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Abstract

Objective: Develop a stakeholder-informed ethical framework to provide practical guidance to
health systems considering implementation of suicide risk prediction models.

Methods: In this multi-method study, patients and family members participating in formative
focus groups (n = 4 focus groups, 23 participants), patient advisors, and a bioethics

consultant collectively informed the development of a web-based survey; survey results (n

= 1,357 respondents) and themes from interviews with stakeholders (patients, health system
administrators, clinicians, suicide risk model developers, and a bioethicist) were used to draft the
ethical framework.

Results: Clinical, ethical, operational, and technical issues reiterated by multiple stakeholder
groups and corresponding questions for risk prediction model adopters to consider prior to

and during suicide risk model implementation are organized within six ethical principles in

the resulting stakeholder-informed framework. Key themes include: patients’ rights to informed
consent and choice to conceal or reveal risk (autonomy); appropriate application of risk models,
data and model limitations and consequences including ambiguous risk predictors in opaque
models (explainability); selecting actionable risk thresholds (beneficence, distributive justice);
access to risk information and stigma (privacy); unanticipated harms (non-maleficence); and
planning for expertise and resources to continuously audit models, monitor harms, and redress
grievances (stewardship).

Conclusions: Enthusiasm for risk prediction in the context of suicide is understandable given
the escalating suicide rate in the U.S. Attention to ethical and practical concerns in advance of
automated suicide risk prediction model implementation may help avoid unnecessary harms that
could thwart the promise of this innovation in suicide prevention.
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Introduction

Given the escalating suicide rate in the U.S. (Hedegaard, Curtin, & Warner, 2020), there
has been a focus on suicide risk detection using novel methods including risk prediction
models derived from electronic health records (EHR) data (Barak-Corren et al., 2017;
Kessler et al., 2020; Kessler et al., 2017; Kessler et al., 2015; McCarthy et al., 2015;

Simon et al., 2018; Su et al., 2020; Tran et al., 2014; Colin G. Walsh, Ribeiro, &

Franklin, 2017; C. G. Walsh, Ribeiro, & Franklin, 2018). Many of these models boast

high accuracy in identifying patients at-risk for suicide—some models report classification
accuracy (C-statistic) above 80%. Consequently, interest in their use in health care has
expanded. Whether this innovation will translate to reduced suicide rates is unknown, but a
growing body of literature calls for an anticipatory examination of ethical concerns relevant
to risk model implementation (Linthicum, Schafer, & Ribeiro, 2019; McKernan, Clayton, &
Walsh, 2018; Tucker, Tackett, Glickman, & Reger, 2019). Ethical considerations of suicide
risk prediction may be distinct from other realms of risk prediction, given the potentially
serious consequences (e.g., death, inappropriate treatment, stigma) that could result from
misclassification or even from well-intended intervention.

Previous scholarship has articulated advantages and concerns about the expanded use of
predictive modeling (Cath, 2018; Goldstein, Navar, Pencina, & loannidis, 2017; Joyce &
Geddes, 2020; Lawrie, Fletcher-Watson, Whalley, & Mcintosh, 2019; Nundy, Montgomery,
& Wachter, 2019; Obermeyer, Powers, Vogeli, & Mullainathan, 2019; C. G. Walsh et al.,
2020), including concerns specific to suicide risk prediction (Belsher et al., 2019; Fonseka,
Bhat, & Kennedy, 2019; Linthicum et al., 2019; Whiting & Fazel, 2019). Generally, for

the purposes here, we are referring to health systems’ interest in implementing suicide

risk models to identify higher risk patients for appropriate risk assessment, referral, and
treatment though risk models could also be used to triage higher risk patients to receive
suicide prevention or mental health specialty services faster relative to lower risk patients

or for actuarial purposes. One concern about risk models in general is that they can be
applied for purposes other than those for which they were developed. Calls have been issued
to develop quality measures to ensure risk models are implemented effectively, fairly, and
safely in suicide prevention efforts (Eaneff, Obermeyer, & Butte, 2020). There has also been
acknowledgement of the need to shift the emphasis of prognostic model research closer to
the clinical setting and address questions of practical applicability (Whiting & Fazel, 2019)
and to better understand the perspectives of clinicians, individuals with suicide behavior, and
familial survivors of suicide (McKernan et al., 2018). The goal of this paper is to present a
concise, ethical framework, inclusive of these stakeholder voices not typically represented in
implementation planning and absent in previous scholarship.

