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Introduction
Gene enhancers are non-coding segments of DNA that play a central role in regu-
lating transcriptional processes that control development, cell identity, and evolution 
[1]. Recently, a large number of enhancers of humans and other species (both eukary-
otes and prokaryotes) have been recognized [2]. The number of enhancers in mam-
mals ranges from 50,000 to 100,000. Most enhancers are located in intron region and 
intergenic region, and a few are located in exon region [3]. The enhancer contains a 
variety of genetic marker sites, the most common is the transcription factor binding 
site. Enhancers regulate gene expression by interacting with their target gene promot-
ers. This interaction may be in cis or in trans. Cis action refers to the enhancer and its 
action site genes on the same chromosome, while trans action refers to the enhancer 
and its action site genes on different chromosomes [4]. On average, each promoter 
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interacts with 4.9 enhancers [5]. Super-enhancers (SEs) are large clusters of transcrip-
tionally active enhancers, often located near cell-specific functional genes. Although 
super enhancers have been widely used in many studies, there is no clear definition 
[6]. In addition, many human diseases have been shown to be affected by genetic vari-
ations in enhancers [7], such as various cancers [8] and inflammatory bowel disease 
[9]. Therefore, the identification of enhancers and the prediction of their action sites 
have always been a hot topic in related fields.

One of the basic problems of enhancer research is enhancer prediction. In order to 
find the properties and functions of enhancers, it is necessary to identify the locations 
of enhancers on the genome. For a long time in the past, the prediction of enhancers 
has relied on biological experimental techniques. For example, Conservative analysis 
was performed using sequence conserved data and transcription factor binding site 
data to predict enhancers. [10–12]. And using DNase I hypersensitivity sites sequenc-
ing data to identify enhancers based on chromatin accessibility [13]. However, these 
methods result in a high false-positive rate because the data contain sequences of 
other regulatory elements that are not enhancers binding to transcription factors. In 
addition, the method of predicting enhancers using ChIP-seq data of transcription 
factors and ChIP-seq data of transcription coactivator P300 has been widely used 
[14–16], but it is not effective to distinguish strong enhancers from weak enhanc-
ers. Prediction based on eRNA data is another approach [17–19]. The enhancer tran-
scribes eRNA, which is detected by sequencing technology and mapped back to the 
original genome to obtain the location information of the enhancer. The disadvan-
tages are that a large sample size is required, and all methods for determining the 
location of enhancers based on eRNA data cannot be used to predict unexpressed 
enhancers.

Biological experiments are time-consuming and costly. With the rapid development of 
machine learning and deep learning, many prediction models have been built to identify 
enhancers and their strength. iEnhancer-2 L is the first predictive model that can iden-
tify not only intensifiers but also their strength [20]. iEnhancer − 2 L uses pseudo k-tuple 
nucleotide composition (PseKNC) as the encoding method of sequence characteristics. 
EhancerPred uses bi-Bayes and pseudo-nucleotide composition as feature extraction 
method [21]. iEnhancer-EL is an upgraded version of iEnhancer-2 L [22]. Its two stages 
consist of 16 key individual classifiers, all of which are selected from 171 basic classifi-
ers formed based on subsequence profile, kmer and PseKNC. The above three machine 
learning models are based on support vector machines (SVM) to construct classifiers. 
iEnhancer -ECNN uses one-hot encoding and k-mers to process the data, and uses CNN 
to construct the ensemble model [23]. But one-hot encoding is vulnerable to the prob-
lem of dimensionality disaster and ignores the correlation information between k-mer 
words. iEnhancer -XG combines five features (k-spectrum profile, mismatch k-tuple, 
subsequence profile, position-specific scoring matrix) and constructs a two-layer pre-
dictor using “XGBoost” as the basic classifier [24]. iEnhancer-EBLSTM uses 3-mer to 
encode the input DNA sequences and then predicts enhancers by bidirectional LSTM 
[25]. These methods can identify and classify enhancers and their strength. But the accu-
racy of layers 1 and 2 predictors needs to be improved further, and it should be possible 
to develop better models using the new deep learning framework.
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In this study, we propose a new deep learning prediction framework called iEnhancer-
DCLA. In the first stage of the model, enhancers are identified. In the second stage, we 
classified enhancers’ strength. The main idea of the model is to combine word embed-
ding and k-mers to encode sequence data, and then use CNN, Bi-LSTM and attention 
mechanism to extract features and classify them. Meanwhile, we use SHapley Additive 
explanation [26] algorithm to explain the influence of the features extracted from the 
model. The experimental results in the independent test dataset show that this method 
has better performance than some existing methods. The source codes and data are 
freely at https://​github.​com/​WamesM/​iEnha​ncer-​DCLA.

