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ABSTRACT We evaluated the in vitro activity of manogepix and comparator agents
against 1,435 contemporary fungal isolates collected worldwide from 73 medical cen-
ters in North America, Europe, the Asia-Pacific region, and Latin America during 2020.
Of the isolates tested, 74.7% were Candida spp.; 3.7% were non-Candida yeasts, includ-
ing 27 Cryptococcus neoformans var. grubii (1.9%); 17.1% were Aspergillus spp.; and
4.5% were other molds. All fungal isolates were tested by reference broth microdilu-
tion according to CLSI methods. Based on MIC90 values, manogepix (MIC50/MIC90,
0.008/0.06 mg/liter) was 16- to 64-fold more active than anidulafungin, micafungin,
and fluconazole against Candida spp. isolates and the most active agent tested.
Similarly, manogepix (MIC50/MIC90, 0.5/1 mg/liter) was $8-fold more active than anidu-
lafungin, micafungin, and fluconazole against C. neoformans var. grubii. Based on mini-
mum effective concentration for 90% of the isolates tested (MEC90) and MIC90 values,
manogepix (MEC90, 0.03 mg/liter) was 16- to 64-fold more potent than itraconazole,
posaconazole, and voriconazole (MIC90s, 0.5 to 2 mg/liter) against 246 Aspergillus spp.
isolates. Aspergillus fumigatus isolates exhibited a wild-type (WT) phenotype for the
mold-active triazoles, including itraconazole (87.0% WT) and voriconazole (96.4% WT).
Manogepix was highly active against uncommon species of Candida, non-Candida
yeasts, and rare molds, including 11 isolates of Candida auris (MIC50/MIC90, 0.004/
0.015 mg/liter) and 12 isolates of Scedosporium spp. (MEC50/MEC90, 0.06/0.12 mg/liter).
Additional studies are in progress to evaluate the clinical utility of the manogepix pro-
drug fosmanogepix in difficult-to-treat resistant fungal infections.
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Invasive fungal infections (IFI) due to opportunistic fungal pathogens pose a major
stumbling block to the successful implementation of advances in medical therapy (1,

2). Whereas the majority of IFI and associated deaths are due to Aspergillus, Candida,
and Cryptococcus species, other less common opportunistic yeasts and molds increas-
ingly are emerging as deadly antifungal resistant pathogens (1–6). Accordingly, new
antifungal therapies that act through novel mechanisms of action are needed to con-
trol the high mortality of IFIs and combat the emergence of resistance to existing treat-
ment regimens. Several antifungal agents with the potential to address the emergence
of multidrug-resistant yeasts and molds (i.e., resistant to at least 2 different classes of
antifungal agents) are presently in clinical development (7–13).

Among the more recent, systemically active antifungal agents, manogepix (formerly
APX001A and E1210) is notable for its unique mechanism of action. Manogepix targets
the highly conserved fungal enzyme Gwt1 (14). Inhibiting Gwt1 blocks the inositol acy-
lation step during the synthesis of glycosylphosphatidylinositol-anchored proteins of
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the fungal cell wall. This inhibition compromises cell wall integrity, biofilm formation,
and germ tube formation, resulting in severe fungal growth defects (14). Manogepix
demonstrates broad-spectrum antifungal activity against common species of Candida,
Cryptococcus neoformans, Cryptococcus gattii, Aspergillus spp., multidrug-resistant
strains such as Candida auris, and rare molds, which are often difficult to treat due to
their inherent resistance to most antifungals, including Fusarium spp., Scedosporium
spp., and Lomentospora (Scedosporium) prolificans (12, 13, 15–22).

In the present study, we utilized SENTRY Antimicrobial Surveillance Program data
from 2020 to examine the in vitro activity of manogepix as well as its comparators, ani-
dulafungin, micafungin, fluconazole, itraconazole, posaconazole, voriconazole, and
amphotericin B, against 1,435 contemporary clinical fungal isolates from bloodstream
infections (BSIs), respiratory tract infections (RTIs), skin and skin structure infections
(SSSIs), urinary tract infections (UTIs), intra-abdominal infections (IAIs), and other infec-
tion types. The fungal isolates were collected from 73 medical centers located in North
America (568 isolates from 29 medical centers), Europe (566 isolates from 28 medical
centers), the Asia-Pacific region (182 isolates from 10 medical centers), and Latin
America (119 isolates from 6 medical centers). These data expand on our previous
reports from 2017 (20) and 2018–2019 (12), allowing examination of temporal trends
in fungal species distribution and antifungal susceptibility results as well as providing a
robust MIC database for eventual determination of both epidemiological cutoff values
(ECVs) and clinical breakpoints (CBPs) for manogepix and other antifungal agents and
a variety of fungal species.

RESULTS

The frequency distributions and cumulative percent inhibition data for manogepix
against the species and organism groups tested are listed in Table 1. All fungal species
containing $10 isolates were analyzed separately. Manogepix and comparator agent
susceptibility results for fungal species with fewer than 10 isolates are listed in Tables
S1 and S2 in the supplemental material.

Of the 1,435 fungal clinical isolates tested, 1,072 (74.7%) were Candida spp.; 53
(3.7%) were non-Candida yeasts, including 27 Cryptococcus neoformans var. grubii
(1.9%); 246 (17.1%) were Aspergillus spp.; and 64 (4.5%) were other molds (Table 1;
Tables S1 and S2). The geographic distribution of fungal isolates was 39.6% from North
America, 39.4% from Europe, 12.7% from the Asia-Pacific region, and 8.3% from Latin
America (data not shown).

Activity of manogepix against Candida spp. and Cryptococcus neoformans var.
grubii isolates. Among the 10 species of Candida in Table 1, manogepix was most
active against Candida albicans and Candida dubliniensis (MIC90, 0.008 mg/liter) and
least active against Candida kefyr (MIC90, 1 mg/liter) and Candida krusei (MIC90, .8 mg/
liter). C. krusei (MIC50/MIC90, .8/>8 mg/liter) is considered intrinsically resistant to man-
ogepix (13). All C. auris isolates (n = 11) were inhibited by #0.03 mg/liter manogepix.
Overall, 93.8% of the 1,072 Candida spp. isolates tested were inhibited by #0.06 mg/li-
ter manogepix and 95.5% were inhibited by #0.25 mg/liter manogepix (Table 1).
Manogepix had an MIC distribution spanning six 2-fold dilution steps (range, 0.03 to
1 mg/liter) and did not have a clear mode against 27 C. neoformans var. grubii isolates
(MIC50/MIC90, 0.5/1 mg/liter; 100.0% inhibited at #1 mg/liter) (Table 1).