Early suicide risk model implementation (McCarthy et al., 2015; Reger, McClure, Ruskin,
Carter, & Reger, 2019) and increasing interest in broader deployment has created an
urgent need for a practical resource focused on the ethical application of suicide risk
models. To date, only the Veteran’s Administration has described their consideration of
ethical principles prior to suicide risk model implementation (Reger et al., 2019; Tucker et
al., 2019); they did not collect or consider empirical input from important stakeholders,
including the patients upon whom the intervention would be conducted. Furthermore,
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Method

with increasing COVID-19 pandemic-related suicide concerns (Czeisler et al., 2020), and
consequent pressure on health systems to deliver responsive suicide risk screening, an
ethical framework could reduce the potential for harms from automated risk identification,
keeping the safety and welfare of patients and their trust at the center of health care decision
making.

Kaiser Permanente Northwest (KPNW) and Washington (KPWA) were the settings. These
systems serve approximately 1.3 million members in Oregon, Washington, and Idaho
enrolled through individual or employer-sponsored insurance, Medicaid or Medicare, and
subsidized low-income programs. Members are representative of each system’s service area
in age, race/ethnicity, and socioeconomic status. Both settings were engaged in systemic
suicide prevention initiatives including implementation of the Zero Suicide Framework
(Education Development Center Inc). KPNW was planning future implementation of a
suicide risk prediction model developed by the Mental Health Research Network (MHRN)
(Simon et al., 2018) and, before proceeding, was awaiting results of a KPWA pilot
implementation of the same model. The authors were not involved in implementation
planning but received an administrative supplement to use qualitative methods to explore
and identify stakeholders’ concerns and preferences related to this innovative method

of suicide risk prediction and prevention and to develop and disseminate a stakeholder-
informed ethical framework to guide the implementation of future risk prediction models.
Focus group data, a large patient survey, and stakeholder interviews were collected as part
of this funded project and triangulated to provide the foundation for the ethical framework.
The KPNW Human Subjects Review Board approved all study activities; all participants
provided informed consent.

Focus Groups and Survey

Four two-hour focus groups in December 2019 and January 2020 were part of a formative
process to discover and prioritize concerns and topics of importance to patients. Data

from these focus groups were analyzed independently to provide qualitative data for this
study and were also used to develop a subsequent survey about the use of suicide risk
prediction models. Focus group participants were recruited from a random sample, drawn
from electronic health record data, of 500 adult KPNW members with past-year suicide
ideation (assessed by PHQ-9) or a past-year suicide attempt (assessed by ICD-10 codes);

a subset of participants were family members nominated for recruitment by patient focus
group participants. Patients received an email inviting them to participate and acknowledged
their interest by reading and completing a short REDCap (Harris et al., 2009) survey prior to
arriving for the focus group. Participants were given a $50 gift card in appreciation for their
participation.

Focus group findings were used to generate a survey sent to adult KPNW members with

and without reported past-year suicide ideation. The survey was emailed to >11,000 Kaiser
members half with the same indication of past-year suicide ideation or attempt as for the
focus group sample and half randomly selected adult members not meeting those conditions.
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Focus group questions and survey items, and the recruitment process were vetted by two
patient/consumer advisory boards. Focus group and survey methods and detailed survey
results are described elsewhere (Yarborough, 2021), cited throughout this paper, and provide
another important source that informs the framework.

Stakeholder Interviews

Results

Stakeholders included KPNW and KPWA administrators with authority to implement
suicide prevention initiatives, KPNW clinicians who responded to an email recruitment
solicitation (with the behavioral health administrator’s imprimatur), and MHRN suicide
risk model developers, a bioethicist, and a patient advocate recruited for their work in this
field. Interviews were audio recorded and transcribed verbatim; transcripts were loaded into
Atlas.ti. (Friese, 2018). Codes were mostly deductive, based on anticipated ethical issues

or focused questions regarding consent, implementation concerns, privacy, etc. Inductive
codes, based on novel issues brought up by participants, included domains such as potential
misapplication and the need for further study to assess effectiveness. Queries derived from
these codes were reviewed by two authors (BJY, SS) for this paper. The authors met to
discuss emergent themes and wrote preliminary summaries of themes across the interviews.

