrast, acute deteriorations in
cardiac strain, myocardial perfusion and segmental LV dysfunc-
tion were demonstrated during dialysis in an impressive study
that scanned people during an HD session [77]. Gadolinium
contrast-enhanced CMRI previously demonstrated gadolinium
enhancement consistent with diffuse myocardial fibrosis that
is associated with LVH in patients with kidney failure [78, 79].
Gadolinium contrast agents are no longer routinely used in
advanced CKD because of their association with nephrogenic
systemic fibrosis [80]. However, non-contrast CMRI techniques
have rapidly developed. T1mapping is a promising non-invasive
surrogate marker of myocardial fibrosis. T1 times have been
demonstrated to be abnormally long in HD populations when
compared with controls [75, 81]. Although T1 times correlate
with histological findings of myocardial fibrosis in other con-
ditions, such as aortic stenosis [82], recent studies have in-
creased uncertainty about the influence of myocardial oedema
and fluid shifts on their reproducibility in people requiring
dialysis [83].

The use of N-terminal pro-brain natriuretic peptide
(NT-proBNP) for assessing cardiac function in CKD

The diagnosis of HFrEF has been made considerably easier by
the use of serum levels of natriuretic peptides, in particular,
NT-proBNP to indicate patients who are likely to have LV sys-
tolic dysfunction [84]. Current ESC guidelines suggest measure-
ment of NT-proBNP in patients with symptoms of HF and pro-
ceeding to echocardiography if NT-proBNP is >125 pmol/L. Be-
low this value, HF is unlikely [10]. Furthermore, NT-proBNP has
prognostic value, with patients with the highest NT-proBNP at
greatest risk of mortality, irrespective of the presence of HFrEF
or HFpEF [85].

In patients with CKD not on dialysis, NT-proBNP (or BNP) can
be used in the diagnosis of LV systolic dysfunction with sim-
ilar accuracy to non-CKD controls, although higher diagnostic
threshold values are required [86, 87]. It is less clear how well
NT-proBNP performs as a diagnostic tool for HFpEF in the setting
of CKD. There is clear evidence that NT-proBNP correlates with
LVmass in people with CKD, so it is likely to highlight patients at
risk of developing clinical HF [88], irrespective of whether there
is a specific diagnostic cut point for NT-proBNP as a diagnostic
tool in the breathless patient [89]. NT-proBNP has been shown to
correlate with CKD-specific changes on CMRI [86]. In people on
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dialysis, BNP and NT-proBNP have prognostic value but a limited
role in the diagnosis of HF [90, 91].

Fluid status assessment to improve HF outcomes
in CKD

Bioimpedance body composition monitoring uses electrodes
to pass electrical currents through the body to derive the
proportions of fluid, lean tissue mass and fat. Two randomized
controlled trials (RCTs) failed to show meaningful clinical
benefit from using bioimpedance to guide fluid management
in patients on peritoneal dialysis [92] and HD, respectively [93].
The BioImpedance Spectroscopy To maintain Renal Output
(BISTRO) trial [94] will assess the impact of bioimpedance-
guided fluid management on residual renal function in >500
dialysis patients and will also report on cardiovascular events
as secondary outcomes.

Point-of-care lung ultrasound is a promising tool in the as-
sessment of fluid status in CKD but does not yet have hard
clinical outcome data supporting its use [95–97]. Lung ultra-
sound has been shown to more frequently detect interstitial
fluid than traditional clinical assessment in dialysis cohorts [98],
and these findings (presence of ‘B-lines’) are associated with in-
creased mortality in this population [99]. In a trial of 71 dialy-
sis patients, ultrasound-guided lung dry weight assessment led
to improved blood pressure [100] and improved LV dimensions
(but not function) [101]. In a separate trial in dialysis patients at
high cardiovascular risk, lung ultrasound successfully relieved
lung congestion compared with standard care, but without an
improvement in the primary outcome (composite of all-cause
death, non-fatal myocardial infarction and decompensated HF)
[102].

RCTs addressing HFpEF not targeting CKD populations

There has been dramatic progress in improving outcomes in
patients with HFrEF with renin–angiotensin system inhibitors
(RASis), beta-blockers, mineralocorticoid receptor antagonists
(MRAs) and most recently sodium-glucose cotransporter 2 in-
hibitors (SGLT2is), all based on large RCTs [103]. The same has
not been the case for HFpEF. Table 3 summarizes the major clin-
ical trials in HFpEF and clinical trials relevant to CKD. One of
the first large RCTs to address HFpEF showed no benefit in out-
comes with irbesartan compared with placebo [104], and simi-
larly, no overall benefit was seen with spironolactone compared
with placebo in the Treatment of Preserved Cardiac Function
Heart Failure with an Aldosterone Antagonist (TOPCAT) [105].
There were major regional differences observed in TOPCAT,
with a definite significant benefit with MRAs in many countries
[106]. The angiotensin receptor–neprilysin inhibitor sacubitril–
valsartan showed no statistically significant benefit compared
with valsartan alone in a large RCT in HFpEF despite the benefit
with this agent in HFrEF [107, 108].

