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Abstract 

Background:  Weaning from mechanical ventilation (MV) is an essential issue in critically ill patients, and we used an 
explainable machine learning (ML) approach to establish an extubation prediction model.

Methods:  We enrolled patients who were admitted to intensive care units during 2015–2019 at Taichung Veterans 
General Hospital, a referral hospital in central Taiwan. We used five ML models, including extreme gradient boosting 
(XGBoost), categorical boosting (CatBoost), light gradient boosting machine (LightGBM), random forest (RF) and logis‑
tic regression (LR), to establish the extubation prediction model, and the feature window as well as prediction window 
was 48 h and 24 h, respectively. We further employed feature importance, Shapley additive explanations (SHAP) plot, 
partial dependence plot (PDP) and local interpretable model-agnostic explanations (LIME) for interpretation of the 
model at the domain, feature, and individual levels.

Results:  We enrolled 5,940 patients and found the accuracy was comparable among XGBoost, LightGBM, CatBoost 
and RF, with the area under the receiver operating characteristic curve using XGBoost to predict extubation was 0.921. 
The calibration and decision curve analysis showed well applicability of models. We also used the SHAP summary 
plot and PDP plot to demonstrate discriminative points of six key features in predicting extubation. Moreover, we 
employed LIME and SHAP force plots to show predicted probabilities of extubation and the rationale of the prediction 
at the individual level.

Conclusions:  We developed an extubation prediction model with high accuracy and visualised explanations aligned 
with clinical workflow, and the model may serve as an autonomous screen tool for timely weaning.
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Background
Mechanical ventilation (MV) is a life-saving and essen-
tial organ support system in intensive care units (ICU), 
and it is estimated that approximately one million 
patients required MV in the United States in 2017, with 
an 83% increase in incidence from 249 to 455 cases 

per 100,000 person-year in the past two decades [1, 2]. 
Accumulating studies have shown that delayed wean-
ing from MV has deleterious impacts on critically ill 
ventilated patients [3, 4]. Notably, weaning, consisting 
of breathing trial and extubation, requires teamwork 
among the critical care staff interpretation of multi-dis-
ciplinary data in the weaning process [5–7]. Recently, a 
number of studies have employed artificial intelligence 
(AI), mainly machine learning (ML), to predict the ini-
tiation of breathing trial as well as extubation failure/
success, but the study focuses on predicting the time of 
extubation is still lacking [8–12]. We hence aim to use 
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an explainable ML approach and a real-world critical 
care dataset for the development of an extubation pre-
diction model.

Explanation of AI models is increasingly recognised 
as a substantial component with regard to the landing 
of AI models [13, 14]. Our recent studies have shown 
that explainable ML can be used to predict the 30-day 
mortality among critically ill influenza patients, long-
term mortality in critically ill ventilated patients, and 
weaning outcome in patients requiring prolonged 
mechanical ventilation at Taichung Veterans General 
Hospital (TCVGH), a tertiary referral centre in central 
Taiwan [15–17]. In the present study, we aim to estab-
lish an extubation prediction model in accordance with 
the workflow in critical care through using an explain-
able ML approach and the critical care database at 
TCVGH.

Methods
Ethical approval
The study was performed in accordance with the Dec-
laration of Helsinki. The Institutional Review Board 
of Taichung Veterans General Hospital approved this 
study (TCVGH: CE20249B and SE22143B). We used 
the anonymised electronic medical record (EMR) at 
TCVGH, and informed consent was waived by the Insti-
tutional Review Board of Taichung Veterans General 
Hospital.