Determination of the wild-type manogepix MIC distribution for Candida spp.
The upper limit of the manogepix wild-type MIC distribution (WT-UL, two 2-fold dilutions
higher than the modal MIC value) for each species was determined by compiling the data
from the 2017 (20), 2018–2019 (12), and 2020 (present study) SENTRY Surveillance
Program surveys to provide a robust set of values representing the WT MIC distributions
as determined by CLSI methods (Table 2). Importantly, the modal manogepix MIC value
for each species was within 1 dilution step, as were the MIC50/MIC90 values, irrespective of
the individual survey. The similarity of these values ensured comparable MIC distributions
across the three surveys. The WT-UL cutoff value was determined for each species by using
the combined 2017 to 2020 MIC distribution (Table 2).
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The upper limit of the WT MIC distribution for manogepix was 0.015 mg/liter for C.
dubliniensis (99.4% WT; 153/154 isolates), 0.03 mg/liter for C. albicans (99.9% WT; 1,351/
1,352 isolates), 0.03 mg/liter for Candida parapsilosis (98.8% WT; 747/756 isolates),
0.06 mg/liter for Candida tropicalis (99.6% WT; 513/515 isolates), 0.25 mg/liter for
Candida glabrata (100.0% WT; 1,039/1,039 isolates), 0.12 mg/liter for Candida lusitaniae
(97.2% WT; 104/107 isolates), and 1 mg/liter for C. kefyr (100.0% WT; 51/51 isolates)
(Table 2). The WT-UL MIC for 23 C. auris isolates could not be determined due to the
lack of a clear mode (data not shown).

In vitro activity of manogepix and comparators against Candida spp. and
Cryptococcus neoformans var. grubii isolates. Of the 350 C. albicans isolates tested,
all but 1 were inhibited by #0.03 mg/liter manogepix (99.7% WT; MIC50/MIC90,

TABLE 2 Summary of manogepix surveillance data as determined by CLSI broth microdilution methods for Candida spp. and Aspergillus spp.
in this and prior studies

Organism Yr(s) n MIC50/MIC90 (mg/liter) Mode (mg/liter) WT-UL (mg/liter) Reference
C. albicans 2017 414 0.008/0.008 0.008 0.03 (100.0%)a Pfaller et al. (20)

2018–2019 588 0.004/0.008 0.004/0.008b 0.03 (100.0%) Pfaller et al. (12)
2020 350 0.004/0.008 0.004/0.008b 0.03 (99.7%) This study
2017–2020 1,352 0.004/0.008 0.004/0.008b 0.03 (99.9%) Overall

C. glabrata 2017 321 0.06/0.12 0.06 0.25 (100.0%) Pfaller et al. (20)
2018–2019 460 0.03/0.06 0.03 0.12 (100.0%) Pfaller et al. (12)
2020 258 0.03/0.06 0.03 0.12 (100.0%) This study
2017–2020 1,039 0.03/0.06 0.03/0.06b 0.25 (100.0%) Overall

C. parapsilosis 2017 270 0.008/0.015 0.008 0.03 (98.9%) Pfaller et al. (20)
2018–2019 321 0.008/0.015 0.008 0.03 (98.4%) Pfaller et al. (12)
2020 165 0.008/0.015 0.008 0.03 (99.4%) This study
2017–2020 756 0.008/0.015 0.008 0.03 (98.8%) Overall

C. tropicalis 2017 151 0.015/0.03 0.015 0.06 (100.0%) Pfaller et al. (20)
2018–2019 225 0.015/0.015 0.008/0.015b 0.06 (99.6%) Pfaller et al. (12)
2020 139 0.015/0.015 0.015 0.06 (99.3%) This study
2017–2020 515 0.015/0.03 0.015 0.06 (99.6%) Overall

C. dubliniensis 2017 49 0.004/0.008 0.004 0.015 (100.0%) Pfaller et al. (20)
2018–2019 65 0.004/0.008 0.004 0.015 (98.5%) Pfaller et al. (12)
2020 40 0.004/0.008 0.004 0.008 (100.0%) This study
2017–2020 154 0.004/0.008 0.004 0.015 (99.4%) Overall

C. lusitaniae 2017 39 0.03/0.12 NMc NAd Pfaller et al. (20)
2018–2019 52 0.03/0.06 0.03 0.12 (98.1%) Pfaller et al. (12)
2020 16 0.03/0.06 0.03 0.06 (100.0%) This study
2017–2020 107 0.03/0.12 0.03 0.12 (97.2%) Overall

C. kefyr 2017 13 0.12/0.5 0.06/0.12b 0.5 (100.0%) Pfaller et al. (20)
2018–2019 28 0.12/0.25 0.12/0.25b 0.5 (100.0%) Pfaller et al. (12)
2020 10 0.25/1 0.25 1 (100.0%) This study
2017–2020 51 0.12/0.5 0.12/0.25b 1 (100.0%) Overall

A. fumigatus 2017 182 0.015/0.03 0.015 0.06 (100.0%) Pfaller et al. (20)
2018–2019 397 0.015/0.03 0.015 0.06 (100.0%) Pfaller et al. (12)
2020 169 0.015/0.03 0.015 0.06 (100.0%) This study
2017–2020 748 0.015/0.03 0.015 0.06 (100.0%) Overall

Aspergillus section Flavi 2017 18 0.015/0.03 0.03 0.06 (100.0%) Pfaller et al. (20)
2018–2019 73 0.015/0.03 0.015 0.06 (100.0%) Pfaller et al. (12)
2020 24 0.015/0.06 0.015 0.06 (100.0%) This study
2017–2020 115 0.015/0.03 0.015 0.06 (100.0%) Overall

Aspergillus section Nigri 2017 23 #0.008/0.015 #0.008 0.03 (100.0%) Pfaller et al. (20)
2018–2019 67 0.008/0.015 0.015 0.03 (100.0%) Pfaller et al. (12)
2020 27 0.008/0.015 0.008 0.03 (100.0%) This study
2017–2020 117 #0.008/0.015 #0.008 0.03 (100.0%) Overall

