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Hepatic Acat2 overexpression promotes systemic cholesterol
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Abstract
Aims/hypothesis Acetyl coenzyme A acetyltransferase (ACAT), also known as acetoacetyl-CoA thiolase, catalyses the forma-
tion of acetoacetyl-CoA from acetyl-CoA and forms part of the isoprenoid biosynthesis pathway. Thus, ACAT plays a central
role in cholesterol metabolism in a variety of cells. Here, we aimed to assess the effect of hepatic Acat2 overexpression on
cholesterol metabolism and systemic energy metabolism.
Methods We generated liver-targeted adeno-associated virus 9 (AAV9) to achieve hepatic Acat2 overexpression in mice. Mice
were injected with AAV9 through the tail vein and subjected to morphological, physiological (body composition, indirect
calorimetry, treadmill, GTT, blood biochemistry, cardiac ultrasonography and ECG), histochemical, gene expression and
metabolomic analysis under normal diet or feeding with high-fat diet to investigate the role of ACAT2 in the liver.
Results Hepatic Acat2 overexpression reduced body weight and total fat mass, elevated the metabolic rate, improved glucose
tolerance and lowered the serum cholesterol level of mice. In addition, the overexpression of Acat2 inhibited fatty acid, glucose
and ketonemetabolic pathways but promoted cholesterol metabolism and changed the bile acid pool and composition of the liver.
Hepatic Acat2 overexpression also decreased the size of white adipocytes and promoted lipid metabolism in white adipose tissue.
Furthermore, hepatic Acat2 overexpression protected mice from high-fat-diet-induced weight gain and metabolic defects
Conclusions/interpretation Our study identifies an essential role for ACAT2 in cholesterol metabolism and systemic energy
expenditure and provides key insights into the metabolic benefits of hepatic Acat2 overexpression. Thus, adenoviral Acat2
overexpression in the liver may be a potential therapeutic tool in the treatment of obesity and hypercholesterolaemia.
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AAV Adeno-associated virus
ACAT Acetyl-CoA acetyltransferase
ALB Albumin
ALP Alkaline phosphatase
ALT Alanine aminotransferase
AST Aspartate aminotransferase
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eWAT Epididymal WAT
FDA Food and Drug Administration
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HFD High-fat diet
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iWAT Inguinal WAT
LVID Left ventricular internal diameter
LVPW Left ventricular posterior wall
RER Respiratory exchange ratio
Tbg Thyroxine-binding globulin
TP Total protein
TG Triglyceride
WAT White adipose tissue
WT Wild-type

Introduction

The increasing prevalence of obesity and its associated risks of
metabolic diseases and CVD poses a formidable threat to
human health [1]. Hypercholesterolaemia is one of the most
important risk factors for CVD and is of great concern to the
public [2, 3]. Cholesterol is a key component of cell membrane
bilayers in higher eukaryotes, and arises from endogenous
cholesterol biosynthesis or internalisation of exogenous sources
of cholesterol in the form of lipoprotein-cholesterol [4, 5].
Besides its function in maintaining membrane permeability
and fluidity, cholesterol modulates functions of membrane
proteins and participates in diverse membrane trafficking and
transmembrane signalling processes [3, 6, 7]. The de novo
synthesis of cholesterol from acetyl-CoA involves multiple-
stepped reactions through the mevalonate pathway, with
cholesterol being subsequently fatty acylated to form
cholesteryl esters or oxidised to form oxysterols in all cell types

or to form bile acids and steroid hormones in hepatocytes and
steroidogenic cells, respectively [8–10]. These metabolites also
play important biological roles either as signal transducers or
solubilisers of other lipids [11–13]. Emerging experimental and
human evidence has linked altered hepatic cholesterol homeo-
stasis to hypercholesterolaemia and the pathogenesis of CVD
[14]. Thus, understanding and targeting cholesterol metabolism
in the liver will help develop therapeutical strategies to over-
come metabolic disorders and CVD that are associated with
hypercholesterolaemia.