Critical care database at TCVGH
The critical care database in this study was established 
through using data from the data warehouse at TCVGH, 
a Taiwanese referral centre with approximately 1,500 
beds and six ICUs in central Taiwan. Subjects who were 
admitted to ICUs between 2015 and 2019 were enrolled 
for analyses, and data of the first ICU admission was used 
among those with ICU admission more than one time. 
We categorised the data into main clinical domains in 
accordance with the clinical workflow in critical care, and 
the four main clinical domains consisted of conscious-
ness/awareness domain, fluid balance domain, ventilatory 
function domain, and physiological parameter domain. 
In detail, the consciousness domain contained the Glas-
gow coma scale (GCS) as well as the Richmond Agita-
tion Sedation Scale (RASS) which is an essential scale 
to measure the agitation or sedation level in critically ill 
patients, fluid balance domain included administered 
fluid, urine output as well as feeding amount, ventila-
tory parameter domain consisted of peak airway pressure 
(Ppeak), mean airway pressure (MAP), ventilator-day as 

well as respiratory rate, and physiology domain which 
was composed of heart rate [18].

Machine learning models
We employed five machine learning (ML) models, 
including extreme gradient boosting (XGBoost), categor-
ical boosting (CatBoost), light gradient boosting machine 
(LightGBM), random forest (RF) and logistic regression 
(LR), and the ratio between training/testing was 80/20 in 
this study (see supplemental Fig. 1 for the flow diagram of 
the study). Given that we aimed to predict weaning one 
day prior to extubation by using the two-day data (data of 
two and three days prior to extubation), the feature win-
dow and prediction window were hence 48  h and 24  h, 
respectively (Supplemental Fig. 2 for details regarding the 
data time frame in this study).

With regards to data preprocessing, the physicians 
set the plausible range of each variable, and the missing 
data were imputed by the average value of each variable 
(Supplemental Table  1  for the plausible range and pro-
portion of missing data of the top 20 variables with high 
feature importance). Given that ML models cannot take 
the time factor into consideration, we inputted the data 
within the two-day feature window not only individual 
data of the two days but also the difference between the 
two days. All of the data were normalised into -1– + 1 
prior to analyses. We further applied recursive feature 
elimination for succinct features and used 20 features to 
establish the extubation prediction model (Supplemen-
tal Fig.  3  for the results of recursive feature elimination 
analysis). To avoid the potential bias in sampling, we used 
two sets of data, including the data one day prior to extu-
bation and another random set of data, in patients with 
extubation and randomly selected five sets of data in 
patients without extubation. The ratio of datasets labelled 
with extubation and non-extubation was 1:3.4; therefore, 
the imbalance issue should be at least partly mitigated. 
With respect to the explanation, we used a number of 
visualised tools for explanation at domain-, feature- and 
individual levels to reduce the potential concern regard-
ing the black-box of ML models. In detail, we quanti-
fied the score of feature importance and illustrated the 
cumulative feature importance in accordance with the 
main clinical domains. We further used SHAP and PDP 
plots to show the direction and trend of impacts on the 
extubation prediction at feature level [19]. In detail, the 
SHAP summary plot illustrated both the direction and 
strength of associations between key features and extu-
bation probability and the partial dependence plot (PDP) 
further showed the marginal effect of the selected key 
features on the extubation prediction. For the individ-
ual-level explanation, we showed extubation probabil-
ity and used LIME and SHAP force plots for visualising 
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the impact of key features on extubation [20]. In detail, 
LIME provides an explanation of the proposed classifier 
through approximating the selected number of key fea-
tures through applying a locally linear model, and the 
LIME plot reflects the contribution of key features to the 
extubation of the selected patient.

Statistical analysis
We presented the continuous data as means ± standard 
deviations, and categorical data were expressed as fre-
quencies (percentages). Fisher’s exact test and Student’s 
t-test were used to measure the difference between the 
two groups. We determined the discrimination, accuracy 
and applicability of the models in the testing sets by the 
receiver operating characteristic (ROC) curve analysis, 
calibration curve as well as decision curve analysis [21, 
22]. Python version 3.6 was applied in the present study.