Materials and methods
Benchmark dataset

The benchmark dataset used in this article is divided into two parts: the training data-
set and the independent test dataset. The dataset used in our experiment was obtained 
from the study of Liu et al. [20]. In order to facilitate a fair comparison with previous 
studies, this dataset has also been used to classify enhancers in later studies, such as in 
the development of EnhancerPred [21], iEnhancer-EL [22], iEnhancer- ECNN [23], and 
iEnhancer- XG [24]. In this dataset, enhancer sequences of 9 different cell lines were col-
lected, from which a 200 bp fragment of the same length was extracted. The CDHIT [27] 
software was then used to exclude paired sequences with sequence similarity greater 
than 20%. The training dataset included 1484 enhancer sequence samples (742 strong 
enhancers and 742 weak enhancers) and 1484 non-enhancer sequence samples. To eval-
uate the generalization performance of our model, the independent test dataset is set 
up. The independent test dataset includes 200 enhancer sequence samples (100 strong 
enhancers and 100 weak enhancers) and 200 non-enhancer sequence samples.

Sequence representation

In many deep learning algorithms for processing biological sequences, the method of 
using natural language processing technology to extract features from the original DNA 
sequence is widely used [28–30]. K-mer analysis is an effective method in DNA sequence 
analysis. K-mer splits a sequence into substrings of k bases. When the step size is 1, the 
DNA sequence with length l is divided into (l − k + 1) k-mers. For example, when we set 
k = 7, the sequence ‘ACG​TCG​ACG’ is split into three 7-mers: ‘ACG​TCG​A’, ‘CGT​CGA​
C’, and ‘GTC​GAC​G’. This makes the sequence easier to calculate and understand. We 
treat the entire DNA sequence as a sentence, and the k-mer fragments as words. We 
derive the distributed representation matrix by connecting the dna2vec [31] method. 
Dna2vec is based on the popular word embedding model word2vec [32]. In our model, 
dna2vec was pretrained with hg38 human components chr1 to chr22, and then adapted 
to our predictive task using our datasets. Finally, each k-mer word is represented as a 
100-dimensional vector. In this experiment, we set k to 7 and converted each 200  bp 
enhancer sequences into a (194,100) matrix.

Model architecture

We propose a two-stage deep learning prediction model using DNA sequences of enhanc-
ers for classification. The first stage is to identify enhancers. The second stage is to identify 

https://github.com/WamesM/iEnhancer-DCLA
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the strength of enhancers. In fact, the first stage has the same network structure as the sec-
ond stage. The only difference between the two stages is the dataset used. During the train-
ing in the first stage, all data are used as training dataset and are classified as enhancers and 
non-enhancers. In the second stage, only the enhancers are used in the experiment and are 
classified as strong enhancers and weak enhancers. The workflow of the model is shown 
in Fig. 1. The model consists of five modules, including sequence words embedding input, 
convolutional neural network extracting sequence features, bidirectional long short-term 
memory network extracting sequence long-term dependence information, attention mech-
anism extracting relatively more important features, and predicting output.

Convolutional neural network (CNN)

CNN is a kind of Feedforward Neural Networks with deep structure and convolution 
computation, which is one of the representative algorithms of deep learning [33, 34]. Our 
convolution module consists of one-dimensional convolution layer, rectified linear layer 
(ReLU) [35], batch normalization layer and max pooling layer. In order to avoid overfitting, 
a dropout layer [36] with a dropout rate of 0.2 was used in the middle. In the first convolu-
tional layer, the number of convolutional kernels is set to 256, the size of the convolutional 
kernels is set to 8, the stride is set to 1, and the length of max pooling layer is set to 2. In the 
second convolutional layer, the number of convolutional kernels is set to 128, the size of the 
convolutional kernels is set to 8, the stride is set to 1, and the length of max pooling layer is 
set to 2.