Aspergillus section Terrei 2017 10 0.015/0.03 0.015 0.03 (100.0%) Pfaller et al. (20)
2018–2019 19 0.008/0.03 0.008 0.03 (100.0%) Pfaller et al. (12)
2020 14 0.008/0.015 0.008 0.03 (100.0%) This study
2017–2020 43 0.015/0.03 0.015 0.03 (100.0%) Overall

aPercent of isolates encompassed by WT-UL.
bBimodal MIC distribution.
cNM, no mode.
dNA, not applicable.
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0.004/0.008 mg/liter), and echinocandin susceptibility was 99.7% for micafungin and
100.0% for anidulafungin using current CLSI M27M44S (23) breakpoint interpretive cri-
teria (Tables 1 and 3). All but 3 C. albicans isolates were susceptible to fluconazole
(99.1%), 99.7% were susceptible to voriconazole, and 97.4% were WT (MIC, #0.06 mg/
liter) to posaconazole (Table 3). A single C. albicans isolate for which the echinocandin
MIC values were greater than the ECV was screened for the presence of fks hot spot
(HS) mutations (Table 4). This isolate from Taiwan displayed amino acid alteration fks1
HS1 S645P (an S-to-P change at position 645) (Table 4). Its corresponding manogepix
MIC value was 0.008 mg/liter (Table 4).

All (100%) of the 258 C. glabrata isolates tested were inhibited by manogepix
(MIC50/MIC90, 0.03/0.06 mg/liter) at the WT-UL MIC cutoff value of #0.25 mg/liter
(Tables 1 to 3). Micafungin (MIC50/MIC90, 0.015/0.03 mg/liter) and anidulafungin (MIC50/
MIC90, 0.12/0.12 mg/liter) susceptibilities were 97.3% and 96.5%, respectively, at the
current CLSI breakpoints for these compounds (23). Seven C. glabrata isolates dis-
played echinocandin MIC values greater than the CLSI ECV and were screened for the
presence of fks HS mutations. Of these isolates, 6 harbored amino acid alterations
(Table 4). The most common substitution was fks2 HS1 S663P (3 isolates). Two isolates
carried mutations in fks1 (HS1; D632E or S629P), and one carried a mutation in fks2
(HS1; R665G). The 6 echinocandin nonsusceptible isolates with fks mutations, all of
which were resistant (R) to micafungin, were from the United States and represented
5.3% of North American C. glabrata isolates (Table 4). Manogepix MIC values against
these echinocandin-R C. glabrata isolates ranged from 0.008 to 0.12 mg/liter (all #WT-
UL) (Table 4). Resistance of C. glabrata isolates to fluconazole was 5.0% (Table 3). A
total of 3.9% and 9.3% of C. glabrata isolates were non-wild type (NWT) to posacona-
zole and voriconazole, respectively, using the ECVs published by CLSI (24) (Table 3).

Manogepix (MIC50/MIC90, 0.008/0.015 mg/liter) inhibited 99.4% of 165 C. parapsilosis iso-
lates at the WT-UL of #0.03 mg/liter (Tables 1 to 3). Micafungin (MIC50/MIC90, 1/1 mg/liter)
and anidulafungin (MIC50/MIC90, 2/2 mg/liter) susceptibilities were 100.0% and 92.1%,
respectively, at the current CLSI C. parapsilosis breakpoints for these compounds (Table 3).
A total of 7.9% of C. parapsilosis isolates were intermediate in susceptibility to anidulafungin
(MIC, 4 mg/liter) (Table 3). Susceptibility of C. parapsilosis isolates to fluconazole and vorico-
nazole was 92.1% and 94.5%, respectively, using current CLSI breakpoint interpretive criteria
(Table 3). All (100.0%) C. parapsilosis isolates were WT to posaconazole (Table 3). The other
member of the C. parapsilosis species complex (SC), Candida orthopsilosis, tended to be
slightly more susceptible than C. parapsilosis sensu stricto to the echinocandins and was
equally susceptible to manogepix and less susceptible to the azoles (Table 3).

Manogepix (MIC50/MIC90, 0.015/0.015 mg/liter), anidulafungin (MIC50/MIC90, 0.03/
0.06 mg/liter; 100.0% susceptible), and micafungin (MIC50/MIC90, 0.03/0.03 mg/liter; 100.0%
susceptible) displayed comparable activities against 139 C. tropicalis isolates (Tables 1 and
3). All but 1 C. tropicalis isolate was WT for manogepix (WT-UL, 0.06 mg/liter; 99.3% WT)
(Table 3). Susceptibility of C. tropicalis isolates to fluconazole and voriconazole were 95.0%
and 95.7%, respectively, according to current CLSI breakpoint interpretive criteria.

Manogepix MIC50/MIC90 values were .8/>8 mg/liter against the 45 C. krusei isolates
tested (Table 1). All (100%) C. krusei isolates were susceptible to anidulafungin and
micafungin, 97.8% were susceptible to voriconazole, and all were WT to posaconazole
(data not shown).

By comparison with the common species of Candida noted above, manogepix was
more active against C. dubliniensis (MIC50/MIC90, 0.004/0.008 mg/liter; 100.0% WT), C. lusita-
niae (MIC50/MIC90, 0.03/0.06 mg/liter; 100.0% WT), and C. auris (MIC50/MIC90, 0.004/
0.015 mg/liter) isolates and less active against C. kefyr (MIC50/MIC90, 0.25/1 mg/liter; 100.0%
WT) isolates (Tables 1 and 3). All isolates of C. dubliniensis and C. lusitaniae were classified as
WT to anidulafungin (CLSI ECV, 0.12 and 1 mg/liter, respectively) and micafungin (CLSI ECV,
0.12 and 0.5 mg/liter, respectively) (Table 3). One (6.2%) C. lusitaniae isolate and no (0.0%)
C. dubliniensis isolates were NWT to fluconazole (Table 3). The 11 C. auris isolates consisted
of 3 isolates from the United States (2 from New York and 1 from Texas), 5 isolates from
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TABLE 3 In vitro activity of manogepix and comparator agents tested against Candida spp. and C. neoformans isolates