Research efforts have been directed towards identifying
targets for the treatment of hypercholesterolaemia. Acetyl-
CoA acetyltransferase (ACAT), also known as acetoacetyl-
CoA thiolase, catalyses the condensation of two molecules
of acetyl-CoA to acetoacetyl-CoA, which is the first step in
cholesterol biosynthesis [15]. Two ACATs have been identi-
fied in humans: cytosolic acetoacetyl-CoA thiolase (encoded
by ACAT2 gene) and mitochondrial acetoacetyl-CoA thiolase
(T2, encoded by ACAT1 gene) [16]. T2, also known as β-
ketothiolase, catalyses the synthesis and degradation of ketone
bodies [17]. Missense ACAT1 variants that cause T2 efficien-
cy have been extensively investigated in human diseases
[18–20]. However, no genetic approaches have been made
to assess the role of ACAT2 in cholesterol homeostasis
in vivo.

The preclinical and clinical successes achieved with adeno-
associated virus (AAV)-mediated delivery of gene therapies
in vivo have helped AAV gain popularity and become the
leading platform as an ideal therapeutic vector [21]. Two
AAV-based therapeutic agents have been approved by the
European Medicines Agency (EMA) and US Food and Drug
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Administration (FDA). Prominent strategies have also been
developed to better confine gene expression to the desired
compartment by using tissue- or cell-type-specific promoters
[22], including liver-specific gene editing driven by the
thyroxine-binding globulin (Tbg) promoter [23, 24]. In the
present study, we employed AVV9-mediated hepatic Acat2
overexpression in mice to access the physiological roles of
ACAT2 gain-of-function in liver.

Methods

For detailed methods, please refer to the electronic supple-
mentary material (ESM) Methods.

Animal care Experimental mice used in this study all were of
C57BL/6N background and were bred and housed in the animal
facility of CAM-SU (Suzhou, China) with free access to water
and standard rodent chow food or high-fat diet (HFD; D12451;
Research Diets, USA). Mouse maintenance and experimental
use were performed according to protocols approved by the
CAM-SU Animal Care and Use Committee. Mouse phenotyp-
ing experimentswere performed by randomly pickingmicewith-
out noting the exact mouse ear-tag number.

AAV9 and tail-vein injection The coding sequence of Acat2
was retrieved from NCBI (NM_009338) and cloned into
GV599 vector (TBGp-MCS-EGFP-3Flag-SV40 PolyA,
liver-specific expression driven by a mouse Tbg promoter).
The recombinant AAV9 was produced in AAV-293 cells and
randomly injected into the tail vein of 8-week-old C57BL/6N
mice after purification.

Indirect calorimetry and body composition measurement The

oxygen consumption (V̇O2 ) and carbon dioxide production

(V̇CO2 ) of the mice were measured by using an indirect
calorimetry system (Oxymax; Columbus Instruments, USA).
Total body fat and lean mass in live mice were measured
without anaesthesia by using a Minispec LF50 body compo-
sition analyser (Bruker, Germany) located in the Small
Animal Facility of CAM-SU.

Treadmill The V̇O2 and V̇CO2 of mice subjected to treadmill
were measured by using a treadmill with indirect calorimetry
meter (Oxymax, Columbus Instruments).

GTT For theGTT,micewere given an i.p. injection of 100mg/ml
D-glucose (2 g/kg body weight for mice on chow diet) after
overnight fasting for 14 h. Tail blood glucose concentrations

were measured by a glucometer (Accu-Chek Active; Roche,
Switzerland) 15, 30, 60 and 120 min after injection. In the test,
mice were caged with blinded cage number in random order.

Cardiac ultrasonography and ECG Cardiac ultrasonography
was performed using an ultrasound platform incorporated
with a probe for mice (VINNO 6, VINNO, China). For
ECG, mice were gently removed from their cages and trans-
ferred into a ECGenie recording system (Mouse Specifics,
USA), which was sized comfortably to accommodate adult
mice. Complete results are showed in ESM Tables 1 and 2.

Blood biochemistry Blood biochemistry was examined using
a clinical chemistry analyser (Hitachi 7100; Hitachi, Japan).
Complete results are shown in ESM Table 3.