Bidirectional long short‑term memory network (LSTM)

LSTM is a special type of recurrent neural network that can learn long-term dependency 
information. On many issues, LSTM has achieved great success and been widely used, such 
as DeepD2V [37]. Because DNA sequences are double-stranded, we use Bi-LSTM to cap-
ture the long-term dependence of the sequence. Bi-LSTM layer is composed of forward 
and reverse parts to learn features. The calculation formula is as follows:

(1)ft = σ Wf xt +Uf ht−1 + bf

(2)it = σ(Wixt + Uiht−1 + bi)

Fig. 1  Model structure. It includes feature representation based on dna2vec method, two convolutional 
layers, two pooling layers, bidirectional long short-term memory network layer, attention layer and finally two 
fully connected layers
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The Eq. (1) represents the forgetting gate to decide which information should be dis-
carded or retained. The Eqs. (2) and (3) represent the input gate, which is used to decide 
which information to update and create a new candidate value vector. The Eq. (4) is used 
to calculate the current cell state. The Eq. (5) represents the output gate, which is used 
to calculate the value of the next hidden state. Where Wf  , Wi , WC , Wo , Uf  , Ui , UC , Uo 
are weights, and bf  , bi , bC , and bo are biases. We set the number of neurons into the Bi-
LSTM layer to 64.

Attention

In the field of Artificial Intelligence (AI), attention mechanism has become an impor-
tant part of neural network structure. It has a large number of applications in natural 
language processing, statistical learning, speech and computer [38, 39]. The core of the 
attention mechanism is to introduce attention weight to the features learned in the pre-
vious layer and assign different weight to each feature to learn the relatively more impor-
tant features.

where Ws , bs and us are the variables that need to be learned; αiobtained through calcula-
tion represents the importance of hi ; hi is the output of bi-LSTM layer at the i time; A 
represents the feature vector after finally passing through the attention mechanism layer. 
We set up 64 output units in the attention layer.

Finally, the model is connected to two fully connected layers for prediction, and the 
sigmoid activation function is used to calculate the probability of classification into a 
certain category. Dimension changes of iEnhaner-DCLA under each module in Addi-
tional file 1: Fig. S1.

Evaluation parameters

In order to evaluate the performance of the model objectively and comprehensively, we 
use the following metrics to evaluate the predictive performance of the model: (1) Accu-
racy (ACC), (2) Sensitivity (Sn), (3) Specificity (Sp), (4) Matthews correlation coefficient 

(3)C̃t = tanh (WCxt +UCht−1 + bC)

(4)Ct = ft ⊙ Ct−1 + it ⊙ C̃t

(5)ot = σ(Woxt +Uoht−1 + bo)

(6)ht = ot ⊙ tanh (Ct)

(7)ui = tanh (Wshi + bs)

(8)αi =
exp

(
uTi us

)
∑L

i=1 exp
(
uTi us

)

(9)A =
∑L

i=1
αi ∗ hi
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(MCC), (5) Area Under the ROC Curve (AUC), (6) Area Under the Precision Recall 
Curve (AUPR), (7) F1-score. The formula of evaluation index is as follows:

where TP, FP, TN and FN represent true positive, false positive, true negative and false 
negative values respectively.

Results and discussions
Analysis of DNA sequences

In recent years, nucleotide compositions of DNA sequences have been widely used to 
identify functional elements [40, 41]. In order to display the distribution of nucleotide 
of enhancer sequence intuitively. Figure 2 shows the difference in nucleotide composi-
tions between enhancers and non-enhancers and between strong enhancers and weak 
enhancers, respectively. As shown in Fig.  2A, the four bases are distributed evenly in 
the sequence of the enhancers, while non-enhancers accumulate adenine (A) and thy-
mine (T). Non-enhancers contain more than 30% adenine and thymine, and less than 
20% cytosine(C) and guanine(G). As shown in Fig. 2B, the strong enhancers are rich in 
more C, G than A, T, while the weak enhancers have the opposite trend, rich in more A, 
T. These results indicate that there are differences in nucleotide compositions between 
enhancers and non-enhancers, and between strong enhancers and weak enhancers, 
which helps us build models to distinguish them.
Parameter optimization

We set the upper limit of the training period as 90 epochs, and monitored the change of 
accuracy on the validation set during training. When the accuracy on the validation set 
reached a relatively high value and stopped improving in the following 20 Epochs, the 
training was terminated, and the weight with the highest accuracy on the validation set 
was saved as the test. Table 1 shows the parameter selection we set in the experiment.