Organism (no. tested) and antifungal agent

MIC data (mg/liter) CLSI CBPa CLSI ECVa

MIC50 MIC90 Range % S % I/SDD % R %WT % NWT
C. albicans (350)
Manogepix 0.004 0.008 #0.002–0.12 99.7 0.3
Anidulafungin 0.03 0.06 #0.002–0.25 100.0 0.0 0.0 99.7 0.3
Micafungin 0.015 0.015 #0.002–2 99.7 0.0 0.3 99.1 0.9
Fluconazole 0.12 0.25 #0.008–.128 99.1 0.3 0.6b 97.1 2.9
Posaconazole 0.03 0.06 0.004–.8 97.4 2.6
Voriconazole 0.004 0.015 #0.002–.8 99.7 0.0 0.3 98.6 1.4
Amphotericin B 0.5 0.5 0.06–1 100.0 0.0

C. glabrata (258)
Manogepix 0.03 0.06 0.004–0.12 100.0 0.0
Anidulafungin 0.12 0.12 0.03–4 96.5 1.2 2.3 97.7 2.3
Micafungin 0.015 0.03 0.008–4 97.3 0.0 2.7 96.9 3.1
Fluconazole 4 8 0.12–.128 95.0 5.0c 90.3 9.7
Posaconazole 0.5 1 0.12–.8 96.1 3.9
Voriconazole 0.12 0.25 0.015–8 90.7 9.3
Amphotericin B 1 1 0.25–1 100.0 0.0

C. parapsilosis (165)
Manogepix 0.008 0.015 0.004–0.06 99.4 0.6
Anidulafungin 2 2 0.5–4 92.1 7.9 0.0 100.0 0.0
Micafungin 1 1 0.25–2 100.0 0.0 0.0 100.0 0.0
Fluconazole 0.5 2 0.12–128 92.1 0.0 7.9b 92.1 7.9
Posaconazole 0.06 0.12 0.015–0.25 100.0 0.0
Voriconazole 0.008 0.03 #0.002–1 94.5 3.6 1.8 91.5 8.5
Amphotericin B 0.5 1 0.25–1 100.0 0.0

C. tropicalis (139)
Manogepix 0.015 0.015 #0.002–0.12 99.3 0.7
Anidulafungin 0.03 0.06 0.008–0.25 100.0 0.0 0.0 100.0 0.0
Micafungin 0.03 0.03 0.008–0.06 100.0 0.0 0.0 100.0 0.0
Fluconazole 0.5 1 0.06–.128 95.0 1.4 3.6b 94.2 5.8
Posaconazole 0.06 0.12 0.015–.8 94.2 5.8
Voriconazole 0.03 0.06 0.004–.8 95.7 1.4 2.9 95.7 4.3
Amphotericin B 0.5 1 0.25–1 100.0 0.0

C. auris (11)
Manogepix 0.004 0.015 #0.002–0.03
Anidulafungin 0.25 0.25 0.12–0.25 100.0 0.0d

Micafungin 0.12 0.12 0.06–0.12 100.0 0.0d

Fluconazole 32 .128 2–.128 36.4 63.6d

Posaconazole 0.06 0.5 0.03–0.5
Voriconazole 0.12 1 0.015–1
Amphotericin B 1 2 1–2 72.7 27.3d

C. dubliniensis (40)
Manogepix 0.004 0.008 #0.002–0.008 100.0 0.0
Anidulafungin 0.06 0.12 0.015–0.12 100.0 0.0
Micafungin 0.015 0.03 0.008–0.06 100.0 0.0
Fluconazole 0.12 0.25 0.06–0.25 100.0 0.0
Posaconazole 0.03 0.06 0.015–0.06 100.0 0.0
Voriconazole 0.004 0.008 #0.002–0.015
Amphotericin B 0.25 0.5 0.12–1 97.5 2.5

C. kefyr (10)
Manogepix 0.25 1 0.06–1 100.0 0.0
Anidulafungin 0.06 0.12 0.06–0.25 100.0 0.0
Micafungin 0.06 0.12 0.03–0.12 100.0 0.0
Fluconazole 0.5 0.5 0.06–0.5 100.0 0.0
Posaconazole 0.12 0.12 0.06–0.25 100.0 0.0
Voriconazole 0.008 0.008 #0.002–0.015
Amphotericin B 1 1 0.5–1 100.0 0.0

(Continued on next page)
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Greece, and 3 isolates from Latin America (Panama). All C. auris isolates were inhibited by
#0.03 mg/liter manogepix, and all were susceptible to anidulafungin and micafungin using
the CDC tentative MIC breakpoints (Table 3). Of these 11 C. auris isolates, the isolates from
New York and Greece were fluconazole resistant, and those obtained from Panama and
Texas were fluconazole susceptible.

All 27 C. neoformans var. grubii isolates were inhibited by #2 mg/liter manogepix
(MIC50/MIC90, 0.5/1 mg/liter) (Tables 1 and 3). In addition, 100.0% of C. neoformans var.
grubii isolates displayed WT MIC values for voriconazole, fluconazole, and

TABLE 3 (Continued)

Organism (no. tested) and antifungal agent

MIC data (mg/liter) CLSI CBPa CLSI ECVa

MIC50 MIC90 Range % S % I/SDD % R %WT % NWT
C. lusitaniae (16)
Manogepix 0.03 0.06 0.015–0.06 100.0 0.0
Anidulafungin 0.5 1 0.12–1 100.0 0.0
Micafungin 0.12 0.25 0.06–0.25 100.0 0.0
Fluconazole 0.5 1 0.12–4 93.8 6.2
Posaconazole 0.06 0.12 0.03–0.12 87.5 12.5
Voriconazole 0.008 0.015 0.004–0.03
Amphotericin B 0.5 0.5 0.25–1 100.0 0.0e

C. orthopsilosis (12)
Manogepix 0.008 0.03 0.008–0.03
Anidulafungin 0.5 1 0.25–1 100.0 0.0
Micafungin 0.25 0.5 0.12–0.5 100.0 0.0
Fluconazole 0.5 128 0.5–.128 83.3 16.7
Posaconazole 0.06 0.5 0.06–0.5 83.3 16.7
Voriconazole 0.015 4 0.008–8 83.3 16.7
Amphotericin B 0.5 0.5 0.25–0.5 100.0 0.0

Cryptococcus neoformans var. grubii (27)
Manogepix 0.5 1 0.03–1
Anidulafungin .4 .4 .4–.4
Micafungin .4 .4 .4–.4
Fluconazole 4 8 0.5–8 100.0 0.0
Posaconazole 0.12 0.25 0.03–0.25 100.0 0.0
Voriconazole 0.06 0.06 0.008–0.12 100.0 0.0
Amphotericin B 0.5 1 0.5–1 51.9 48.1

aClinical breakpoint (CBP) MIC criteria were those published in CLSI document M27M44S (23) and M38M51S (34). ECV criteria were those published in CLSI document M57S
(24). The WT-UL was used in place of ECV for manogepix (see Table 2).

bIntermediate was interpreted as susceptible/dose dependent.
cNonresistant was interpreted as susceptible/dose dependent.
dBreakpoints for this organism originated from the CDC tentative MIC breakpoints published at https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html.
eCandida lusitaniae is not intrinsically resistant to amphotericin B. However, C. lusitaniaemay develop resistance to amphotericin B in vivo during therapy.