The advent of SGLT2is offers a new therapeutic paradigm
in HFpEF. Early insights into the potential benefit of SGLT2is in
HFpEF came from the Effect of Sotagliflozin on Cardiovascular
Events in Patients with Type 2 Diabetes Post Worsening Heart
Failure (SOLOIST) RCT where, compared with placebo, so-
tagliflozin was associated with a significantly lower incidence of
the primary outcome of cardiovascular mortality or hospitaliza-
tion for HF patients with baseline LVEF >50% but not those with
LVEF <50% [109]. In the landmark Empagliflozin Outcome Trial
in Patients with Chronic Heart Failure with Preserved Ejection
Fraction (EMPEROR-Preserved) trial, empagliflozin was associ-

ated with a lower incidence of combined cardiovascular death
or hospitalization for HF [110]. These results have prompted
the licencing of empagliflozin as a treatment for HF in the USA
regardless of LVEF and demonstrate that SGLT2is represent
the first therapy to demonstrate efficacy in HFpEF. Finally, the
EMPULSE trial demonstrated that in patients with acute HF, the
addition of empagliflozin 10 mg daily was associated with a
combined improvement in HF outcomes and/or quality of life
compared with placebo, with no differences between subgroups
with HFpEF or HFrEF [111].

Interventions to alleviate HFpEF in CKD

There are few trials that have directly investigated interventions
for HFpEF specific to CKD. Most RCTs have employed changes in
LV parameters, namely LVMI and LVEF, as an outcome that is a
reasonable surrogate for the risk of developing HFpEF. A num-
ber of pharmacological interventions often used in HFrEF have
been investigated in CKD. In dialysis patients with dilated car-
diomyopathy, the beta-blocker carvedilol shows significant im-
provement in LV function and dilatation with an associated im-
provement in survival after 2 years [112]. A meta-analysis of five
RCTs exploring the effect of RASis with angiotensin-converting
enzyme inhibition or angiotensin receptor blockers on LVMI in
HD patients demonstrated a significant reduction in LVMI {mean
difference 15.4 g/m2 [95% confidence interval (CI) 7.4–23.3]; P
< .001} but no statistical improvement in cardiovascular mor-
bidity or mortality [113]. Spironolactone has also been shown to
decrease LV mass in early CKD (stages 1 and 2) [114], but had no
significant effect on LVMI in HD patients in one RCT or diastolic
dysfunction in another similarly sized RCT [115, 116].

Other strategies that have theoretical benefits on cardiac
outcomes have been tested. A number of studies have in-
vestigated the effect of anaemia correction in CKD. A meta-
analysis of 15 studies including CKD patients demonstrated
significant reductions in LVMI [−33.7 g/m2 (95% CI −49.4
to −16.1), P < .05] in patients with anaemia (haemoglobin
<100 g/L at baseline) given erythropoietin and aiming for a level
≤ 120 g/L. The effect was not altered by dialysis status and did
not show significant regression of LVMI in patients with milder
anaemia.

In one of the few outcome studies to demonstrate a ben-
efit on HF outcomes in dialysis, the Proactive IV IrOn Ther-
apy in HaemodiALysis Patients (PIVOTAL) study demonstrated
high-dose intravenous iron to be safe and efficacious [117], with
post hoc analyses demonstrating significant improvements in
HF events [hazard ratio (HR) 0.66 (95% CI 0.46–0.94)] [118]. An
RCT investigating the effect of intravenous iron in patients with
chronic HF and CKD demonstrated significant improvement in
LV systolic and diastolic diameters and LV function. LV wall
thickness was decreased in the treatment arm but did not reach
statistical significance [119].

