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ABSTRACT
Differentially methylated regions (DMRs) are genomic regions with specific methylation patterns 
across multiple loci that are associated with a phenotype. We examined the genome-wide false 
positive (GFP) rates of five widely used DMR methods: comb-p, Bumphunter, DMRcate, mCSEA 
and coMethDMR using both Illumina HumanMethylation450 (450 K) and MethylationEPIC (EPIC) 
data and simulated continuous and dichotomous null phenotypes (i.e., generated independently 
of methylation data). coMethDMR provided well-controlled GFP rates (~5%) except when analys
ing skewed continuous phenotypes. DMRcate generally had well-controlled GFP rates when 
applied to 450 K data except for the skewed continuous phenotype and EPIC data only for the 
normally distributed continuous phenotype. GFP rates for mCSEA were at least 0.096 and comb-p 
yielded GFP rates above 0.34. Bumphunter had high GFP rates of at least 0.35 across conditions, 
reaching as high as 0.95. Analysis of the performance of these methods in specific regions of the 
genome found that regions with higher correlation across loci had higher regional false positive 
rates on average across methods. Based on the false positive rates, coMethDMR is the most 
recommended analysis method, and DMRcate had acceptable performance when analysing 450 K 
data. However, as both could display higher levels of FPs for skewed continuous distributions, 
a normalizing transformation of skewed continuous phenotypes is suggested. This study high
lights the importance of genome-wide simulations when evaluating the performance of DMR- 
analysis methods.
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Introduction

Background

DNA methylation is an epigenetic mechanism that 
usually occurs at CpG sites in the eukaryotic gen
ome. It is involved in many cellular processes, 
including embryonic development, genomic 
imprinting, X-chromosome inactivation, and pre
servation of chromosome stability [1]. DNA 
methylation plays a critical role in regulating 
gene expression. Studies have linked DNA methy
lation to various human diseases, such as cancer 
[2,3], schizophrenia [4] and PTSD [5,6].

Sequencing and array-based techniques are both 
used to quantitatively measure methylation patterns. 
Although whole-genome bisulphite sequencing 

(WGBS) is the most comprehensive approach, it 
may be cost-prohibitive for large epigenome-wide 
association studies (EWASs). Microarrays offer 
a more affordable alternative for measuring methy
lation across the genome. The Infinium 
HumanMethylation450 BeadChip (450 K chip) and 
the Infinium Methylation EPIC BeadChip (EPIC 
chip) are two commonly used platforms though the 
450 K chips have been discontinued by the manu
facturer and replaced by the EPIC chips. The 450 K 
chip measures methylation proportions at 485,577 
cytosine positions across the genome, whereas the 
EPIC chip covers 853,307 CpG sites [7]. The EPIC 
chip was designed to place probes in regulatory 
regions that lacked coverage on the 450 K chip, by 
placing a single representative probe in each region 
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[8]. The EPIC chip design also excluded probes from 
some regulatory regions when there was a high cor
relation between adjacent CpG sites measured on the 
450 K chip. Both the placing of probes within new 
regulatory regions and the trimming of redundant 
probes lead to a lower correlation between probes 
assessed on the EPIC chip relative to the 450 K chip. 
Both arrays have enabled substantial growth in 
EWASs that investigate methylation in a wide 
range of phenotypes.

Differentially methylated regions (DMRs) are 
genomic regions with methylation patterns span
ning multiple CpG sites that are associated with 
a phenotype. As methylation at nearby CpG sites 
tend to be correlated [9], studying sets of sites 
rather than individual sites may yield stronger 
associations and higher power to detect differences 
in methylation. Additionally, it may increase sta
tistical power by reducing the multiple-testing cor
rection burden [10]. Several supervised and 
unsupervised statistical approaches and tools exist 
for identifying DMRs. Supervised methods test 
phenotype associations at single CpG sites and 
subsequently define genomic regions based on 
a method-specific function of effect size estimates, 
then compute regional significance with multiple 
testing corrections to find DMRs [11]. By contrast, 
unsupervised methods examine pre-defined geno
mic regions based on array annotations and test 
for associations between a phenotype and CpGs 
within those pre-defined regions [11]. Commonly 
used supervised methods include Bumphunter 
[12], comb-p [13], DMRcate [14], and Probe 
Lasso [15]. Unsupervised methods include 
mCSEA [16], coMethDMR [17], and GlobalP [18].