Results
Demographic and dynamic data of main domains 
among enrolled subjects
We enrolled 5,940 critically ill patients requiring 
mechanical ventilation for more than 48  h, and 65 
features were used in the present study (Fig.  1). The 

mean age of enrolled subjects was 66.2 ± 16.2  years, 
and 64.0% of them were male. The majority of patients 
were admitted to the medical ICU, followed by surgi-
cal ICU and neurological ICU. Given we excluded those 
requiring mechanical ventilation for less than 72 h, the 
enrolled subjects had an apparently high disease sever-
ity, with acute physiology and chronic health evaluation 
(APACHE) II and sequential organ failure assessment 
(SOFA) scores were 25.7 ± 6.6 and 8.5 ± 3.6, respec-
tively. We found that 61.5% (3657/5940) were extubated 
during the ICU admission (Supplemental Fig. 4 for the 
distribution of hospital length of stay and ventilator 
day). Patients with and without extubation had simi-
lar distributions in age, sex, and Charlson comorbidity 
index. However, those without extubation had a higher 
APACHE II score (26.7 ± 6.8 vs 25.0 ± 6.3, p < 0.01) and 
SOFA score (9.0 ± 3.9 vs 8.2 ± 3.4) than those with extu-
bation (Table 1). Table 2 shows the dynamic parameters 
of enrolled patients, and we found that patients with 
extubation during ICU admission had a continuous 
improvement of consciousness and decreased sedation 
status, a gradual decrease in heart rate and adminis-
tered fluid, and a steady increase in urine output and 
feeding amount (Table 2).

Fig. 1  Flowchart of subject enrollment. Abbreviations: TCVGH, Taichung Veterans General Hospital; ICU, intensive care unit
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Comparisons among machine learning models
We then compared the performance among the five 
ML models to predict extubation. In contrast to the 
relatively low accuracy of LR, we found that XGBoost, 
LightGBM, CatBoost and RF appeared to have simi-
larly high accuracy, with their AUC were 0.921, 0.921, 

0.920 and 0.918, respectively (Fig. 2A). The calibration 
curve showed good consistency between predicted 
values and actual observed values, particularly the 
XGBoost (Fig. 2B). The decision curve analysis further 
illustrated the well overall net benefits within a rela-
tively wide range of threshold probabilities, particularly 

Fig. 2  The performance of distinct machine learning models to predict extubation. Receiver operating characteristic curves (A), Calibration curves 
(B), Decision curve analyses (C). Area under curve (XGBoost 0.921, LightGBM 0.921, CatBoost 0.920, Random Forest 0.918, Logistic Regression 0.868)

Table 1  Characteristics of the 5,940 critically ill ventilated patients with and without extubation during ICU-admission

Data were presented as mean ± standard deviation and number (percentage)

Abbreviations: CCI Charlson comorbidity index, ICU intensive care unit, APACHE II acute physiology and chronic health evaluation II, SOFA sequential organ failure 
assessment

All Extubation (-) Extubation ( +) p-value
N = 5,940 N = 2,283 N = 3,657

Demographic data
  Age (years) 66.2 ± 16.2 65.8 ± 16.0 66.4 ± 16.3 0.12

  Sex (male) 3799 (64.0%) 1482 (64.9%) 2317 (63.4%) 0.24

  Body mass index 24.0 ± 5.0 23.5 ± 4.8 24.0 ± 5.2  < 0.01

CCI 2.1 (1.4) 2.1 (1.4) 2.2 (1.5) 0.05

ICU types  < 0.01

  Medical ICU 2831 (47.7%) 1043 (45.7%) 1788 (48.9%)

  Surgical ICU 1272 (21.4%) 512 (22.4%) 760 (20.8%)

  Neurological ICU 1176 (19.8%) 575 (25.2%) 601 (16.4%)

  Cardiac ICU 399 (6.7%) 110 (4.8%) 289 (7.9%)

  Cardiosurgical ICU 262 (4.4%) 43 (1.9%) 219 (6.0%)

Severity score
  APACHE II 25.7 ± 6.6 26.7 ± 6.8 25.0 ± 6.3  < 0.01

  SOFA score 8.5 ± 3.6 9.0 ± 3.9 8.2 ± 3.4  < 0.01

Outcome
  ICU-stay (day) 14.7 ± 10.6 17.2 ± 12.0 13.1 ± 9.3  < 0.01

  Ventilator-day 12.2 ± 10.8 16.0 ± 12.0 9.7 ± 9.1  < 0.01

  Hospital-stay (day) 29.4 ± 16.7 30.3 ± 18.6 28.8 ± 15.4  < 0.01
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in XGBoost and LightGBM (Fig.  2C). We hence used 
XGBoost in the following analyses.

