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ABSTRACT Previously, we showed that Enterococcus faecium clade B strains out-
competed health care-associated clade A1 strains in murine gastrointestinal coloni-
zation. Here, parenterally administered piperacillin-tazobactam and ceftriaxone
significantly promoted colonization by clade A1 over clade B strains except that
ceftriaxone, at the dose used, did not favor the least b-lactam-resistant A1 strain.
The advantage that b-lactam administration gives to more highly ampicillin-resist-
ant E. faecium over ampicillin-susceptible strains mirrors what occurs in hospital-
ized patients administered these antibiotics.
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Genome analyses have indicated a split of Enterococcus faecium into 2 clades (clades A
and B), with branching of clade A (1, 2). While clade B is the predominant gut E. fae-

cium clade in humans in the community and is generally antibiotic susceptible, gut coloni-
zation with clade A1 strains, which are more antibiotic resistant, including to vancomycin
and ampicillin (AMP), is very common in hospitalized patients, replacing Enterococcus fae-
calis and clade B strains (1, 2). The different levels of AMP resistance are due, in large part,
to differences in the pbp5 sequence (3, 4) and to different levels of expression of PBP5 (5).

Using a preconditioned gastrointestinal tract (GIT) mouse model, we previously
showed that clade B strains significantly outcompeted clade A strains (6) in GIT coloni-
zation. This provided, experimentally, a basis for the observation that hospital-associ-
ated vancomycin-resistant Enterococcus (VRE) generally decreases and even disappears
once patients are no longer on antibiotics (7–9). Using the same strain pairs, we report
here results of GIT colonization and competition between clade A1 and clade B during
systemic b-lactam administration.

E. faecium strains representing clade A1 (C68A1, TX82A1, and TX16A1) and clade B
(COM15B and E980B), used previously (6), and MICs (per CLSI [10]) are in Table 1. Our
established mouse GIT model and methods were used with preconditioning with gen-
tamicin and clindamycin (6). Piperacillin-tazobactam (TZP) (3.37 mg/kg of body weight,
every 12 h [Q12h]) and ceftriaxone (CRO) (0.5 mg/kg, Q12h) (both from Sigma-Aldrich
Chemicals) were given subcutaneously (s.c.) as in reference 11 for 14 days starting 1 h
postinoculation. Dosing was designed for proof of principle with minimal injection
repeats (11). Approximately 109 CFU/mL (confirmed by subsequently plating) was
given by oral gavage as previously described (6). Cages, animals, and fecal pellets were
handled as in reference 6 under AWC-19-0139 of the University of Texas Health
Science Center at Houston.

Statistical analyses were performed as previously described (6).
Figure 1A shows strain TX82A1 coinoculated with COM15B. Both s.c. CRO (top left)

and s.c. TZP (top right) promoted a highly significant increase in the percentage of the
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TX82A1 versus COM15B at all time points despite less TX82A1 (10 to 22%) in the inocu-
lated mixture. Most time points had no colonies of clade B recovered except for TZP at
14 days.

Similarly, for C68A1 coinoculated with COM15B, CRO (Fig. 1B, top left) resulted in
highly significantly more of the clade A1 strain at 2 days, 4 days, and 7 days, despite
having a lower percentage of C68A1 in the inoculum (46 to 48%). At 14 days, CRO
resulted in a nonsignificant (NS) increase in C68A1. TZP (Fig. 1B, top right) also resulted
in a highly significant increase in C68A1 versus COM15B at day 2, 4, and 14, while the
difference at day 7 was NS.

Figure 1C shows strain TX16A1 (the least-b-lactam-resistant A1 strain) (Table 1) coino-
culated with E980B (the more-b-lactam-resistant strain of the clade B strains used).
Unlike the pairs above, CRO (top left) resulted in a significantly higher percentage of the
commensal strain E980B on day 2. At 4 days, 7 days, and 14 days, the differences were
nonsignificant. However, TZP (top right) resulted in highly significantly more TX16A1 than
E980B at all time points, similar to results above with other strain pairs.

Many factors influence a bacterium’s ability to successfully colonize the GIT. These
include various interactions with host components/host products, interactions with
the cohabitating GI flora/its products, as well as the ability to utilize or withstand sub-
stances ingested, such as antibiotics (2, 7, 12).

Our previous study found that monoinoculation of E. faecium strains of clade
A1, A2, or B into mice pretreated with antibiotics, but with no antibiotics after
inoculation, resulted in the anticipated high density of each strain (109 CFU/g) on
day 2, presumably related to a decrease/elimination of much of the flora by the
preconditioning antibiotics. There was then a decrease to circa 104 CFU/g by day
14, reminiscent of reports that clade A1 VRE decrease or disappear once patients
are off antibiotics (13), likely due to an effect of the return of other bacteria (7, 14).
We also found that, when inoculated together without continuing antibiotics,
clade B strains gradually outnumbered clade A strains after day 2 for most strain
pairs, indicating that clade A1 strains were less “fit” than clade B E. faecium under
the conditions used.

Here, we investigated the effect of the s.c. administration of two b-lactams on GIT
colonization after coinoculation of strain pairs of E. faecium. As before, a high density
(109 CFU/g) of E. faecium was achieved at day 2 by the antibiotic preconditioning.
Unlike our previous study, however, under the continued presence of s.c. CRO or TZP,
this high density was maintained through day 14, likely related to the continuing sup-
pression of the normal GIT flora.