A few prior publications have reported compar
isons of several commonly used DMR methods. 
Mallik et al. [11] evaluated four supervised meth
ods (DMRcate, Bumphunter, Probe Lasso and 
comb-p) using 450 K arrays under 60 different 
parameter settings, and found that all four 

approaches had well-controlled type I error rates 
but their power widely varied as a function of the 
parameter settings. However, the conclusions from 
Mallik’s study were based on simulations with 
3,063 CpG clusters of adjacent CpG probes and 
were not genome-wide. Chen et al. [19] reviewed 
several supervised and unsupervised DMR tech
nologies that were developed for sequence- and 
array-based methylation data. They noted that 
each method had good performance in the simula
tion with original parameters settings and could be 
complementary to each other and they recom
mended using multiple methods to identify 
DMRs. While Chen’s study included an extensive 
review, they only evaluated the performance of 
two approaches (ICDMR [20] and QDMR [21]) 
using the custom-designed NimbleGen microar
rays (CHARM human array) and did not perform 
null simulations. Lent et al. [18] compared DMRs 
identified by DMRcate, Bumphunter, and comb-p 
to those identified by GlobalP on 450 K array data. 
They found that GlobalP detected two additional 
DMRs not identified by DMRcate and comb-p, but 
Bumphunter showed no overlapping DMRs with 
the other three methods. Due to the computational 
burdens involved, Lent’s study only performed 
genome-wide null simulations on GlobalP to eval
uate the type I error rate. As far as we know, no 
comprehensive comparisons of false positive rates 
(FPRs) have been made based on genome-wide 
simulation studies with methylation data.

In this study, we compared the performance of 
five popular array-based DMR methods 
(Bumphunter, comb-p, DMRcate, mCSEA and 
coMethDMR) evaluating type I errors (FPs) and 
computation burden across the two commonly 
available array types: 450 K and EPIC. Methods 
for analysing sequence-based data were not con
sidered in this study. A summary of each method 
can be found in Table 1. The evaluation was based 
on the FPRs and computation burden in peak 

Table 1. Summary of DMR methods.

Method First Author Year of Published PMID Platform /Package Classification
Pre-defined 

Regions

Bumphunter Jaffe, A.E. 2012 22,422,453 R/minfi Supervised
comb-p Pedersen, B.S., 2012 22,954,632 Python/comb-p Supervised
DMRcate Peters, T.J. 2015 25,972,926 R/DMRcate Supervised
mCSEA Martorell-Marugan, J. 2019 30,753,302 R/mCSEA Unsupervised Promoters, Gene bodies, CGI
coMethDMR Gomez, L. 2019 31,291,459 R/coMethDMR Unsupervised Genic, Intergenic
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memory and cumulative running time, using 
simulated null phenotypes and autosomal gen
ome-wide data from 450 K and EPIC arrays. We 
also examined the association between regional 
characteristics (e.g., size and number of CpGs) 
and FPRs. Because the FPRs of genomic regions 
including DMRs reported by method might 
depend on different patterns of regional character
istics, for example, the degree of correlation 
between CpG methylation within a region.

DMR methods

Bumphunter
Bumphunter [12] identifies DMRs via genomic 
array data by first linearly regressing methyla
tion of individual CpG sites on the phenotype, 
measured confounders (e.g., sex and age), and 
unmeasured confounders due to batch effects 
estimated via surrogate variable analysis (SVA) 
[22]. Loess [23] is applied across CpGs to pro
duce smoothed phenotype effect size estimates. 
Bumphunter views the effect size estimates as 
a straight line along the genome with bumps 
and aims to capture those bumps as candidate 
regions. Candidate regions are captured based 
on smoothed estimates that exceed a user- 
predetermined threshold. Permutation tests are 
then conducted to compute empirical p-values, 
together with both a false discovery rate (FDR) 
correction and a family-wise error rate (FWER) 
correction [24]. Bootstrap [25] is also available 
as a less time-consuming substitute for permu
tations and is recommended especially when 
any covariates are included in the analysis.