Dysregulation of bone mineral metabolism with subsequent
hyperparathyroidism and vascular calcification are associated
with LVH [120]. However, interventions to decrease its effect on
cardiac function have demonstrated variable effects. The Pari-
calcitol Capsule Benefits in Renal Failure–Induced Cardiac Mor-
bidity (PRIMO) study was an RCT investigating the effect of par-
icalcitol on cardiac structure and function in CKD patients and
showed no effect on LVMI or other echocardiographic measures
of diastolic function [121]. Post hoc analysis of the Evaluation
of Cinacalcet Hydrochloride Therapy to Lower Cardiovascular
Events (EVOLVE) trial demonstrated use of the calcimimetic,
cinacalcet for 64 months significantly decreased the risk of
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Table 3. Summary of significant RCTs in addressing HFpEF and/or surrogates of HFpEF in patients with CKD and/or treated with dialysis

Trial [reference] Population N Intervention Duration
Primary
outcome(s) Comments

I-PRESERVE [104] HF and LVEF ≥45%
and creatinine <221
μmol/L

4128 Irbesartan 300
mg or placebo

Mean
49.5 months

Death and
cardiovascular
hospitalization

No improvement in
primary outcome with
irbesartan

TOPCAT [105] HF and LVEF ≥45%
and eGFR >30
mL/min/1.73 m2

3445 Spironolactone
15–45 mg or
placebo

Mean 3.3
years

Cardiovascular
death and HF
hospitalization

No difference in
primary outcome
between groups

PARAGON-HF
[107]

HF and LVEF ≥ 45%
and eGFR > 30
mL/min/1.73 m2

4822 Sacubitril–
valsartan
or valsartan

Median
35 months

Cardiovascular
death and HF
hospitalization

No difference in
primary outcome
between groups

SOLOIST [109] Patients with type 2
DM recently
hospitalized with HF
and eGFR >30
mL/min/1.73 m2

1222 Sotagliflozin
200–400 mg or
placebo

Median 9.0
months

Cardiovascular
death and HF
hospitalization

Significant benefit [HR
0.69 (95% CI 0.52–0.85)]
with sotagliflozin.
Benefit in subgroup
LVEF ≥50% [HR 0.48
(95% CI 0.27–0.86)]

EMPEROR-
Preserved
[110]

Symptomatic HF
and LVEF ≥40% and
eGFR >20
mL/min/1.73 m2

5988 Empagliflozin
10mg or placebo

Median
26.2 months

Cardiovascular
death and HF
hospitalization

Significant benefit with
empagliflozin [HR 0.79
(95% CI 0.69–0.90)]

EMPULSE [111] HF regardless of
LVEF and eGFR >20
mL/min/1.73 m2

530 Empagliflozin
10mg or placebo

90 days Clinical benefit,
composite of
death, HF events
and QoL

Empagliflozin clinical
benefit compared with
placebo-stratified win
ratio [1.36 (95% CI
1.09–1.68)]

SPIRO-CKD [137] Non-diabetic CKD
eGFR 30–89
mL/min/1.73 m2

154 Spironolactone
25 mg or
chlorthalidone
25 mg

40 weeks LVM on CMR No difference in LVM
between groups

CREDENCE [129] Diabetes and eGFR
30–89 mL/min/1.73
m2 and albuminuria

4401 Canagliflozin 100
mg or placebo

Median
2.62 years

ESKD, doubling
creatinine, death
from renal or CV
causes

Reduction in primary
outcome with
canagliflozin [HR 0.70
(95% CI 0.59–0.82)] HF
hospitalization [HR 0.61
(95% CI 0.47–0.80)]

DAPA-CKD [130] CKD eGFR 25–75
mL/min/1.73 m2

and albuminuria

4304 Dapagliflozin 10
mg or placebo

Median
2.4 years

ESKD, decline in
eGFR ≥50%,
death from renal
or CV causes

Reduction in primary
outcome with
dapagliflozin [HR 0.61
(95% CI 0.51–0.72)], HF
hospitalization [HR 0.51
(95% CI 0.34–0.76)]

SPIN-DIAL [115,
116]

Patients on HD 129 Spironolactone
(12.5–50 mg) or
placebo

36 weeks Assess safety
and tolerability
of intervention

No difference in
diastolic function on
echocardiography
between groups

Hammer et al.
[115]

Patients on HD 97 Spironolactone
50 mg or placebo

40 weeks LVMI on CMRI No difference in LVMI
between groups

PIVOTAL [118] Patients on
HD >3 months and
treated with ESA

2141 Proactive or
reactive
intravenous iron

Median 2.1
years

Death,
myocardial
infarction,
stroke, HF
hospitalisation

Proactive iron fewer
primary end point
events that reactive
iron. Significant
reduction in HF events
with proactive iron [HR
0.66 (95% CI 0.46–0.94)]