H&E staining Adipose tissues and liver from the control and
AAV9-Acat2 mice were fixed in 4% (wt/vol.) paraformalde-
hyde for 24 h at room temperature. Then the tissues were
embedded in paraffin, blocked and cut at 6 mm. For H&E
staining, the sections were deparaffinised, rehydrated and the
nuclei stained with haematoxylin for 15 min. Sections were
then rinsed in running tap water for 3 min before being stained
with eosin for 3 min, then dehydrated and mounted. Images
were captured using a Leica DM 6000B fluorescent micro-
scope (Leica, Germany).

Total RNA extraction and real-time PCR Total RNA was
extracted from cells and tissues by using Trizol reagent
(Invitrogen, USA) and then reversed transcribed using
random primers and M-MLV reverse transcriptase to make
cDNA. Quantitative real-time PCR (qPCR) was carried out
with a Lightcycler 480 PCR System (Roche) using SYBR
Green Master Mix and gene-specific primers.

Protein extraction and western blot analysis Proteins in
homogenised liver were analysed by immunoblotting using
different antibodies (Anti-GFP, 50430-2-AP and Anti-Beta
Tubulin, 10068-1-AP from Proteintech, China; Anti-FLAG,
sab4301135 from Sigma, USA).

Transcriptome sequencing Total RNA was extracted from
liver 3 months after AAV9 injection, and subjected to RNA-
seq analysis performed by Azenta Life Sciences (China).

Non-targeted metabolomics The non-targeted metabolic
profiling analysis was performed by an ultra-HPLC
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(Vanquish Flex UHPLC system; Thermo Scientific, Bremen,
Germany) system coupled with high-resolution MS (Q
Exactive Focus; Thermo Scientific).

Statistical analysis All analyses were conducted with
Student’s t test (two-tailed). All experimental data are present-
ed as mean±SEM. Comparisons with p values <0.05 were
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Fig. 1 Acat2 is highly expressed
in liver and downregulated in
DIO. (a) qPCR detection of Acat2
expression in different mouse
tissues (n=4). (b) Relative levels
of Acat2 in liver from mice fed
with HFD or chow diet for 10
weeks (n=4). Measured as
average of three technical
replicates. Data represent mean±
SEM. ***p<0.001 (two-tailed t
test). CD, chow diet; GAS,
gastrocnemius; QU, quadriceps;
TA, tibialis anterior
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overexpression via AAV9
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of mice. (a) Schematic diagram of
hepatic Acat2 overexpression,
created with BioRender.com. (b)
Successful overexpression of
ACAT2 in liver but not kidney is
shown by GFP western blot.
Representative image from three
independent experiments. Short
exposure: 1s. Long exposure:
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considered statistically significant, and p values <0.0, <0.01
and <0.001 are shown.

Results

Acat2 is highly expressed in liver and decreased after HFD-
induced obesity We first surveyed the expression of Acat2 in
various mouse tissues. Acat2 mRNA levels were highest in
brown adipose tissue (BAT), followed by lower expression
levels in liver and kidney (Fig. 1a). The mRNA levels of
Acat2 were low in muscle tissues (tibialis anterior, quadriceps
and gastrocnemius), heart, intestine and stomach (Fig. 1a). As
ACATs play a key role in the cholesterol metabolic pathway,

we next surveyed the expression level of ACAT2 in liver after
diet-induced obesity (DIO). After 10 weeks of HFD feeding,
Acat2mRNA levels were significantly decreased in liver (Fig.
1b). The results demonstrated that ACAT2-mediated choles-
terol metabolismmight be inhibited and contribute to the lipid
disorder during obesity.

Adenoviral overexpression of Acat2 in liver reduces fat mass
We next constructed an adenoviral Acat2 overexpression
system (AAV9-Acat2) to achieve liver-specific Acat2 overex-
pression. We injected the virus into the tail vein of 6-week-old
male mice (Fig. 2a) and specific overexpression was
visualised in the liver by GFP western blot 3 weeks after
injection. With a virus dose of 3E+11v.g/mouse (where 3E+
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Fig. 3 Hepatic Acat2
overexpression promotes energy

expenditure in mice. (a–d) V̇O2

and V̇CO2 were measured by
indirect calorimetry in mice
injected with control and AAV9-
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(e, f) V̇O2 (e) and V̇CO2 (f)
during exercise were measured by
a treadmill incorporating indirect
calorimetry. n=5 and 6 control
and AAV9-Acat2 male mice
starting from 8 weeks of age,
respectively. Data represent mean
±SEM. *p<0.05 and **p<0.01
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11v.g=3×1011 virus copies) there was only a weak band at
1E+11v.g/mouse (where 1E+11v.g=1×1011 virus copies)
(Fig. 2b). Consistently, no GFP signal was detected from the
kidney, indicating that the virus injection induced liver-
specific expression (Fig. 2b).