TABLE 4 Summary of FKS alterations detected in Candida sp. isolates as part of the 2020 international surveillance program

Country Organism

MIC (mg/liter)a 1,3-b-D-glucan synthase alteration

Manogepix Anidulafungin Micafungin fks1 HS1 fks1 HS2 fks2 HS1 fks2 HS2
Taiwan C. albicans 0.008 0.25 (S) 2 (R) S645P WTb NTc NT
USA C. glabrata 0.12 1 (R) 0.25 (R) D632E WT WT WT
USA C. glabrata 0.008 0.5 (R) 0.25 (R) WT WT R665G WT
USA C. glabrata 0.03 2 (R) 1 (R) S629P WT WT WT
USA C. glabrata 0.03 1 (R) 0.5 (R) WT WT S663P WT
USA C. glabrata 0.06 0.25 (I) 0.5 (R) WT WT WT WT
USA C. glabrata 0.06 4 (R) 4 (R) WT WT S663P WT
USA C. glabrata 0.06 2 (R) 0.5 (R) WT WT S663P WT
aDetermined according to the CLSI method. Categorical interpretations of susceptible (S), intermediate (I), and resistant (R) followed CLSI breakpoints (CLSI document
M27M44S, 2022 [23]).

bWT, wild type.
cNT, Not tested.
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posaconazole (Table 3). Given that echinocandins are commonly utilized for empirical
therapy, it is notable that Cryptococcus spp. were intrinsically resistant to this class of
agents (Table 3).

In vitro activity of manogepix and comparators against Aspergillus spp. and
Scedosporium spp. isolates and determination of the wild-type manogepix MIC
distribution against Aspergillus spp. The most common Aspergillus species (contain-
ing 10 or more overall isolates) in the 2020 surveillance program that were tested
against manogepix included the following four Aspergillus species complexes, in order
of frequency: A. fumigatus, Aspergillus section Flavi, Aspergillus section Nigri, and
Aspergillus section Terrei. The frequency and cumulative percent inhibition data for
manogepix minimal effective concentration (MEC) values against Aspergillus spp. are
presented in Tables 1 and 2.

Manogepix exhibited potent in vitro activity against all 4 Aspergillus species com-
plexes shown in Table 1, with MEC90 values of 0.015 to 0.06 mg/liter. The WT-UL for
each species was 0.03 mg/liter for Aspergillus section Nigri (100.0% WT) and Aspergillus
section Terrei (100.0% WT) and 0.06 mg/liter for both A. fumigatus (100.0% WT) and
Aspergillus section Flavi (100.0% WT) (Tables 1 and 2). All (100.0%) of the Aspergillus
spp. tested exhibited a WT manogepix phenotype (WT-UL,#0.06 mg/liter) (Table 1).

Manogepix (MEC50/MEC90, 0.015/0.03 mg/liter) and the echinocandin comparators
anidulafungin and micafungin inhibited all 169 A. fumigatus isolates at #0.06 mg/liter
(Table 5). These isolates displayed WT MEC/MIC results of 100.0%, 87.0%, and 96.4% for
manogepix, itraconazole, and voriconazole (91.1% susceptible), respectively (Table 5).
Of A. fumigatus isolates, 95.9% were inhibited by #0.5 mg/liter posaconazole (MIC50/
MIC90, 0.25/0.5 mg/liter) (Table 5). Twenty-two isolates (13.0%) were NWT to itracona-
zole; 6 of these isolates were also NWT to voriconazole (MIC, $2 mg/liter). Of the 22 A.
fumigatus isolates that displayed itraconazole MIC values greater than the CLSI ECV, 11
harbored cyp51A or cyp51B alterations (Table 6). The most common substitutions were
cyp51A TR34/L98H (3 isolates) and cyp51B Q42L (3 isolates). Four A. fumigatus isolates
harbored alterations in cyp51A, including 2 isolates with substitution I242V and 1 iso-
late each with substitutions N248K and G138C. Finally, 1 isolate carried multiple
cyp51A alterations (F46Y, M172V, N248T, D255E, and E427K) (Table 6). The role of the
less frequent alterations in cyp51 in clinical resistance to the azoles is unclear, as sev-
eral have been detected in azole-susceptible isolates. Among the itraconazole NWT iso-
lates with CYP alterations, 6 were from the United States (10.2% of North American A.
fumigatus isolates), 4 were from Europe (4.3% of European A. fumigatus isolates), and 1
was from the Asia-Western Pacific region (6.3% of Asia-Western Pacific isolates) (Table 6).
The manogepix MEC values against the 11 isolates harboring alterations in cyp51A or
cyp51B ranged from 0.008 to 0.06 mg/liter (all,WT-UL) (Table 6).

Manogepix (MEC50/MEC90, 0.015/0.06 mg/liter) inhibited all 24 Aspergillus section
Flavi isolates at #0.06 mg/liter (100.0% WT) (Tables 1 and 5) and displayed similar ac-
tivity as micafungin (MEC50/MEC90, 0.008/0.015 mg/liter) and anidulafungin (MEC50/
MEC90, 0.008/0.015 mg/liter) (Table 5). All (100.0%) Aspergillus section Flavi isolates
were WT to the mold-active azoles (Table 5).

Manogepix (MEC50/MEC90, 0.008/0.015 mg/liter) inhibited all 27 Aspergillus section
Nigri isolates at #0.03 mg/liter (100.0% WT) (Tables 1 and 5) and displayed similar activ-
ity to micafungin (MEC50/MEC90, 0.008/0.03 mg/liter) and anidulafungin (MEC50/MEC90,
0.008/0.015 mg/liter). All but one Aspergillus section Nigri isolate was WT (96.3%) to the
mold-active azoles (Table 5).