Finally, we used all findings—patient focus group results, patient survey results, and
stakeholder interviews—to describe from multiple perspectives the landscape of ethical
issues for consideration prior to and during implementations of statistical suicide risk
prediction models. The addition of patient and clinician perspectives is a novel addition
to the literature.

Focus groups included 23 participants, 1,357 individuals responded to the survey, and two
administrators, four clinicians, three suicide risk model developers, a bioethicist, and a
patient advocate were interviewed. Ethical concerns are detailed below, organized within six
domains, along with demonstrative scenarios from the KPWA pilot and illustrative quotes
from the stakeholders. The ethical framework (Table 1) poses questions for consideration by
risk model adopters prior to and during implementation.

1 Autonomy

Informed Consent—~Patients are aware that their health care data is analyzed to make
decisions about individual- and population-level services, they understand that suicide risk
models would access their health information, that there is a level of imprecision inherent

in risk estimation, and that risk identification could prompt intervention. In general, patients
are supportive of EHR-derived suicide risk models and understand their potential value but
prefer to have the option to consent to or opt out of this use of their data (Yarborough, 2021).
Patient focus group participants understood that consent is not typically sought prior to
predicting other health conditions (e.g., cardiovascular disease), and while some felt suicide
risk should not be any different, others felt that because of the stigma associated with suicide
behavior and the potential for surprise at being identified as at-risk, requiring permission
prior to conducting surveillance was important. One participant noted:
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Some people may not be comfortable with their personal data being used in these
models. But probably a majority of people would be... I think if you were upfront
in the beginning then it’s okay. (patient, focus group)

Patients’ Choice to Conceal or Disclose Risk—As with any intervention, health
systems have an obligation to ensure that patients understand the benefits and risks
associated with suicide risk identification. This might include educating patients as to which
EHR data is discoverable and which predictors significantly contribute to risk identification.
For example, scores from depression and suicide screening instruments significantly
influence risk estimates. Absent prediction models, these are the basis for clinical risk
assessment. Some patients felt leveraging existing data for automated suicide prediction
was no different from, and more efficient than, their provider reviewing records for
screening scores and other risk factors. However, patients know, when completing screening
questionnaires, that how they respond will likely influence the care they subsequently
receive. They maintain autonomy to respond honestly, conceal, or refuse to disclose;
sometimes they conceal out of concern about loss of autonomy (Richards et al., 2019).
Automated risk identification may limit autonomy when it supersedes patients’ deliberate
representations of their present risk.

We know this happens; they say they did not have thoughts about self-harm because
they didn’t want someone to follow-up. There was that autonomy of saying, I’'m
gonna say no, even though the answer is yes. With risk prediction models, that’s
not a choice people have. They can’t change the answer, or they can’t give an
answer that they would prefer. The answer comes from a machine... Now, of
course, there are people who argue that’s an autonomy we don’t want people

to have. But I think that’s at least something you need to explicitly consider.
(clinician)

It is possible that if patients are made aware that their suicide screening scores feature
prominently in risk estimates it could alter their subsequent behavior. If they become more
likely to conceal then screening instruments may be less predictive over time. It is worth
carefully considering how patients can exercise the choice to participate or be excluded from
risk identification and how informed consent can foster trust.

In the KPWA pilot, patients are not informed that clinicians receive prompts based on a risk
prediction model. Clinicians respond to a flag in the EHR just as they would if the patient
had screened at-risk using the clinic’s standard suicide screening measure, regardless of the
screening score at the present visit. One administrator explained that proceeding with a risk
assessment in the face of risk denial is common practice:

I do that all the time when 1’m seeing patients. Their PHQ-9 is negative, but they
were in the hospital two months ago for maybe a suicide attempt or something else.
I’m gonna do the [risk assessment]. | didn’t use the prediction algorithm for that
and I’m not telling them why | did that. I’m just concerned for their safety and
that’s part of my job. (behavioral health administrator)

An ongoing implementation evaluation at KPWA, including interviews with patients, will
help inform decisions about consenting patients and revealing use of the risk models.
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2 Explainability
Suicide risk model developers have an obligation to interpret model performance
characteristics so that adopters can make informed implementation decisions.