Explanation of the model at the domain and feature level
We then attempted to illustrate the ML model at the clin-
ical-domain level, feature level, and individual level. We 
categorised the 20 features by the four clinical domains 
based on the workflow for management among critically 
ill ventilated patients (Fig. 3). We found that the cumu-
lative feature importance of the consciousness, fluid 
balance, ventilatory parameter and physiology domains 
were 0.284, 0.425, 0.232 and 0.045, respectively (Fig.  3). 
We then used the SHAP summary plot to demonstrate 
how these key features affect the probability of extuba-
tion (Fig.  4). Using the SHAP summary plot, not only 
the strength but also the direction of each feature were 
clearly illustrated. For example, an improved conscious-
ness status, determined by the GCS, as well as increased 
urine output, was positively associated with a higher 
probability of extubation one day later, whereas a high 
requirement for injected fluid was inversely associated 
with extubation probability. To further elaborate on how 
each feature affects the probability of extubation within 
the ML model, we used a PDP plot of the six crucial 
features, including the consciousness domain (i.e. GCS 

and RASS), fluid balance domain (i.e. urine output and 
injected fluid) and ventilatory parameter domain (i.e. 
Ppeak and MAP) (Fig.  5). Collectively, these visualised 
interpretations at the domain and feature level based on 
clinical workflow in critical care should give intuitive 
explanations of the ML model to the clinician.

Explanation of the ML model at the individual level
We then used LIME and SHAP force plots of key fea-
tures to illustrate the overall impact of key features on the 
extubation prediction model in two representative indi-
viduals. As shown in Fig.  6, the overall predicted prob-
ability of extubation, incremental effects on extubation of 
variables (red), and decremental effects on extubation of 
variables (blue) of two representative patients were illus-
trated in the LIME plot (Fig. 6). For example, in case-1, 
the predicted probability for extubation was relatively 
high (0.81) due to a number of favourable conditions, 
consisting of a clear consciousness (GCS: 14 and RASS: 
0), high urine output (2450 ml on day -2), and low repira-
tory rate (14.5 on day -2), although a slightly high injected 
fluid (2521 ml on day -2). The SHAP force plot illustrated 
similar findings of aforementioned key features (Fig. 6A). 
In contrast, the probability of extubation in case-2 was 
relatively low (0.19) due to a number of unfavourable 

Fig. 3  Cumulative relative feature importance of features categorised by working domains in critical care
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conditions, including the high injtected fluid (2811 on 
day -1), high Ppeak (29.50 cmH2O) and MAP (15.5 mg/
dL), despite a relatively clear consciousness (GCS: 15 anr 
RASS -1). SHAP force plot demonstrated similar find-
ings, and the cut-point of each features omitted for the 
succinct summary (Fig. 6B). Taken together, these expla-
nations at the individual level were in line with the expla-
nation at the feature level and in accordance with the 
clinical workflow; therefore, the black-box issue should 
be mitigated through these explanations.

Discussion
Weaning from mechanical ventilation is an essential but 
complex issue in critical care and requires the interpre-
tation of multi-domain data in critically ill patients. In 

the study, we used an explainable ML approach, includ-
ing domain-based cumulative feature importance, SHAP, 
PDP and LIME plots, to develop an extubation predic-
tion model with high accuracy and visualised explana-
tions. Notably, the explainability was in line with clinical 
workflow in critical illness, and we think the proposed 
extubation prediction model should severe as an autono-
mous screen tool to aid the clinician for the timely start 
of breathing trials.