Manogepix (MEC50/MEC90, 0.008/0.015 mg/liter) inhibited all 14 Aspergillus section
Terrei isolates at #0.03 mg/liter (100.0% WT) (Tables 1 and 5). This compound displayed
similar activity to micafungin (MEC50/MEC90, 0.008/0.015 mg/liter) and anidulafungin
(MEC50/MEC90, 0.015/0.03 mg/liter). All (100.0%) Aspergillus section Terrei isolates were WT
to the mold-active azoles (Table 5).

Manogepix (MEC50/MEC90, 0.06/0.12 mg/liter; 100.0% inhibited at #0.5 mg/liter)
was the most potent compound tested against a collection of 12 Scedosporium spp.
isolates (Table 5). Corresponding echinocandin (anidulafungin and micafungin) and azole
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(itraconazole, posaconazole, and voriconazole) MIC50/MIC90 values were 4 to.4/>4 mg/liter
and 1 to.8/1 to.8 mg/liter, respectively (Table 5).

In vitro activities of manogepix against rare species of Candida, non-Candida
yeasts, and rare molds. Manogepix MIC and MEC values obtained for 24 other Candida
spp., 26 other yeasts, 12 other Aspergillus spp., and 52 other mold isolates are listed in Table 1
and Tables S1 and S2. Manogepix was active against many uncommon Candida spp. isolates,
including Candida bracarensis (MIC range, 0.004 to 0.008 mg/liter), Candida duobushaemulonii
(MIC, #0.002 mg/liter), Candida fermentati (MIC, 0.03 mg/liter), Candida guilliermondii (MIC
range, 0.004 to 0.015 mg/liter), Candida haemulonii (MIC,#0.002 mg/liter), Candida nivariensis

TABLE 5 In vitro activities of manogepix and comparator antifungal agents tested against Aspergillus spp. and Scedosporium spp.

Organism (no. tested) and antifungal agent

MIC data (mg/liter) CLSI CBPa CLSI ECVb

MIC50 or MEC50 MIC90 or MEC90 Range % S % I/SDD % R %WT % NWT
A. fumigatus (169)
Manogepix 0.015 0.03 0.008–0.06 100.0 0.0
Anidulafungin 0.015 0.06 0.004–0.06
Micafungin 0.008 0.015 #0.002–0.03
Itraconazole 1 2 0.25–.8 87.0 13.0
Posaconazole 0.25 0.5 0.06–8
Voriconazole 0.5 0.5 0.12–8 91.1 5.3 3.6 96.4 3.6
Amphotericin B 1 2 0.5–4 98.8 1.2

Aspergillus section Flavi (24)c

Manogepix 0.015 0.06 0.008–0.06 100.0 0.0
Anidulafungin 0.008 0.015 0.004–0.015
Micafungin 0.008 0.015 #0.002–0.015
Itraconazole 0.5 1 0.5–1 100.0 0.0
Posaconazole 0.5 0.5 0.25–0.5 100.0 0.0
Voriconazole 0.5 1 0.25–1 100.0 0.0
Amphotericin B 2 2 1–.4 95.8 4.2

Aspergillus section Nigri (27)d

Manogepix 0.008 0.015 0.004–0.03 100.0 0.0
Anidulafungin 0.008 0.015 0.004–0.03
Micafungin 0.008 0.03 #0.002–0.03
Itraconazole 1 4 1–8 96.3 3.7
Posaconazole 0.5 1 0.25–1 100.0 0.0
Voriconazole 0.5 2 0.5–2 100.0 0.0
Amphotericin B 0.5 1 0.5–2 100.0 0.0

Aspergillus section Terrei (14)e

Manogepix 0.008 0.015 0.004–0.03 100.0 0.0
Anidulafungin 0.015 0.03 #0.002–0.06
Micafungin 0.008 0.015 0.004–0.015
Itraconazole 0.5 1 0.25–1 100.0 0.0
Posaconazole 0.25 0.5 0.12–0.5 100.0 0.0
Voriconazole 0.5 0.5 0.12–1 100.0 0.0
Amphotericin B 2 4 1–4 100.0 0.0

Scedosporium spp. (12)f

Manogepix 0.06 0.12 0.03–0.5
Anidulafungin 4 .4 4–.4
Micafungin 0.5 .4 0.25–.4
Itraconazole .8 .8 2–.8
Posaconazole .8 .8 1–.8
Voriconazole 1 1 0.25–1
Amphotericin B .4 .4 1–.4

aCLSI breakpoint criteria. Susceptible (S), intermediate/susceptible dose-dependent (I/SDD), resistant (R).
bECV, epidemiological cutoff value; WT, wild type; NWT, non-wild type. The WT-UL was used in place of ECV for manogepix (see Table 2).
cOrganisms (number of isolates) included Aspergillus flavus species complex (22) and A. parasiticus (2).
dOrganisms (number of isolates) included Aspergillus niger (13) and A. niger species complex (14).
eOrganisms (number of isolates) included Aspergillus hortai (1), A. terreus (6), and A. terreus species complex (7).
fOrganisms (number of isolates) included Scedosporium apiospermum/Scedosporium boydii (9) and S. aurantiacum (3).
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(MIC, 0.004 mg/liter), Candida pelliculosa (MIC, #0.002 mg/liter), Candida rugosa (MIC range,
0.008 to 0.03 mg/liter), Candida spencermartinsiae (MIC, 0.008 mg/liter), and Candida utilis
(MIC, #0.002 mg/liter) (Table S1). Manogepix was also active against infrequently encoun-
tered non-Candida yeasts, including Saprochaete clavata (MIC range, 0.03 to 0.06 mg/liter),
Kodamaea ohmeri (MIC, 0.008 mg/liter), Magnusiomyces capitatus (Saprochaete capitata; MIC,
0.015 mg/liter), Rhodotorula mucilaginosa (MIC range, 0.03 to 0.06 mg/liter), Saccharomyces
cerevisiae (MIC range, 0.008 to 0.015 mg/liter), and Yarrowa lipolytica (MIC, 0.03 mg/liter)
(Table S1).