The body weight of mice injected with AAV9-Acat2 was
significantly reduced from 4.5 weeks after injection and
remained low until 8.5 weeks post injection (Fig. 2c). The
body weight gain of AAV9-Acat2-injected mice was 3.38±
0.89 g, which was lower than the 6.04±0.87 g seen in the
control mice (Fig. 2d). The total body fat mass of AAV9-
Acat2 injected mice was >50% smaller than that of the control
group from 4.5 weeks to 8.5 weeks post injection (Fig. 2e).
There was no difference in lean mass at all tested times when
comparing control mice with AAV9-Acat2-injected mice
(Fig. 2f). These results demonstrate that overexpression of
Acat2 in liver via AAV9 specifically reduces the body fat
mass of mice without affecting their lean mass.

Hepatic Acat2 overexpression elevates metabolic rate We
next examined how hepatic Acat2 overexpression affects the
systemic metabolism of the mice. Mice injected with AAV9-

Acat2 had higher V̇O2 and V̇CO2 values than the control group
(Fig. 3a–d), especially at night when the mice were actively
feeding (Fig. 3b,d). The respiratory exchange ratio (RER) did
not differ between groups (ESM Fig. 1a,b). Interestingly, the
food intake of Acat2-overexpressing mice was significantly
increased (ESM Fig. 1c). We next ran the mice on a treadmill

to measure their metabolic rates during exercise. The results

showed that mice injected with AAV9-Acat2 had higher V̇O2

and V̇CO2 values independently of treadmill speed (Fig. 3e,f).
These results collectively suggest that Acat2 overexpression in
liver elevates the metabolic rate of mice and that this effect is
independent of muscle metabolism.

Hepatic Acat2 overexpression improves glucose tolerance
and lowers cholesterol levels We next examined whether
Acat2 overexpression had an impact on systemic glucose
and lipid metabolism. In the GTT, Acat2-overexpressing mice
had lower glucose levels compared with control mice after i.p.
injection of glucose (Fig. 4a). Consistently, the AUC of
Acat2-overexpressing mice was also smaller than that of
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�Fig. 5 Hepatic Acat2 overexpression inhibits lipid metabolism pathways
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control mice, suggesting a significantly improved glucose
handling ability (Fig. 4b). We next performed blood biochem-
istry to analyse the serum lipid levels. Serum cholesterol
(total) levels were significantly reduced (Fig. 4c) and NEFA

showed a non-significant decrease in Acat2-overexpressing
mice (Fig. 4d). These data indicate that Acat2 overexpression
improves glucose tolerance and decreases serum cholesterol
levels in mice.
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Hepatic Acat2 overexpression inhibits lipid metabolism but
promotes the stress response pathwayWe further confirmed
whether liver and cardiac function were affected by Acat2
overexpression. Similar to the GTT result, serum glucose
levels were not changed in Acat2-overexpressing mice
compared with control-virus-injected mice (ESM Fig. 2a).
Lactate dehydrogenase level was increased in the serum from
Acat2-overexpressing mice (ESM Fig. 2b). The level of aspar-
tate aminotransferase (AST) in the serum of Acat2-overex-
pressing mice was increased compared with that of the control
group but levels of alanine aminotransferase (ALT) and alka-
line phosphatase (ALP) were not changed (ESM Fig. 2c). TP
(total protein) and ALB (albumin) levels were slightly reduced
after AAV9-Acat2 injection (ESM Fig. 2d).