CRO lacks clinically relevant antienterococcal activity, but its primary excretion is
into human bile, resulting in very high concentrations when given parenterally (15–
17), and is known to support persistently high levels of stool VRE in mice. In the current
study, we found that the more-b-lactam-resistant (Table 1) strains C68A1 and TX82A1
significantly outcompeted the more-susceptible community-associated E. faecium
COM15B at 7/8 time points. The fold differences in CRO MICs between TX82A1 and
COM15B and between C68A1 and COM15B are 4- and .8-fold, respectively. Although

TABLE 1 In vitroMICs for E. faecium strains

Bacterial strain and description

MIC (mg/mL)a

AMP CRO TZP
E. faecium TX82 AMPr, ERYr erm(B), TETr, VANr 64 512 256
E. faecium C68 AMPr, LZDns, TETr, VANr 128 .1,024 512
E. faecium TX16 ERYr erm(B), TETr 8–16 512 64
E. faecium E980 0.75–1 256 16
E. faecium COM15 0.12–0.19 128 4
aCLSI breakpoints (10) are as follows: CLSI breakpoints for enterococci are#8mg/mL (susceptible) and$16mg/
mL (resistant) with AMP results used to predict susceptibility to piperacillin-tazobactam. There are no CLSI
breakpoints for E. faecium.
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FIG 1 Mouse gastrointestinal tract (GIT) colonization by E. faecium clade A1 versus clade B strains in a mixed inoculation
(1:1) competition assay; shown are the percentages (%) of total E. faecium CFU of clade A1 versus that of clade B strains
in the inoculum mix and from fecal pellets recovered 2, 4, 7, and 14 days after oral inoculation. The horizontal lines
indicate the means. A paired t test was used to calculate P values for the percentage of bacteria recovered in the fecal
pellets versus that of the inoculum mix. The total E. faecium CFU per milliliter (inoculum) or CFU per gram (pellets) is
given below the day. (A) Top left panel shows the effect of s.c. CRO administration (n = 6) after inoculation of a mix of
strains TX82A1 and Com15B. Top right panel shows the effect of s.c. TZP administration (n = 4) after oral inoculation of
mice with the same mixture. Solid red circles represent TX82A1, and solid blue triangles represent Com15B. (B) Top left
panel shows the effect of s.c. CRO administration (n = 6) after inoculation of a mix of strains C68A1 and Com15B. Top right
panel shows the effect of s.c. TZP administration (n = 4) after oral inoculation of mice with the same mixture. Solid red
circles represent C68A1, and solid blue triangles represent Com15B. (C) Top left panel shows results with s.c. CRO
administration (n = 6) after inoculation of a mix of strains TX16A1 versus E980B. Top right panel shows the effect of s.c.
TZP antibiotic treatment (n = 4) after inoculation of a mix of the same strains. Solid red circles represent TX16A1, and solid
blue triangles represent E980B.
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we do not know the CRO concentrations in the gut, our results indicate that there was
sufficient CRO not only to promote a high density of E. faecium but also to favor the
more-b-lactam-resistant A1 strains over the clade B strain, a result opposite to our ear-
lier observations without b-lactam use.

In contrast, when the least b-lactam resistant (Table 1) of the A1 strains, TX16A1, was
paired with E980B, a clade B strain with higher b-lactam MICs then COM15B used above,
parenteral CRO favored E980B over TX16A1 at day 2 and at no time favored the A1 strain,
unlike what was seen with other strain pairs. While MICs are an imprecise measure of
susceptibility, the smaller difference in CRO MICs (2-fold) between these two strains ver-
sus those for the other strain pairs (4- and.8-fold) supports the concept that the degree
of resistance would likely be important in determining a selective advantage.

For TZP, although some is secreted into the bile (1,125.3/13.9 mg/mL) (17–22), its pri-
mary excretion is via the kidneys; 68% and 80% of the unchanged piperacillin and tazobac-
tam, respectively, of the administered dose gets excreted in the urine (23). Conversely, it is
more potent than CRO against enterococci (Table 1). We noted that there was a bigger dif-
ference in TZP MICs (Table 1) between the A1 and B strain pairs (Fig. 1A to C, 64-fold, 128-
fold, and 4-fold, respectively) than for CRO MICs. Here, with all 3 strain pairs, TZP conferred
a highly significant selective advantage to the A1 versus the clade B strains (P , 0.005) at
11/12 time points. This indicates that, under these conditions, enough TZP gets into the
GIT to sustain a high density of E. faecium as well as to select for the more-TZP-resistant E.
faecium strain (the A1 strain) in each pair. Additionally, Fig. 1B data (day 14) show the nar-
rowing of the colonization differences between clade A1 and clade B strains (left), which
could be due to other transmissible genetic factors, e.g., hyaluronidaseEfm, that promote
colonization of the mouse GI tract (24) and were not studied.

As was pointed out above, the GIT concentrations of TZP and CRO in this study are
not known; however, published literature in mouse model has documented these lev-
els (25, 26). Further, few if any recent hospital-associated clade A1 strains display the
low b-lactam resistance (e.g., AMP MIC of 8 to 16mg/mL) seen with TX16A1, a strain iso-
lated in 1992. Thus, the difference in the effect of CRO and TZP on the outcome of
competition between this clade A1 strain and normal flora clade B strains should not
be extrapolated to humans or to current isolates.

In summary, we showed conditional predominance of clade A1 E. faecium strains over
clade B strains in an in vivo competition model for mouse GIT colonization at 18/24 time
points, with the “condition” being the parenteral administration of a b-lactam; predomi-
nance also appeared to correlate with the degree of b-lactam resistance. These results are
consistent with the observation that AMP-resistant VRE (i.e., clade A1 E. faecium) can
become the predominant flora in patients during hospitalization and receipt of antibiotics
(27, 28), which typically includes a b-lactam, helping the more resistant E. faecium clade A1
strains overcome their relative lack of fitness when present with clade B strains (6) in the ab-
sence of antibiotics.
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