Notably, manogepix was active against many less common and frequently antifungal-
resistant fungi (to azole and/or echinocandin), including Aspergillus nidulans (MEC range,
0.008 to 0.015 mg/liter), Aspergillus sclerotiorum (MEC, 0.015 mg/liter), Aspergillus ustus spe-
cies complex (MEC, 0.008 mg/liter), Aspergillus versicolor (MEC, 0.015 mg/liter), Exophiala
dermatitidis (MEC, #0.002 mg/liter), Fusarium incarnatum-equiseti species complex (MEC,
#0.002 mg/liter), Fusarium solani species complex (MEC range, 0.004 to 0.015 mg/liter),
Gibberella fujikuroi species complex (MEC, 0.008 to 0.015 mg/liter), Lomentospora prolificans
(MEC range, 0.03 to 0.06 mg/liter), Purpureocillium lilacinum (MEC range, #0.002 to
0.008 mg/liter), Paecilomyces variotii (MEC range, 0.004 to 0.008 mg/liter), Penicillium citri-
num (MEC, 0.008 mg/liter), Penicillium onobense (MEC, 0.008 mg/liter), Rasamsonia argilla-
cea species complex (MEC range, #0.002 to 0.004 mg/liter), and Scopulariopsis brevicaulis
(MEC, 0.008 mg/liter). Fungal species with increased MICs to manogepix included Candida
inconspicua (MIC range, 0.5 to 2 mg/liter), Cunninghamella sp. (MEC, 8 mg/liter),
Lichtheimia corymbifera (MEC, 4 mg/liter), Lichtheimia sp. (MEC, 4 mg/liter), Mucor circinel-
loides (MEC range, 0.25 to 1 mg/liter), Mucor indicus (MEC, 1 mg/liter), Rhizopus microsporus
group (MEC range, 2 to .8 mg/liter), and Rhizopus oryzae species complex (MEC range, 4
to.8 mg/liter) (Tables S1 and S2).

DISCUSSION

Recent antifungal surveillance programs have documented the prominent roles of
Aspergillus, Candida, and Cryptococcus as leading IFI pathogens (1, 2, 12, 20, 25).
Although antifungal resistance is a global concern (3, 4), fortunately at present, most
clinical isolates of these pathogens remain susceptible or WT to azoles, echinocandins,
and polyenes (12). This relatively good news is countered by some less common spe-
cies of Candida and Aspergillus (e.g., C. auris and A. lentulus, respectively), non-Candida
and non-Cryptococcus yeasts, and non-Aspergillus molds, many of which express intrin-
sic or acquired resistance to available first-line agents (1–5, 12, 26). Notably, the novel
antifungal manogepix exhibits potent antifungal activity against these fungal patho-
gens (13).

The data presented here expand upon our earlier observations (12, 20) and provide
a robust estimate of the WT MIC and MEC distributions of manogepix for 7 species of
Candida and 4 species of Aspergillus (Table 2). Although multicenter studies involving

TABLE 6 Summary of CYP alterations detected among non-wild-type Aspergillus spp. isolates in the 2020 international surveillance program

Country Organism

MIC data (mg/liter)a CYP alteration(s)

Manogepix Voriconazole Itraconazole Posaconazole CYP51A CYP51B
USA A. fumigatus 0.015 0.5 (WT) 2 (NWT) 0.25 (WT) I242V WT
USA A. fumigatus 0.06 1 (WT) 2 (NWT) 0.5 (WT) WT Q42L
USA A. fumigatus 0.015 0.5 (WT) 2 (NWT) 0.25 (WT) WT Q42L
USA A. fumigatus 0.03 0.5 (WT) 2 (NWT) 0.5 (WT) N248K WT
USA A. fumigatus 0.015 0.5 (WT) 2 (NWT) 0.5 (WT) F46Y, M172V, N248T, D255E, E427K WT
France A. fumigatus 0.06 1 (WT) 4 (NWT) 1 (NWT) WT Q42L
New Zealand A. fumigatus 0.03 8 (NWT) .8 (NWT) 8 (NWT) G138C WT
UK A. fumigatus 0.015 2 (NWT) 4 (NWT) 1 (NWT) L98H, TR34 WT
UK A. fumigatus 0.008 2 (NWT) 4 (NWT) 0.5 (WT) L98H, TR34 WT
UK A. fumigatus 0.008 2 (NWT) 8 (NWT) 1 (NWT) L98H, TR34 WT
USA A. fumigatus 0.015 0.5 (WT) 2 (NWT) 0.25 (WT) I242V WT
aCategorical interpretations of non-wild type (NWT) and wild type (WT) are according to ECVs from CLSI document M57 (24). The ECV for posaconazole was 0.5 mg/liter.
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larger numbers of isolates of each species will be required to establish both ECVs and
clinical breakpoints for manogepix, we suggest that the WT-UL values should be
#0.015 mg/liter for C. dubliniensis (99.4% of 154 isolates), #0.03 mg/liter for C. albicans
(99.9% of 1,352 isolates) and C. parapsilosis (98.8% of 756 isolates), #0.06 mg/liter for
C. tropicalis (99.6% of 515 isolates), #0.12 mg/liter for C. lusitaniae (97.2% of 107 iso-
lates), #0.25 mg/liter for C. glabrata (100.0% of 1,039 isolates), #1 mg/liter for C. kefyr
(100.0% of 51 isolates), #0.03 mg/liter for A. nigri (100.0% of 117 isolates) and A. terreus
(100.0% of 43 isolates), and #0.06 mg/liter for A. fumigatus (100.0% of 748 isolates)
and A. flavus SC (100.0% of 115 isolates) (Table 2). These values are comparable to the
WT-UL values determined for these species and species groups by the Danish nation-
wide surveillance program, which reported manogepix species-specific modal MIC values
obtained with the EUCAST method (8, 15–17). Thus, both CLSI and EUCAST BMD methods
have provided comparable estimates of the in vitro activity of manogepix and docu-
mented the sustained activity of this agent against yeasts and molds over time.