Heart rate and heart rate variability were not changed by
Acat2 overexpression, as revealed by ECG (ESM Fig. 3a,b).
Cardiac ultrasonography showed that Acat2 overexpression
increased the left ventricular internal diameter (LVID) at end-
systole but had no effect on the LVID at end-diastole, left
ventricular posterior wall (LVPW) at end-diastole, LVPW at
end-systole or the total cardiac output (ESM Fig. 3c,d). These
results together reveal that hepatic Acat2 overexpression has
minor side-effects on the liver and cardiac function of the mice.

We then isolated liver from mice injected with AAV9-Acat2
or control virus. FLAG and GFP western blotting revealed that
ACAT2 protein was successfully overexpressed at both 3 weeks
and 3 months after AAV9-Acat2 injection (Fig. 5a,b). Acat2
overexpression did not affect liver weight (Fig. 5c). H&E stain-
ing and lipid quantification both showed that there was less lipid,
especially triglyceride (TG), accumulation in the liver afterAcat2
overexpression (Fig. 5d and ESMFig. 4a). In addition, there was
no difference in the content of cholesterol and cholesteryl ester
when comparing the two mouse groups (ESM Fig. 4b,c). High-
throughput RNA-sequencing was performed to discover differ-
ent ial ly expressed genes (DEGs) in the l iver of
Acat2-overexpressing and control mice. After mapping of
unique reads and FastQC, we were able to identify a total of
1518 DEGs, of which 1032 were decreased and 486 were
increased in Acat2-overexpressing mouse liver (Fig. 5e,f and
ESM Table 4). Functional annotation and enrichment by using
Gene Ontology (GO) revealed a major enrichment of DEGs in
the metabolic pathways (Fig. 5g,h and ESM Table 5). Genes
involved in mitochondrion organisation (GO: 0007005), lipid
catabolic process (GO: 0016042), lipid biosynthetic process
(GO: 0008610), lipid transport (GO: 0006869) and carbohydrate
metabolic process (GO: 0005975) were all decreased in the
AAV9-Acat2-injected mice, suggesting an inhibition of lipid
and carbohydrate metabolic pathways after Acat2 overexpres-
sion (Fig. 5h). Genes involved in regulation of immune response
(GO: 0050776), cholesterol biosynthetic process (GO:
0006695), angiogenesis (GO: 0001525), digestion (GO:
0007586) and response to stress (GO: 0006950) were signifi-
cantly upregulated inAcat2-overexpressingmice (Fig. 5f). These

results together demonstrate that Acat2 overexpression inhibits
the expression of genes involved in lipid and carbohydrate
metabolism but upregulates genes involved in cholesterol metab-
olism. In addition, ACAT2 may also participate in the immune
response and angiogenesis, thus promoting the stress response
pathway.

Hepatic Acat2 overexpression causes metabolic remodelling
from ketogenesis to the bile acid synthesis pathway ACATs
catalyse the formation of acetoacetyl-CoA from acetyl-CoA.
Ace toace ty l -CoA can subsequen t ly be used by
hydroxymethylglutaryl coenzyme A synthases (HMGCSs)
for ketogenesis or de novo cholesterol synthesis [25].
Surprisingly, expression levels of genes involved in ketogen-
esis, especially genes encoding rate-limiting enzymes
(Hmgcs2, Hmgcl and Bdh1), were downregulated after
Acat2 overexpression (Fig. 6a). Cholesterol biosynthesis-
related genes, such as Mvk, Idi1, Fdps, Fdft1, Cyp51a1,
Msmo1 and Dhcr7 were upregulated (Fig. 6a). Intriguingly,
the mRNA levels of key enzymes, Cyp7a1 and Cyp7b1,
which catalyse bile acid production, were all upregulated in
the Acat2-overexpressing liver (Fig. 6a). The results indicate a
specific metabolic remodelling in liver by Acat2 overexpres-
sion towards utilisation of acetyl-CoA for bile acid synthesis
instead of TG synthesis or ketogenesis (Fig. 6b).