Weaning from mechanical ventilation consists of a 
patient-tolerated breathing trial followed by extubation, 
and the start of weaning requires the multi-disciplinary 
interpretation of data in critical care [3]. Therefore, AI 
appears to be used for integrating the information in 
critical care and serves as a decision supporting system 

Table 2  Dynamic parameters of critically ill ventilated subjects without and with extubation

Data were presented as mean ± standard deviation. RASS Richmond Agitation and Sedation Scale, Ppeak peak airway pressure, MAP mean airway pressure

All Extubation (-) Extubation ( +) p-value
N = 5,940 N = 2,283 N = 3,657

Day 1
  Glasgow coma scale 7.5 ± 4.4 6.8 ± 4.2 8.0 ± 4.4  < 0.001

  RASS level -2.9 ± 1.9 -3.2 ± 1.8 -2.7 ± 1.9  < 0.001

  Respiratory rate, per minute 19.2 ± 3.7 19.5 ± 3.8 19.1 ± 3.6  < 0.001

  Ppeak, cmH2O 22.3 ± 6.0 22.8 ± 6.2 22.0 ± 6.0  < 0.001

  MAP, cmH2O 12.4 ± 3.1 12.6 ± 3.3 12.2 ± 2.9  < 0.001

  Heart rate, per minute 93.6 ± 19.2 95.9 ± 20.0 92.2 ± 18.5  < 0.001

  Urine output, ml 1248.4 ± 1172.1 1270.1 ± 1243.4 1235.0 ± 1125.4 0.290

  Injected fluid, ml 2515.0 ± 1929.8 2634.5 ± 2036.9 2439.7 ± 1855.6  < 0.001

  Feeding amount, ml 484.1 ± 437.1 504.2 ± 454.9 471.4 ± 425.1 0.045

Day 3
  Glasgow coma scale 9.1 ± 4.7 7.3 ± 4.6 10.2 ± 4.5  < 0.001

  RASS level -2.1 ± 2.0 -2.9 ± 1.9 -1.6 ± 1.8  < 0.001

  Respiratory rate, per minute 18.0 ± 4.0 18.8 ± 4.5 17.4 ± 3.6  < 0.001

  Ppeak, cmH2O 23.6 ± 5.3 24.7 ± 5.6 22.9 ± 4.9  < 0.001

  MAP, cmH2O 12.2 ± 3.4 13.0 ± 3.9 11.8 ± 3.0  < 0.001

  Heart rate, per minute 88.4 ± 17.4 91.8 ± 18.8 86.3 ± 16.1  < 0.001

  Urine output, ml 2012.8 ± 1354.6 1807.5 ± 1384.7 2139.2 ± 1320.1  < 0.001

  Injected fluid, ml 1706.2 ± 1338.8 1929.9 ± 1579.1 1566.8 ± 1142.5  < 0.001

  Feeding amount, ml 969.0 ± 508.0 939.5 ± 519.6 986.8 ± 500.2 0.002

Day 7
  Glasgow coma scale 10.5 ± 4.5 8.0 ± 4.7 12.0 ± 3.7  < 0.001

  RASS level -2.2 ± 2.4 -3.2 ± 2.2 -1.6 ± 2.3  < 0.001

  Respiratory rate, per minute 18.8 ± 3.7 19.0 ± 4.3 18.7 ± 3.4 0.010

  Ppeak, cmH2O 23.2 ± 5.6 24.8 ± 5.8 22.0 ± 5.1  < 0.001

  MAP, cmH2O 11.9 ± 3.4 12.8 ± 3.8 11.2 ± 2.8  < 0.001

  Heart rate, per minute 88.7 ± 16.3 90.5 ± 17.9 87.7 ± 15.2  < 0.001

  Urine output, ml 2093.0 ± 1280.6 2005.9 ± 1346.8 2140.5 ± 1240.6  < 0.001

  Injected fluid, ml 1168.4 ± 1060.9 1413.7 ± 1231.7 1030.7 ± 923.7  < 0.001

  Feeding amount, ml 1160.3 ± 571.4 1122.7 ± 571.5 1180.5 ± 570.4 0.001
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to facilliate weaning. Notably, the establishment of the AI 
model depends on accurate labelling; however, the pre-
cise tolerability of distinct breathing trials, mainly T piece 
and pressure support trial, might somehow be ambigu-
ous and could not be precisely defined in the critical care 
database [23, 24]. Therefore, we used extubation, which is 
an explicit, objective and critical medical event in venti-
lated patients, as the target labelling in the present study 
to establish an extubation prediction model.

In this study, we found that levels of consciousness/
awareness, fluid status relevant features and ventila-
tory parameters were crucial features with high feature 
importance to predict extubation one day later, and the 
finding is in line with the variables of daily screen readi-
ness for spontaneous breathing trial in the respiratory 
therapist–driven protocol [5]. Indeed, both left- and 
right-aligned designs can be used to establish the ML 
models [25]. In brief, left-aligned models predict the inci-