Bumphunter is implemented in multiple 
R packages, such as bumphunter, ChAMP and 
minfi [26]. All these three packages can be applied 
to 450 K data, and we adopted minfi in this study 
to evaluate the performance of Bumphunter. The 
minfi pipeline can be extended to support the 
EPIC array by downcoding an EPIC array to 
a virtual 450 K array, where probes that differ 
between the two arrays are dropped [27]. To mir
ror the empirical situations, when implementing 
Bumphunter as well as other DMR methods, we 
used default or recommended parameter settings 
as summarized in Table 2. A smoothing function 
was enabled as recommended by Jaffe et al. using 
smooth = T and smoothFunction = loessByCluster 
[12]. The bootstrap method was chosen with 
B = 1000, and other default settings were also 
used by specifying maxGap = 500 and 
pickCutoffQ = 0.99. Regions with at least two 
probes were retained, which was also applied to 
other methods. We noticed that not all packages 
enabled using a smoothing function for 
Bumphunter, thus we also performed 
Bumphunter without using smoothed estimates 
(denoted as BumphunterNS to differentiate from 
Bumphunter using a smoothing function).

Comb-p
The comb-p method [13] identifies DMRs based 
on EWAS summary statistics, to be specific, 
p-values at each CpG site on the chromosome. It 
was built based on the method developed by 
Kechris [28]. The method first computes autocor
rection function (ACF) between p-values to esti
mate the pattern of correlation between probes 
across the genome based on distance. The 

Table 2. Summary of DMR Implementations.
Methods Software Function Parameter Settings

Bumphunter R/3.6.2+ bumphunter() maxGap = 500, pickCutoff = TRUE, pickCutoffQ = 0.99, nullMethod = ‘bootstrap,’ B = 1000, 
smooth = T, smoothFunction = loessByCluster

BumphunterNS R/3.6.2+ bumphunter() maxGap = 500, pickCutoff = TRUE, pickCutoffQ = 0.99, nullMethod = ‘bootstrap,’ B = 1000, 
smooth = F

comb-p python3/ 
3.7.7

comb-p –seed 1e-3 – dist 200 – region-filter-p 0.1

DMRcate R/3.6.2+ cpg.annotate() analysis.type = ‘differential,’ fdr = 0.05
mCSEA R/3.6.2+ mCSEATest() regionsTypes = c(‘promoters,’ ‘genes,’ ‘CGI’)
coMethDMR R/3.6.2+ CoMethAllRegions() rDropThresh_num = 0.4, minCpGs = 3

lmmTestAllRegions() modelType = ‘randCoef’

* R/3.6.2+: R version 3.6.2 or above. 
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Stouffer-Liptak-Kechris (SLK) correction is 
applied to each original p-value, which adjusts 
the p-value using the Stouffer–Liptak method 
[29,30] to its neighbouring p-values as weighted 
according to the ACF. Then, comb-p uses the 
peak-finding algorithm to find enrichment regions 
with SLK-corrected p-values. Once the regions are 
identified, the regional significance is computed 
using original p-values with Stouffer-Liptak cor
rection and with a further Šidák correction [31] to 
account for multiple testing.

The comb-p program is a command-line tool 
and is implemented in python, which takes BED 
files of p-values as input. We used comb-p para
meters (–seed 0.001, – dist 200 and – region-filter 
-p 0.1) based on the authors’ illustrated example 
dated as of January 2021 on Github (https:// 
github.com/brentp/combined-pvalues). The seed 
option is to specify the cut-off of the p-value to 
start a region and the dist option is to extend 
a region if another p-value is found within this 
distance. The initial input of p-values in this study 
was obtained by running linear models and 
empirical Bayes methods using the R package 
limma.

DMRcate
DMRcate [14] can identify DMRs from the human 
genome using WGBS and Illumina Infinium Array 
(450 K and EPIC) data. DMRcate first computes 
an EWAS of the phenotype of interest using 
a linear model, and then computes the square of 
the per-CpG t-statistic and applies Gaussian 
smoothing within a given bandwidth, λ. Then, 
DMRcate models the smoothed test statistics 
using Satterthwaite methods [32] and computes 
p-values at each CpG using this model with 
Benjamini-Hochberg false discovery rate (FDR) 
correction [33]. CpG sites with FDR-adjusted 
p-values smaller than a given threshold (usually 
0.05) will be retained, and nearby significant 
CpG sites will be collapsed as regions using the 
same bandwidth, λ. The minimum FDR-adjusted 
p-value in the region is reported as representative. 
DMRcate is implemented in the R package 
DMRcate. We used the default value of 0.05 as 
the cut-off for selecting significant CpG sites and 
calling DMRs.