We then performed non-targeted metabolomics to identify
differential metabolites in liver of control and Acat2-overexpres-
sing mice. Sixty-one differential metabolites were identified, of
which 19 were upregulated and 42 were downregulated after
Acat2 overexpression (ESM Fig. 5a, ESM Table 6). Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment revealed that the most significantly changed pathway was
that of ABC transporter (mmu02010), which contained L-
glutamic acid, glutathione, L-serine, choline, N-acetyl-D-glucos-
amine, adenosine, taurine, inosine and deoxyuridine (ESM Fig.
5b,c, ESM Table 7). The most abundant changed pathway was
alanine, aspartate and glutamate metabolism (mmu00250),
including L-glutamic acid, L-asparagine and glucosamine 6-
phosphate (ESM Fig. 5b,c, ESM Table 7). Consistent with the
gene expression results, metabolites involved in bile secretion
(mmu04976) were also significantly changed after Acat2 over-
expression (Fig. 6c and ESM Fig. 5b,c); two metabolites were
upregulated (deoxycholic acid and lamivudine) and three were
downregulated (glutathione, choline and glycocholic acid). The
abundance of deoxycholic acid was increased over fivefold in
Acat2-overexpressing liver (Fig. 6d). Pathway analysis revealed
that bile acids secreted into the bile canaliculus were significantly
increased (ESM Fig. 6a). However, the expression levels of
genes encoding key bile transporters (Abcb11 and Abcc2) were
not changed (ESM Fig. 6b). Taken together, hepatic Acat2 over-
expression changes the composition of secreted bile, in particular
increasing the abundance of deoxycholic acid.
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Acat2 overexpression reduces white adipose tissue mass and
promotes lipid metabolism gene expression To determine
how Acat2 overexpression reduced the total fat mass, we
inspected various fat depots from AAV9-Acat2-injected and

control mice. The white adipose tissue (WAT) masses were
dramatically reduced in mice with hepatic Acat2 overexpres-
sion when compared with control mice, while there was no
significant difference in BAT mass (Fig. 7a,b). H&E staining
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showed that the average adipocyte size was smaller in epidid-
ymal WAT (WAT) in the AAV9-Acat2 group than in the
control group (Fig. 7c,d). We then profiled mRNA levels of

genes involved in fatty acid transport, TG synthesis, adipo-
genesis, lipolysis, β-oxidation and browning. The expression
levels of Cd36, Dgat, Adipoq, Fabp4, Atgl and Cpt2 were
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significantly increased in eWAT of Acat2 overexpressed than
control mice (Fig. 7e). However, no significant changes in
thermogenic and mitochondria-related genes were detected
in BAT or inguinal WAT (iWAT) (ESM Fig. 7a,b).
Therefore, Acat2 overexpression promotes lipid metabolism
in eWAT.

Hepatic Acat2 overexpression protects mice from HFD-
induced weight gain and metabolic defects The phenotype
of the AAV9-Acat2-injected mice prompted us to investigate
the effect of hepatic Acat2 overexpression on DIO. We
injected control or AAV9-Acat2 virus into wild-type (WT)
mice 2 weeks before switching them to HFD (45%) (Fig.
8a). The body weight of the two groups of mice started to
show a difference after 6 weeks of HFD feeding, and at 7
and 10 weeks the weight of the AAV9-Acat2-injected mice
was significantly lower than that of the control mice (Fig.
8b,c). Body composition analysis showed a decrease in both
fat mass and lean mass during the HFD feeding but the differ-
ence was not statistically significant (Fig. 8c).

Consistently, mice injected with AAV9-Acat2 had higher ˙

VO2 and V̇CO2 during both day and night compared with the
control group under HFD feeding (Fig. 9a–d). The RER did not
differ between the groups (ESM Fig. 8a,b). We also tested the
glucose tolerance of the mice. The Acat2-overexpressing mice
fed with HFD exhibited improved glucose tolerance when
compared with control mice (Fig. 9e,f). In addition, concentra-
tions of serum cholesterol (total) and HDL-cholesterol were

also significantly decreased in Acat2-overexpressing mice after
HFD feeding (Fig. 9g). Levels of TG, LDL-cholesterol and
NEFA showed no difference between the groups (Fig. 9g,h
and ESMTable 8). Interestingly, the levels of ALTwere signif-
icantly decreased in the serum of Acat2-overexpressing mice
compared with control mice, while levels of AST, TP and ALB
were not changed (ESM Fig. 9a,b and ESM Table 8). Taken
together, hepatic Acat2 overexpression elevates the metabolic
rate and protects mice from HFD-induced glucose intolerance
and hypercholesterolaemia.