dent of the targeted event following a fixed time point, 
but various time periods among patients may lead to dif-
ficulty in the real-world landing of an established model. 

In contrast, right-aligned models can be used to continu-
ously predict whether the target event will occur after the 
set time period, so-called real-time or continuous predic-
tion models [25]. Therefore, the right-aligned design in 
the present study enables the proposed model to serve 
as an autonomous daily screen system to timely identify 
patients who were ready for breathing trial and to facili-
tate the weaning process through early recognition of 
the potential extubation one day earlier (Supplemental 
Fig. 3). Furthermore, we think the practical value of the 
established explainable ML model is high, given that the 
interpretation of ML models aligns with the real-world 
workflow in critical care. Recently, the Good Machine 
Learning Practice for Medical Device Development 
has incorporated human interpretability into the ML 
model, the so-called human in the loop [13]. The Euro-
pean Commission also has proposed the ethics guideline 
for trustworthy AI and includes the need to enhance the 
explanation of AI-based systems even at the cost of com-
promised accuracy of the AI-based model [14]. Indeed, 
safety is a fundamental issue in the field of critical care, 

Fig. 4  SHAP to illustrate the extubation prediction model at feature level Abbreviation: SHapley Additive exPlanation (SHAP)
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and increasing transparency of the model through expla-
nation may at least partly mitigate the concern with 
respect to the black-box issue [26]. Given that clinicians 
take accountability with respect to patient safety, the 
understanding of how the AI systems reach suggested 
decisions should be crucial in the landing of AI-based 
systems in the field of critical care [26]. Notably, the 
design of explanation in accordance with clinical work-
flow, as we have shown in this study, should further ena-
ble clinicians to realise the explainable ML-based model. 
Nevertheless, it is needed to clarify that to open the black 
box directly might somehow be difficult, and the current 
explanation methods are more likely to be post-hoc inter-
pretability of key features through analysing the model 
after training instead of direct explanations for the entire 
model [27].

Similar with our study, Chen KH et  al. used data of 
1,483 patients at three medical ICUs in northern Taiwan 
and ML approach to establish the shifting of ventilator 
mode from assisted/controlled mode to spontaneous 
breath trial, and the accuracy determined by the area 

under the receiver operating characteristic curve of 
ML-based model was approximately 0.79 [9]. We think 
the increased performance of the extubation prediction 
model in the present study can be attributed not only 
to a high number of enrolled subjects but also to the 
explicit target labelling with extubation. Furthermore, 
the proposed individual-level explanation at distinct time 
points might serve to continuously monitor the readiness 
for extubation. In brief, gradual improvement of crucial 
clinical parameters and steady increase of extubation 
probability indicates the readiness for extubation of an 
individual patient (Supplemental Fig.  5). The aforemen-
tioned findings further highlight that explanation that is 
consistent with clinical evidence should enable the cli-
nicians to work with AI, the so-called Human-AI Team 
[13].