In sequence representation, the model is based on k-mer method to embed words by 
connecting DNA2vec. In previous studies, different k values were selected for different 
model frames [42]. In order to test the effect of different values of k-mers, we conducted 
numerical experiments with k ranging from 3 to 8. As shown in Table 2, when k is 7, the 
model has better performance in general.

(10)ACC =
TP + TN

TP + TN + FP + FN

(11)Sn =
TP

TP + FN

(12)Sp =
TN

TN + FP

(13)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)+ (TN + FN )
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Fig. 2  A Nucleotide compositions of enhancers and non-enhancers. B Nucleotide compositions of strong 
and weak enhancers

Table 1  Hyper-parameters optimization

Hyper-Parameters Range Recommendation

Convolutional layer number [1, 2, 3, 4] 2

Convolutional neurons number [16, 32, 64, 128, 256] 128,256

Convolutional kernel size [3, 6, 8, 16, 20, 30] 8

Max Pooling layer size [2, 4, 6, 8] 2

Dropout rates [0.1, 0.2, 0.3, 0.5] 0.2

Number of neurons in Bi-LSTM [16, 32, 50, 64] 64

Optimizer [SGD, Adam] Adam

Learning rate [2e−6, 5e−6, 8e−6, 2e−5] 5e−6, 2e−6

Batch Size [16, 32, 64, 128] 32
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The effect of different encoding methods

In the past process of DNA sequence processing, one-hot coding has been widely 
used in various models [23]. One-hot encoding is to encode four bases into four 
binary numbers, corresponding to each nucleotide has three values set as 0, the other 
sets as 1. However, if one-hot encoding is carried out for each word, the dimension of 
the vocabulary will be very large and there will be great sparsity, which will increase 
the calculation cost. In this paper, we compare the performance of word embed-
ding encoding and one-hot encoding. As shown in Table 3, dna2vec performs better 
than one-hot encoding at both layers. In Fig. 3, we compare the AUC, AUPR and F1 
score of the two encoding methods, it shows that dna2vec has a better performance 
than one-hot encoding in most of the evaluation indicators for the identification of 
enhancers and their strength.

Discussion on effects of each module of the model

We also discuss the influence of each module of A on the classification effect. In order 
to select the best model, we constructed four deep learning models, including CNN, 
BiLSTM, CNN combined with BiLSTM, CNN combined with BiLSTM and attention 
mechanism. Tables 4 and 5 list the classification performance of the different models. 
CNN-BiLSTM-Attention achieves the best performance in two stages. In addition, 
the experiments also show that the higher-order features selected after the attention 
mechanism are beneficial to improve the prediction ability of the model.

Table 2  The results of iEnhancer-DCLA with different values of k-mers on two layers

The highest value achieved on each metric is marked in bold

Stages k-mers Acc (%) Sn (%) Sp (%) MCC

First layer 3 76.00 73.00 79.00 0.5209

4 75.25 80.50 70.00 0.5078

5 76.25 77.50 75.00 0.5252

6 74.50 83.50 65.50 0.4981

7 78.25 78.00 78.50 0.5650
8 75.75 71.00 80.50 0.5173

Second  layer 3 69.50 81.00 58.00 0.4007

4 73.00 96.00 50.00 0.5181

5 76.50 95.00 58.00 0.5705
6 76.00 85.00 67.00 0.5286

7 78.00 87.00 69.00 0.5693

8 74.00 92.00 56.00 0.5145

Table 3   A comparison of two layers using two different encoding schemes

The highest value achieved on each metric is marked in bold

Stages Encoding Acc(%) Sn(%) Sp(%) MCC

First layer One-hot 75.00 71.00 79.00 0.5016

Dna2vec 78.25 78.00 78.50 0.5650
Second  layer One-hot 72.50 87.00 58.00 0.4702

Dna2vec 78.00 87.00 69.00 0.5693
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Recurrent neural network is a kind of recursive neural network which takes 
sequence data as input and carries on recursion in the evolution direction of sequence 
and all nodes are linked by chain. Gate Recurrent Unit (GRU) is a Recurrent Neu-
ral Network (RNN). Compared with LSTM, there are only two gates in GRU model: 
update gate and reset gate. Simple RNN has no long-term memory, GRU and LSTM 
can avoid the problem of gradient disappearance. We compare the performance of 
CNN + RNN, CNN + GRU and CNN + LSTM for the long - term dependence infor-
mation of extracted sequence. As shown in Fig. 4, CNN + LSTM brings better predic-
tive performance to the model at both stages. We believe that CNN + LSTM solves 
the problems of gradient disappearance and gradient explosion in the training process 
of long sequences and can perform better in long sequences.