Discussion

Our study demonstrates a previously unrevealed role for hepat-
ic Acat2 overexpression in weight control through boosting the
metabolic rate. Adenoviral Acat2 overexpression reduced body
weight by lowering total fat mass without affecting lean mass.

Acat2-overexpressing mice displayed higher V̇O2 and V̇CO2

in normal conditions and during exercise. Acat2 overexpres-
sion promoted glucose clearance and lowered serum cholester-
ol levels, possibly through enhancing production of bile acids
(especially deoxycholic acid) in the liver. In addition, Acat2-
overexpressing mice gained less body weight, had a higher
metabolic rate after HFD feeding and were protected from
HFD-induced glucose intolerance and hypercholesterolaemia.
Hepatic Acat2 overexpression inhibited TG, glucose and
ketone body metabolism pathways in the liver but promoted
lipid metabolism in WAT (Fig. 10). Thus, as the Acat2 level in
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liver is decreased during HFD-induced obesity, our results
suggest that liver-targeted adenoviral Acat2 overexpression

represents a potential therapeutic strategy for obesity and its
associated hypercholesterolaemia.
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ACATs catalyses the conversion of acetyl-CoA to
acetoacetyl-CoA, which subsequently enters the ketogenesis
and multi-stepped cholesterol biosynthesis pathways [26, 27].
ACAT1 is localised in mitochondria and is involved in keto-
genesis, and its mutation has been reported to cause diseases
[16]. Less is known about ACAT2, except for its role in cyto-
solic acetoacetyl-CoA production, without data coming from
gain-of-function and loss-of-function studies using genetic
tools. In this study, we found that Acat2 was decreased in
the liver of HFD-induced obese mice, prompting us to explore
whether hepatic Acat2 overexpression is beneficial for lower-
ing lipid levels and promoting systemic metabolism. This first
Acat2 gain-of-function study clearly showed positive results
and potential clinical application, though the current experi-
ments were based on WT mice under normal diet or HFD.
Further studies conducted on different mouse models should
be performed, including high-cholesterol diet, ob/ob, db/db
and LDL-cholesterol-receptor knockout mice (hypercholes-
terolaemia), to investigate the effects of hepatic Acat2 overex-
pression in metabolic disorders.

We evaluated the liver and heart function of Acat2-overex-
pressing mice and found that the AST level was increased, in
excess of the normal range of C57B6N mice [28]. This indi-
cates that Acat2 overexpression may cause liver stress or
inflammatory responses. Supporting this, RNA-seq data
revealed that genes involved in the stress response and innate
immune response were upregulated. Since AAVs have
emerged as effective and safe tools for in vivo gene delivery,
we believe that the elevated serumAST could be a consequence
of ACAT2-mediated changes in the lipid metabolism of liver. It
has been extensively reported that lipid metabolic pathways are
closely associated with chronic hepatic inflammation [29, 30].
For instance, the Gram-positive bacteria binding receptor
TLR2, which can also bind dietary fatty acids and plays a role
in the progression of the metabolic syndrome [31–33], was
upregulated in Acat2-overexpressing liver. To our surprise,
the elevated levels of AST were diminished after HFD feeding,
while ALT levels were decreased, suggesting that Acat2 over-
expression may protect mice from liver damage in DIO. In
addition, cardiac ultrasonography and ECG showed Acat2
overexpression to have mild effects, with a slight increase in
the LVID at end-systole but no impact on other tested indexes,
especially the ejection fraction. However, future studies should
put more effort into monitoring the long-term liver and heart
function in Acat2-overexpressing mice.