| have a very strong view that people who develop these models have an absolute
obligation to complete transparency. If there’s an equation it needs to be public.
What’s the positive predictive value, what’s the sensitivity and so on. That said,
many of the people making implementation decisions may not get into things at
that technical level. So, | think it’s the obligation of model developers to try to
accurately and fairly present how accurate is this model and try to put that in terms
that most people can understand. (statistical suicide risk model developer)

Adopters need to understand sensitivity/specificity trade-offs as they relate to clinical
implementation. Problems would arise if models overestimated risk and health systems
unnecessarily diverted limited resources and potentially caused patients undue distress, just
as they would result from underestimation that left vulnerable patients unidentified.

Application of Suicide Risk Models in Populations They Were Not Developed
For—A known risk after the deployment of any prediction model is that its use could be
extended to populations or situations for which it was not intended or tested. At KPWA,
leaders were concerned that patients at high risk for suicide might have avoided care during
the early months of the COVID-19 pandemic. Given the urgency of that concern, KPWA
used prediction models developed for an outpatient mental health specialty clinic population
to inform outreach efforts in the broader population. A model developer shared a concern:

What 1I’m actually most concerned about is that a large number of resources will
be dedicated to this and clinicians will think we are doing a lot when maybe we’re
not doing as much as we think we’re doing, because that’s not what the model was
built for. The predictors of the whole population may be different. And so, we’re
not actually catching everyone at risk. (statistical suicide risk model developer)

While not harmful to run the models in the larger population, it may not have been as helpful
as anticipated. The model developers articulated their concerns and the leaders proceeded
with reasonable expectations. This scenario demonstrates that adopters need to understand
the sample parameters the model was trained on to tailor implementation for the conditions
in which models will have the greatest impact.

In another example, risk models included suicide attempts and deaths by specific subgroups
(e.g., African Americans, Native Americans), but the number of deaths was too small to get
a precise prediction for the relationship between the risk factors and suicide death for those
subgroups (Coley, Johnson, Simon, Cruz, & Shortreed, 2021). Adopters must be aware of
these limitations because adjustments may need to be made to fairly implement risk models
and some subgroups may not benefit as much as others.

Limitations of EHR Data—Adopters have an ethical obligation to educate themselves
and clinicians interacting with the risk models about their limitations. Models derived from
EHR data are only as accurate as their inputs; all the stakeholder groups recognized this
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shortcoming. Focus group participants expressed concern about risk factors that are not
accurately or systematically recorded in the EHR (e.g., gender identity, recent divorce,
financial distress). As documentation of demographic characteristics and social determinants
of health in the EHR improve, risk models need to be updated. Patient survey respondents
agreed social predictors were important to understanding suicide risk, but two-thirds
opposed use of externally sourced data (Yarborough, 2021). Model developers underscored
the importance of clinicians understanding which predictors are in the models and which are
not, including those that might not make it into a prediction calculation due to timing. For
example, a recent suicide attempt may not be represented in an estimate if the model was not
refreshed between when the event was documented and when the patient was seen.

Patient focus group participants and clinicians were also concerned that EHR data reflects
whatever is documented, which may be biased or incomplete. Several stakeholder groups
recognized the potential for risk models to amplify socially constructed biases, perpetuate
discrimination, or exacerbate disparities in care.

Ambiguity of Risk Predictors—The power of risk prediction models lies in the ability
to detect patterns among combinations of correlated predictors interacting in non-linear
relationships and to stratify risk based on a probabilistic score. Inscrutable statistical models
are useful for prediction but have little value for explanation (Simon et al., 2021). Clinical
assessment, on the other hand, can be justified by objective evidence, subjective inference,
and can be explained. Clinicians and patients are accustomed to explanation. Adopters

must consider whether and how clinicians will be expected to communicate risk scores to
patients given that in some models predictors are not discernable. For example, in the KPWA
implementation only a risk flag (binary indicator) that the individual may be at risk for
suicide appeared in the EHR, clinicians were not notified of the risk factors that increased
risk and some of those factors, even if there were identifiable, were immutable (e.g., age,
gender, history of suicide attempt).