Fig. 3   A Comparison of AUC, AUPR and F1 scores at two layers using different encoding schemes

Table 5  Performance comparison of various deep learning models on identifying enhancers 
strength

Stages Model Acc(%) Sn(%) Sp(%) MCC

First layer CNN 70.50 92.00 49.00 0.4541

BiLSTM 73.00 89.00 57.00 0.4855

CNN-BiLSTM 75.50 92.00 59.00 0.4855

CNN-BiLSTM-Attention 78.00 87.00 69.00 0.5693

Table 4  Performance comparison of various deep learning models on identifying enhancers

Stages Model Acc(%) Sn(%) Sp(%) MCC

First layer CNN 75.00 79.00 71.00 0.5016

BiLSTM 74.00 82.50 65.50 0.4871

CNN-BiLSTM 76.75 78.00 75.50 0.5352

CNN-BiLSTM-Attention 78.25 78.00 78.50 0.5650
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Model interpretation

Many models established by deep learning methods lack interpretability. For us, the 
model is like a black box, and we only need to design the network structure and rel-
evant parameters to get the results. In recent years, the interpretability of models 
has gradually become an important research direction of machine learning and deep 
learning. For example, the ‘SHAP’ method proposed in 2017 can be used to explain 
various models [26]. We use the SHAP method to explain the interaction between 
features and the eventual impact of each feature on model classification. We use 
UMAP [43] dimensionality reduction visualization technology to map the embed-
ding layer and attention mechanism layer of iEnhancer-DCLA into two-dimensional 
space for feature representation in Additional file  1: Fig. S2. After passing through 
the attention mechanism layer, the data has an obvious tendency to cluster into two 
categories, which can be considered that the model has extracted effective sequence 
features. We pass the model through the feature vector behind the attention layer to 
the SHAP method. The Fig. 5 shows the sum and average shapley values of all features 
of all samples, which can reflect the importance of features. It can be seen that the 
extracted feature 13 has the most significant influence on the final effect of the model. 
To understand how a single feature affects the output of the model, feature 13 is com-
pared with other sample features. As shown in Fig. 6, red represents feature 27 with a 
higher shapley value and blue represents a lower value. When feature 13 has a smaller 
shapley value, feature 27 has a higher value, and when feature 13 has a higher value, 
feature 27 brings a lower shapley value. The feature coloring of feature 13 shows that 
it has a negative correlation with feature 27.

Model evaluation

In this paper, we adopt 5-fold cross-validation to select the best weight. We randomly 
divided the training dataset into five equal but disjoint subsets. In each fold, we used one 

Fig. 4   A Comparison of the influence of three different sequence correlation information extraction 
structures on our model (Bi-RNN, Bi-GRU, Bi-LSTM).
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of them as the validation set and four as the training set. This process is repeated until 
all subsets have been validated once. Tables  6 and 7 show the results of 5-fold cross-
validation on the benchmark data set at two stages, respectively, to test the learning effi-
ciency and stability of the model. Overall, according to four different evaluation metrics 
for evaluation, the performance of iEnhancer-DCLA remains consistent across 5-folds.

Fig. 5  The 20 most influential features of iEnhancer-DCLA.

Fig. 6  The interaction between features obtained by iEnhancer-DCLA at the attention layer
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Performance comparison with existing methods