In the 2020 surveillance program, we confirmed and extended our previous findings
regarding the high potency and broad spectrum of manogepix activity against com-
mon species of Candida and Aspergillus (Tables 1 and 2), as well as against uncommon
species of Candida, non-Candida yeasts, rare species of Aspergillus, and other rare
molds (Table 1; see also Tables S1 and S2 in the supplemental material). Given that the
major concerns regarding antifungal resistance center on the echinocandins for
Candida spp. and the triazoles for Aspergillus fumigatus, we utilized whole-genome
sequencing to identify fks mutations in Candida spp. expressing resistance to echino-
candins and cyp51 mutations in A. fumigatus isolates exhibiting resistance to the mold-
active triazoles (Tables 4 and 6). As demonstrated previously, isolates harboring these
important resistance mechanisms were all WT for manogepix (8, 12, 15–17, 20). A
recent study (27) demonstrated that enhanced efflux expression in Candida albicans
and C. parapsilosismutants was responsible for decreased manogepix susceptibility.

This international surveillance study demonstrated and verified the potent in vitro
activity of manogepix against contemporary fungal isolates, including echinocandin-
and azole-resistant strains of Candida and Aspergillus spp. We have expanded the MIC
database for manogepix against a broad range of common and uncommon IFI patho-
gens, and we have shown consistent susceptibility results for manogepix against
Candida and Aspergillus species over time. The broad spectrum of manogepix is note-
worthy for its activity against many less common and often antifungal-resistant yeast
and mold strains. Continued development of the manogepix prodrug (fosmanogepix)
for the treatment of invasive fungal infections, including multidrug-resistant strains, is
warranted.

MATERIALS ANDMETHODS
Organisms. A total of 1,435 nonduplicate fungal clinical isolates were collected in the SENTRY

Surveillance Program during 2020 from 73 medical centers located in North America, Europe, the Asia-
Pacific region, and Latin America. The fungal isolates were recovered from patients with bloodstream
infections (BSIs; n = 693), respiratory tract infections (RTIs; n = 253), skin and skin structure infections
(SSSIs; n = 100), urinary tract infections (UTIs; n = 45), intra-abdominal infections (IAIs; n = 20), and infec-
tions in other sites (n = 324).

Fungal identification methods. Yeast isolates were subcultured on HardyCHROM agar medium
(Hardy Diagnostics, Santa Maria, CA, USA) upon arrival to confirm culture purity for Candida spp. isolates
and submitted to matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-
TOF MS) using the MALDI Biotyper (Bruker Daltonics, Billerica, MA, USA). Any yeast isolates not identified
by this process were identified using sequencing-based methods for the internal transcribed spacer (ITS)
region, 28S ribosomal subunit, or intergenic spacer 1 for Trichosporon spp. (18, 28–30).

Mold isolates were identified by DNA sequencing when an acceptable identification was not
achieved by MALDI-TOF MS. For all isolates, 28S was sequenced and 1 of the following genes was ana-
lyzed: b-tubulin for Aspergillus spp., translation elongation factor (TEF) for Fusarium spp., or ITSs for all
other species of filamentous fungi (18, 28–30).

Nucleotide sequences were analyzed using Lasergene software (DNAStar, Madison, WI, USA) and com-
pared to available sequences using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). TEF sequences were ana-
lyzed using the Fusariummultilocus sequence typing database (https://fusarium.mycobank.org/).

Susceptibility testing. Fungal susceptibility testing was conducted according to broth microdilution
(BMD) methods as described by Clinical and Laboratory Standards Institute (CLSI) documents M27 (31)
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and M38 (32). Manogepix MIC and MEC values were determined visually after incubation at 35°C for
24 h (Candida spp. MIC) or 48 to 72 h (Aspergillus spp. [48-h MEC], other molds [Scedosporium spp. 72-h
MEC], other yeasts [48-h MIC], and C. neoformans [72-h MIC]).

Yeast MIC endpoints were read as the lowest drug concentration that produced a significant
decrease ($50% inhibition) of growth below the control for manogepix (23, 31, 33), fluconazole, posaco-
nazole, voriconazole, and the echinocandins, or the concentration preventing any discernible growth for
amphotericin B (23, 31). Mold MIC endpoints were read as the lowest drug concentration preventing
any discernible growth (amphotericin B, posaconazole, voriconazole, and itraconazole) (32, 34). MEC
endpoints (morphology change from flocculent growth to small, matted colonies) were read for mano-
gepix and the echinocandins (18, 32, 34).

Susceptibility interpretive criteria (CBPs and ECVs, where available) were those published in CLSI
documents M27 (31), M38 (32), M57S (24), M27M44S (23), and M38M51S (34). Breakpoints for C. auris
and amphotericin B, fluconazole, anidulafungin, and micafungin originated from published CDC tenta-
tive MIC breakpoints (https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html).

CBPs and ECVs have not yet been determined for manogepix against any fungal species. For com-
parison, previously published manogepix MIC distribution data from the SENTRY surveillance performed
in 2017 (20) and 2018–2019 (12) plus the present (2020) survey results were employed to generate a
wild-type upper limit (WT-UL; two 2-fold dilutions higher than the modal MIC value of each MIC distribu-
tion). This WT-UL was used as the cutoff value to define wild type (MIC # WT-UL) and non-WT (MIC
.WT-UL) populations for manogepix and each species (12, 15–17, 20).

Quality control (QC) was conducted according to CLSI documents M27 (31) and M38 (32) using
Candida parapsilosis ATCC 22019, Aspergillus flavus ATCC 204304, and Aspergillus fumigatus ATCC MYA-
3626. All MIC and MEC values for manogepix against C. parapsilosis ATCC 22019, A. flavus ATCC 204304,
and A. fumigatus ATCC MYA-3626 were within QC ranges published in CLSI documents M27M44S (23)
and M38M51S (30).

Resistance mechanisms. Candida spp. isolates showing echinocandin MIC values above the ECV as
well as Aspergillus fumigatus isolates displaying azole MIC values above the ECV were subjected to
whole-genome sequencing (35). Total genomic DNA was used as input material for library construction
prepared using the Illumina DNA library construction protocol and index kit (Illumina, San Diego, CA,
USA) following the manufacturer’s instructions. Sequencing was performed on a NextSeq 1000
sequencer (Illumina). Reads were trimmed with Sickle version 1.33 (36) and error corrected using
BayesHammer from SPAdes 3.11.1 (37). Each sample was assembled using a reference-guided assembly
in DNASTAR SeqMan NGen v.16.0.0 (Madison, WI, USA). DNA regions encoding the FKS hot spots in
Candida spp. and CYP regions in A. fumigatus were compared to available sequences in the literature.

Data availability. Data will be made available upon reasonable request.
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