PRIMO [121] CKD, mild-moderate
LVH, LVEF ≥50%,
eGFR 15–60
mL/min/1.73 m2

227 Paricalcitol or no
therapy

48 weeks LVMI on CMRI No difference in LVMI
between groups



2194 Mark et al.

Table 3. Continued

Trial [reference] Population N Intervention Duration
Primary
outcome(s) Comments

EVOLVE [122] Patients on HD with
hyperparathy-
roidism

3883 Cinacalcet or
placebo

Mean 21.2
months

Death or
cardiovascular
event

No difference in
primary outcome
between groups. Fewer
non-atherosclerotic CV
events (including HF,
sudden death) with
cinacalcet [HR 0.84 (95%
CI 0.74–0.96)]

Dörr et al. [124] Patients on HD with
hyperparathy-
roidism and
LVH

62 Intravenous
etelcalcetide or
alfacalcidol

12 months LVMI on CMRI Significantly less
progression LVMI with
etelcalcetide

Odudu et al. [132] Patients on HD 73 Dialysate 37°C or
0.5°C below body
temperature

12 months LVEF at CMRI No change in primary
endpoint but decreased
LVMI with cool dialysis

FHN [131] Patients on HD 245 Six times
HD/week versus
three times
HD/week

12 months Composite of
mortality, QoL
and LV mass

Decreased LV mass with
frequent HD

CV: cardiovascular; DM: diabetes mellitus; ESKD: end-stage kidney disease; QoL: quality of life.

sudden cardiac death and HF [122]. Additionally, cinacalcet was
associated with improvement of LVH on CMRI in a small RCT
of 36 months, in HD patients [123]. More recently, suppres-
sion of fibroblast growth factor-23 by the calcimimetic etel-
calcetide was associated with a significant reduction in CMRI
assessed LVMI [124].

Other agents with putative benefits on LVMI have been tried
with variable results. An RCT investigating the effect of allopuri-
nol in CKD patients demonstrated that 9 months of treatment
was statistically associated with regression of CMRI-measured
LVMI [125]. An association was not shown in a similar study in
HD patients [126]. In a different study looking at the effect of
treatment with levocarnitine in patients with biochemical evi-
dence of deficiency, replacement therapy for 12 months was as-
sociated with regression of LVH compared with no supplemen-
tation [127].

Although baseline echocardiography was not performed in
the large Canagliflozin and Renal Events in Diabetes with Es-
tablished Nephropathy Clinical Evaluation (CREDENCE) and Da-
pagliflozin and Prevention of Adverse Outcomes in Chronic Kid-
ney Disease (DAPA-CKD) trials, which showed the benefit of
SGLT2is on cardiorenal outcomes in CKD, there was a clear ben-
efit on HF incidence with SGLTis in both RCTs [128, 129]. Fur-
ther subgroups analysis of DAPA-CKD demonstrated no differ-
ence in benefits of dapagliflozin in patients with or without prior
HF [130].

In patients on dialysis, there is a need to test non-
pharmacological interventions to improve LV changes by mod-
ifying the doses and characteristics of dialysis. The Frequent
Haemodialysis Network daily trial showed that dialysis six times
a week was associated with improved LV volumes, measured by
CMRI, compared with thrice-weekly treatments [131]. In an RCT
of patients startingmaintenance HD, reducing dialysate temper-
ature by 1.2± 0.3°Cwas also associatedwith slowing progression
of LVH and echocardiographic markers of diastolic dysfunction
[132], but it did not have a statistically significant effect on LV
function. Successful kidney transplantation is associated with
improved fluid status and blood pressure and is considered the

gold standard treatment for kidney failure given its benefits on
morbidity and mortality. Regression of LVH has been demon-
strated after successful transplantation using echocardiography
[133], but this may have been confounded by improved fluid
status and its effect on measuring LV mass. Studies using
CMRI have not demonstrated a similar significant reduction
in LV mass after transplantation but have shown a decrease
in CMRI-measured markers of myocardial fibrosis [134, 135].
Nevertheless, HF remains a significant clinical concern post-
transplant, occurring in 10–20% of patients in the first year [136].

CONCLUSIONS

Although it has long been recognized that CKD is a risk factor
for HF and that LVH is more prevalent in patients with advanced
CKD than impaired LV function, it is now clear that HFpEF is one
of, if not the dominant subtype of cardiovascular disease in pa-
tientswith advanced CKD.Recent evidence frompositive clinical
trials in HFpEF demonstrated that progress is finally being made
in improving outcomes in this condition. Greater awareness of
HFpEF combined with widespread implementation of evidence-
based therapy with SGLT2is should be a priority. Emerging ev-
idence for adjunctive strategies such as lung ultrasound and
bioimpedance specifically to address cardiovascular outcomes
give further hope that we are entering a new era for address-
ing HFpEF in patients with CKD, including those requiring
dialysis.
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