The identification of enhancers and their strength is a complex and important prob-
lem. Generally speaking, training different datasets will get different prediction 
results. In order to objectively evaluate the prediction performance of our model, we 
select the same evaluation indicators. These methods and our method use the same 
dataset training and independent test dataset testing. As shown in Table  8, in the 
first layer of the independent test dataset, our model is slightly lower than iEnhancer-
ECNN in the thousandths of Sn, but superior to other methods. Sp is only lower than 
that of iEnhancer-EBLSTM, which is better than other models. iEnhancer -DCLA is 
better than other models in ACC, and MCC. In the second layer of the independent 
test dataset, our method is only below iEnhancer-2 L in Sp. There is a certain devia-
tion between Sn and Sp in our model. In practical application, we prefer to confirm 
that they are real enhancers, so a higher Sn is acceptable. In the other three evalua-
tion parameters, ACC and Sn values of our model increased by more than 10% and 
6% respectively, and MCC increased by more than 0.2. We also retrieved the AUC 
values of some models for comparison. The AUC values of iEnhancer-2 L, Enhancer-
Pred and iEnhancer-EL were 0.8062, 0.8013 and 0.8173 in the first layer, respectively. 
As shown in Fig. 7A, the AUC value of our model is 0.8269, which is superior to the 
above model. In the second layer, the AUC values of the above models for compar-
ison are 0.6678, 0.5790, 0.6801 respectively. As shown in Fig.7B, the AUC value of 
iEnhancer-DCLA was 0.8226, an increase of 0.14. In summary, our proposed the iEn-
hancer-DCLA shows the best performance in most evaluation parameters, and can 
learn the features of enhancer sequences well and make good predictions.

Table 6  The cross-validation results achieved by the iEnhancer-DCLA on identifying enhancers

Stages Tra : Val (4:1) Acc(%) Sn(%) Sp(%) MCC

First layer 1 86.83 88.34 85.31 0.7369

2 84.54 84.57 84.50 0.6907

3 81.91 85.11 78.71 0.6395

4 80.73 81.06 80.39 0.6146

5 82.61 81.81 83.42 0.6524

Mean 83.32 84.18 82.45 0.6668

Table 7  The cross-validation results achieved by the iEnhancer-DCLA on identifying enhancers 
strength

Stages Tra : Val (4:1) Acc(%) Sn(%) Sp(%) MCC

Second layer 1 84.16 86.39 81.94 0.6840

2 83.36 92.86 73.85 0.6795

3 82.35 83.96 80.73 0.6472

4 83.09 87.06 79.11 0.6638

5 83.56 96.09 71.02 0.6933

Mean 83.30 89.27 77.33 0.6736
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Conclusion
Enhancers are DNA sequences that increase promoter activity and thus gene tran-
scription frequency. Identification of enhancers and their strength is of great sig-
nificance for drug development and synthetic biology. In this study, we developed a 
new deep learning model called iEnhancer-DCLA. This model firstly combines word 
embedding and k-mer analysis as sequence encoding methods, and then uses CNN, 
Bi-LSTM and attention mechanism to extract features and complete classification 
tasks. We use cross-validation to select the best weights for testing. The experimen-
tal results show that word embedding can express DNA sequences well, and the pro-
posed model performs better than other existing advanced models using the same 
benchmark dataset in identifying enhancers and predicting their strength. In addi-
tion, in order to further improve the prediction effect of the model, our subsequent 

Table 8  Identifying enhancers (First layer) and their strengths (Second layer) in the independent 
test datasets compared to other existing methods

The highest value achieved on each metric is marked in bold

Stages Method Acc(%) Sn(%) Sp(%) MCC

First layer iEnhancer-2L 73.00 75.00 71.00 0.4604

EnhancerPred 74.00 73.50 74.50 0.4800

iEnhancer-EL 74.75 71.00 78.50 0.4964

iEnhancer-ECNN 76.90 78.50 75.20 0.5370

iEnhancer-XG 75.75 74.00 77.50 0.5150

iEnhancer-EBLSTM 77.20 75.50 79.50 0.5340

iEnhancer-DCLA 78.25 78.00 78.50 0.5650
Second layer iEnhancer-2L 60.50 47.00 74.00 0.2181

EnhancerPred 55.00 45.00 65.00 0.1021

iEnhancer-EL 61.00 54.00 68.00 0.2222

iEnhancer-ECNN 67.80 79.10 56.40 0.3680

iEnhancer-XG 63.50 70.00 57.00 0.2720

iEnhancer-EBLSTM 65.80 81.20 53.60 0.3240

iEnhancer-DCLA 78.00 87.00 69.00 0.5693

Fig. 7  The ROC curve for classifying in the independent test datasets: A Layer 1: (Identify Enhancers) B Layer 
2: (Identify Enhancers’ Strength)



Page 14 of 16Liao et al. BMC Bioinformatics          (2022) 23:480 

work is mainly focused on exploring sequence coding schemes, feature extraction 
methods and data augmentation.
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