An intriguing observation in our present study was that
Acat2 overexpression inhibited glycolytic, TG synthesis,
mitochondrial-related and ketone body metabolic pathways
but upregulated genes involved in cholesterol metabolism,
especially the bile acid biosynthesis pathway. Bile acids are
the end-products of cholesterol, serving as important physio-
logical agents in nutrient absorption and glucose, lipid and
energy metabolism control [34–36]. The expression levels of
key enzymes in bile acid synthesis pathways, CYP7A1 and

�Fig. 9 Hepatic Acat2 overexpression elevates systemic energy
metabolism and reduces blood cholesterol levels in mice after HFD
feeding. (a–d) WT mice were injected with control and AAV9-Acat2
virus after 8 weeks of HFD feeding. V̇O2 and V̇CO2 were measured by

indirect calorimetry. V̇O2 is shown for a 24 h cycle (a) and as an average

for day and night (b). V̇CO2 is shown for a 24 h cycle (c) and as an
average for day and night (d), calculated from the same dataset. (e) Blood
glucose concentrations during a GTT performed on mice after 9 weeks of
HFD feeding. (f) AUC for blood glucose was calculated based on data in
(e). (g, h) Concentrations of cholesterol, HDL-cholesterol, LDL-
cholesterol, TG (g) and NEFA (h) in the serum of control and AAV9-
Acat2-injected mice after 10 weeks of HFD feeding. n=4 and 6 control
and AAV9-Acat2 male mice, respectively. Data represent mean±SEM.
*p<0.05 and **p<0.01 (two-tailed t test). CHOL, cholesterol
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CYP7B1 [37, 38], are increased after Acat2 overexpression.
We also found that the food intake of Acat2-overexpressing
mice was significantly increased. Similar results have been
reported in mice lacking Cyp8b1, which disrupts bile acid
composition and lowers food intake [39]. Besides, dietary bile
acid supplements were found to enhance energy expenditure
and protect mice from DIO [35, 36], consistent with our own
findings. However, we detected improved lipid metabolism in
eWAT but did not observed any changes in the thermogenic
gene expression in BAT and iWAT, findings that are incon-
sistent with chenodeoxycholic acid treatment [40]. Indeed, we
detected a dramatic increment in the concentrations of
deoxycholic acid as well as bile secretion into the bile cana-
liculus. It is worth mentioning that an injectable synthetic
form of deoxycholic acid was approved by the FDA in 2016
for reduction of fat under the chin [41, 42]. Bile acids exert
beneficial effects on glucose metabolism [43] and increased
serum deoxycholic acid concentration is also significantly
associatedwith decreased fasting blood glucose andmetabolic
improvement in individuals with type 2 diabetes who are treat-
ed with saxagliptin [44]. Another bile acid, glycocholic acid,
which is reported to be dramatically increased upon liver inju-
ry and liver disease [45], was found to be decreased in our
mice overexpressing Acat2 in the liver. While deoxycholic
acid concentrations are negatively associated with liver injury
and liver disease [45], in individuals with non-alcoholic stea-
tohepatitis (NASH), bile acid concentrations are higher and
their composition is altered in liver tissue when compared
with liver from disease-free individuals [46, 47]. Thus, the
altered bile acid pool and composition in Acat2-overexpres-
sing liver may be responsible for the improved metabolism in
hepatic-Acat2-overexpressing mice.

Acat2 overexpression provides a potential therapeutic strat-
egy for obesity and hypercholesterolaemia, yet the current
methods and results are limited. Even though we achieved
liver-specific Acat2 overexpression and observed very prom-
ising phenotypes by using AAV9-mediated gene delivery, the
dose of injection, duration of expression period and t½ of
overexpressed protein remain unclear. Besides expanding
the experiments to cover different disease models, future stud-
ies should be concerned with discovering the mechanisms
upstream of Acat2 that lead to its suppression of DIO. On
the other hand, efforts should be focused on developing new
Acat2 overexpression strategies, especially those utilising
controllable genetic manipulation (e.g. the tetracycline-
inducible [Tet-On or Tet-Off] or doxycycline-inducible
systems) to control Acat2 overexpression [48, 49]. Besides,
it is exciting to take advantage of the recent mRNA modifica-
tion and delivery tools, which have been widely used as
mRNA vaccines during the coronavirus disease 2019
(COVID-19) pandemic worldwide [50]. Nanoparticles that
encapsulate modified ACAT2 mRNA for targeted liver deliv-
ery with proper release speed are ideal methods for the future.
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