Indeed, feature selection is an essential issue given 
that a high number of features might be a concern with 
regard to landing, particularly in the edge device [28, 
29]. We hence used recursive feature elimination and 
found a high accuracy while using the top 20 features 

Fig. 5  Partial dependence plot by SHAP value in predicting extubation. GCS (A), RASS (B), urine output (C), injected fluid (D), Ppeak (E), MAP (F). 
Abbreviations: GCS, Glasgow coma scale GCS; RASS, Richmond Agitation and Sedation Scale; Peak, peak airway pressure; MAP, mean airway pressure
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Fig. 6  Local interpretable model-agnostic explanations (LIME) and SHAP force plots of two representative individuals. SHapley Additive exPlanation 
(SHAP)
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in this study (Supplemental Fig.  3) [30]. In line with 
our findings, Roimi et al. used merely 50 features from 
7000 features among the two critical care databases at 
Beth Israel Deaconess Medical Center and Rambam 
Health Care Campus to develop an ML-based model to 
predict bloodstream infections in critically ill patients 
[31]. Similarly, Jia et al. used 25 features in the Medi-
cal Information Mart for Intensive Care (MIMIC) III 
databases and convolutional neural networks approach 
to establish a decision support system for suggest-
ing breathing trial, with the accuracy was 0.86 [10]. 
Moreover, Xie et al. employed merely 9–12 variables to 
establish an easy-to-use, machine learning-based mor-
tality prediction model through using data of the Med-
ical Information Mart for Intensive Care (MIMIC) III 
database [32]. These studies and our data demonstrate 
the potential to establish a model with high accuracy 
with a reasonable number of features for practical 
landing.

With respect to the comparison among distinct ML 
models, we used the Delong test to determine the dif-
ference in performance among ML models [33] (Sup-
plemental Table 3). Similar to our previous studies, we 
found that the tree-based models, including XGBoost, 
CatBoost, LightGBM and RF, had an apparently bet-
ter performance compared with those in LR and pos-
tulated that the relatively low performance of LR may 
result from the assumption of linear correlation among 
features in LR [16, 17]. We also found that XGBoost, 
LightGBM and CatBoost had a slightly higher perfor-
mance than that in RF and speculated this minor dif-
ference might potentially be attributed to the high 
flexibility with a number of adjustable hyperparam-
eters of XGBoost, LightGBM and CatBoost. However, 
we think the difference among XGBoost, Catboost and 
LightGBM was not the performance but the easy cat-
egorical data preprocessing in Catboost as well as the 
less hardware requirement in LightGBM.

There are limitations in this study. First, this study 
used a single hospital database, and external validation 
is warranted to confirm our findings. Second, the ret-
rospect design and the decision of extubation are indi-
vidualised, but the study hospital is a referral centre 
in central Taiwan with the administration of intensiv-
ists as well as respiratory therapies that might mitigate 
the concern. Third, the established model predicts 
the timing of extubation instead of successful wean-
ing (i.e. extubation without re-intubation); however, 
the proportion of re-intubation in the present study is 
consistent with previous studies (Supplemental Fig. 6). 
Fourth, the single imputation method by the average 
value could potentially lead to a bias in this study.

Conclusions
Weaning from MV relies on timely recognition of 
ventilated patients who might be extubated soon and 
the timely start of the breathing trial. AI is increas-
ingly used in the medical field, but black-box issues 
remain the main concern, particularly in the field of 
critical care. We used an explainable ML approach to 
develop an extubation prediction model with not only 
high accuracy but also the visualised interpretation of 
the model in the domain, feature and individual level. 
The established model may severe as a computer-aided 
algorithm to detect critically ill ventilated patients who 
might be extubated one day later and suggest clinicians 
for a timely start of breathing trial. More prospective 
studies are required to validate our findings and to land 
the proposed models in critically ill ventilated patients.
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