3 Beneficence, Distributive Justice

Selecting Actionable Risk Thresholds—A very important consideration for suicide
risk model adopters is determining where to set the threshold for intervention. A cohort
study that explored feasibility of suicide risk model implementation demonstrated how the
work burden to clinicians depends largely on the population size, risk threshold selected,
number of unique alerts (i.e., patients not already identified at-risk), and protocol for
responding to alerts (Kline-Simon et al., 2020). Health systems have limited resources
and statistical risk models produce continuous scores; adopters can select an absolute risk
threshold (e.g., absolute risk >10%) or a percentile risk (e.g., 95! percentile). The latter
allows estimation of patients/visits expected to require follow up. In the KPWA pilot,
patients exceeding the 95 percentile for statistical risk are flagged, corresponding roughly
to the amount that would be determined high risk by their existing clinical screening
instrument, therefore not significantly increasing workload.

It is crucial that adopters and clinicians recognize that individuals below the threshold
should not be considered “not at-risk” and those above the threshold may not be at
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4 Privacy

imminent risk. For example, in the KPWA pilot, individuals above the 95™ percentile

had only an approximately 6% risk of suicide attempt in the 90 days following a visit
(Simon et al., 2018). Adopters need to consider the volume of at-risk individuals their
system is equipped to manage, determine appropriate interventions for various risk levels (an
outstanding empirical question), and estimate the burden of resources required for various
interventions. One approach is to intervene with the highest risk patients, another strategy
involves delivering less intensive intervention(s) to a larger proportion at lower risk to
maximize prevented suicide attempts. The goals of the suicide prevention program and the
needed resources to meet them should influence these decisions. Stakeholders were keenly
aware of how limited resources affect access to care and were concerned about adequate
follow up:

What’s begging the question for me, is what are you gonna do with that
information? ... | feel real cynical. We’ve identified you as a risk. Then what?
(patient, focus group)

Access to Risk Information, Stigma—Adopters should consider who will have access
to risk information, how it will be displayed and/or stored in the EHR, and who will be
expected to respond. Patients prefer only their trusted clinicians have access to suicide risk
model results (Yarborough, 2021). Patients and clinicians voiced concerns about stigma
within the health system:

I won’t talk to my primary doctor about it. I will not. I don’t have a counselor. But
I don’t feel safe with my primary doctor to talk about my mental status. (patient,
focus group)

**k*

I do believe that within primary care there can be different degrees of treatment
based on the mental health diagnosis. Not everyone and not every time, but | do
believe that sometimes that stigma of having a mental health diagnosis carries
over into their care they may receive by nurses or by MAs [medical assistants] or
whether or not people take their complaints or illnesses seriously. (clinician)

There were also concerns from a range of stakeholders about the risk score becoming part of
the EHR and/or being shared outside the health system:

But that whole fiction of what happens in this room, | will keep things
confidential... You can’t provide that anymore in a learning healthcare system. You
have to negotiate either keeping things out of the record, cause once you put it in
the record everybody knows. But then also if you keep it out of the record then their
potential benefits from a learning system, you’re then depriving a patient of those.
(bioethicist)

*k*k

The big fear is could it be used to deny people health insurance because they’re
high [risk]. We would like to believe that most interventions would be protective or
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helpful or supportive, although they may not be perceived that way. You could think
about discriminatory things outside the healthcare system, like denying people car
insurance or life insurance or not being able to buy firearms. (clinician)

And from a focus group discussion between patient participants:

Participant 1: It makes me very uneasy. | mean, that might be the intent now, but |
don’t know down the road how that information might be used.

Participant 2: Could my insurance rates go up?

Participant 3: So, like employers, or law agencies, there’s no sharing of that
information?

5 Non-maleficence

Risk Models Could Introduce Unanticipated Harms, Lead to Inappropriate
Intervention, or Be Used to Deny Services—In addition to potential harms
introduced by their private information being shared, patients were very concerned that
suicide risk models, particularly if used by clinicians without adequate training (generally
referring to clinicians outside of specialty mental health) could prompt coercive or
inappropriate treatment.

I would anticipate what would happen as a result of being identified as high risk
for suicide that | would be...coerced. I will use that word. Coerced into a mind
treatment. Yeah, because of legal concerns on [health system’s] part, or any other
healthcare provider. And possibly the moral bias of the person who contacts me.
(patient, focus group)

*kk

And if they’re misunderstood and misinterpreted, are we suddenly gonna start
prescribing a million members to take anti-depressants? And now we have all these
people on medications that they don’t necessarily need to be on. But because of
models that they were at high risk for suicide we need to push these drugs on them.
(patient, focus group)

Model developers also expressed the importance of interventions being appropriately
mapped to the risk and a concern that if clinicians did not understand relative risk or the low
absolute risk of patients flagged as high-risk then patients could be elevated to inappropriate
or unnecessarily higher levels of care. Some stakeholders expressed concern for the opposite
—that risk scores could be used to ration health care or deny services:

My biggest fear in all of this is that we’re [committed] to this predictive tool and
then at the end they’re like, well, the predictive tool says that your risk is actually
very low so we’re not gonna proceed [with treatment]. (patient, focus group)

It is imperative that adopters take time to thoroughly consider and mitigate any potential
harms and consider systems that will monitor for and respond to unintended negative
consequences.
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6 Stewardship

Risk models will drift over time and require evaluation, maintenance, and
recalibration—Model developers and the bioethicist were especially concerned with
making sure adopters understood that models drift over time. Adopters need to plan for
expertise and resources to conduct ongoing assessment of whether the model continues to
perform as intended, identifies risk appropriately, and ultimately reduces suicide outcomes
while not producing negative unintended consequences. Documentation of intervention
receipt must also be considered:

Once the risk prediction model goes live, if an intervention is being done you can
no longer assess the quality of your model based on the predictive performance
because your hope would be that the intervention is working, and the individuals’
risk is decreasing as a result. You would have worse performance if you just
compared your predictive probability to observed outcomes after implementation.
Prospective monitoring of a model and how you change it over time to respond to
changes in how the data are selected as well as the responses to your intervention...
that’s a huge issue. (statistical suicide risk model developer)

Ongoing Oversight—Finally, in the interest of anticipatory ethics, avoiding harms,
and safeguarding patient trust, adopters should consider appointing a governing board or
oversight committee, ideally with representation by each of the perspectives that have
contributed to this framework. Adequate stewardship involves preliminary review and
endorsement of implementation plans, continuous auditing, monitoring for harms, and
authority to redress grievances.

Discussion

EHR-derived risk prediction is a relatively new innovation in suicide prevention. As

Morley et. al, (Morley, Floridi, Kinsey, & Elhalal, 2020) note in their review of artificial
intelligence ethics tools, the gap between principles and practice is large yet not impossible
if the right questions are asked. Informed by stakeholder feedback, this ethical framework
serves as a practical resource to help adopters discipline themselves to consider how to
ethically implement suicide risk identification models. During the writing of this manuscript,
an important paper was published acknowledging the potential for well-intended suicide
risk prediction models to inadvertently perpetuate health disparities.(Coley et al., 2021)
The group of researchers who developed the MHRN suicide risk models undertook an
examination to determine whether two risk models that estimated suicide death following
an outpatient visit performed as accurately across race and ethnicities as they did across

the whole population. The study demonstrated that implementation of either suicide risk
model would disproportionately benefit certain subgroups compared to others. The authors
concluded that health system stakeholders “must carefully consider disparities in benefits
and harms posed when deciding whether and how to implement a prediction model.”(Coley
et al., 2021) These findings underscore the importance of an ethical framework that

creates an intentional pause in the implementation process to take time to consider critical
issues such as this. The framework questions should be considered by adopters before

and throughout implementation in a recursive manner. Given that contextual and technical
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knowledge should inform implementation and given this study was conducted in only two
health care systems considering or implementing one specific model, the generalizability
may be limited. The framework is not meant to be exhaustive but rather to prompt deliberate
and thoughtful consideration of consequential ethical issues that may be relevant in any
specific context.

Enthusiasm for automated risk prediction in the context of suicide is understandable

given the high personal and social costs of suicide, but the costs of proceeding with
implementation without careful ethical consideration are also high, particularly if mistakes
outweigh the benefits of success, reduce adoption of risk models for suicide prevention, or
result in the severance of public trust.
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Highlights:
. Patients’ desire to consent/opt out of suicide risk prediction models.
. Recursive ethical questioning should occur throughout risk model
implementation.
. Risk modeling resources are needed to continuously audit models and

monitor harms.
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