mCSEA (methylated CpGs set enrichment analysis)
The mCSEA method [16] identifies DMRs from 
Illumina array data (450 K/EPIC) and was 
designed to identify subtle but consistent methyla
tion differences related to complex phenotypes. It 
was built based on a Gene Set Enrichment 
Analysis (GSEA) method [34] and modifies pre- 
defined gene sets in the GSEA-based analysis to be 
sets of CpG sites in the pre-defined regions. Three 
types of pre-defined regions (CpG islands (CGI), 
gene bodies and promoters) are offered, and user- 
defined regions are allowed. GSEA determines the 
significance of pre-defined gene sets by selecting 
the top and bottom tails of gene sets from the 
ranking list. To be specific, for each given gene 
set, GSEA calculates an enrichment score (ES) 
through a weighted Kolmogorov-Smirnov-like sta
tistic [35] and uses permutations to compute the 
empirical nominal p-value of the ES. FDR is 
applied to account for multiple hypothesis testing. 
Similarly, mCSEA first ranks all CpG sites based 
on the t-statistic assessing the association between 
methylation and phenotype from linear models 
using the R package limma or a pre-sorted list. It 
then performs an enrichment analysis on GpG 
sites in pre-defined regions by applying the 
GSEA as implemented in the R package fgsea. 
Regions with CpG sites over-represented in the 
ordered list of sites would be detected as DMRs. 
mCSEA is implemented in the R package mCSEA. 
Analyses were tested on all three available pre- 
defined regions (regionsTypes = c(‘promoters,’ 
‘genes,’ ‘CGI’)).

coMethDMR
Gomez [17] presents an unsupervised method to 
identify DMRs by additionally selecting co- 
methylated regions (i.e., collections of correlated 
sites) within a genome-wide class of CpGs without 
using any outcome information. Given the chosen 
regions, clusters of CpG probes are extracted by 
default with at least three CpGs and a max gap of 
up to 200 bp between any two consecutive probes. 
The co-methylated sub-regions are further selected 
by keeping all of the contiguous CpGs with rdrop 
statistics greater than a pre-determined threshold 
(0.4 by default). As described by Gomez [17], ‘The 
rdrop statistics are the leave-one-out correlations 
between CpG with the sum of methylation levels 
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in all other CpGs using methylation M-values.’ 
The coMethDMR then applies a mixed-effects 
model to test groups of CpGs against continuous 
phenotype. Both a random coefficient mixed 
model and a simple linear mixed model are avail
able to choose from, where the former additionally 
includes random probe effects (i.e., how each CpG 
varies concerning the group mean). FDR-corrected 
p-values are reported to account for multiple 
testing.

The method coMethDMR is implemented in the 
R package coMethDMR and offers two pre-defined 
regions (genic and intergenic) on Illumina arrays. 
The default values were applied for both the rdrop 
statistics cut-off (rDropThresh_num = 0.4) and the 
minimum number of CpGs to be considered 
a ‘region’ when selecting co-methylated sub-regions 
(minCpGs = 3). The proposed random coefficient 
mixed model (modelType = ‘randCoef’) was used for 
all analyses.

Methods

Study population

To maintain the correlations among covariates 
and among CpG sites, we used real covariates 
and corresponding methylation array data from 
several studies with simulated phenotypes. 
Methylation data were obtained from two datasets 
based on the 450 K and one based on EPIC chips.

For the 450 K array, we used the GEO data 
GSE56046 from the MESA Epigenomics and 
Transcriptomics Study [36], denoted as the 
450 K-Mono. This dataset had 1202 subjects 
and is publicly available at https://www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi?acc=GSE56046. 
Its DNA methylation was measured on purified 
CD14+ monocytes derived from peripheral blood 
at 485,577 CpG sites passing quality control fil
ters. To reduce the potential batch effects for the 
dichotomous phenotype, we used a chip- 
balanced design for both arrays, which allowed 
us to assign an equal number of cases to each 
chip [37]. To apply this experimental design, we 
only adopted full chips where no samples on 
a chip were dropped due to quality issues or 
missing data. The 450 K-Mono dataset contains 
44 full chips with 12 subjects on each. We 

randomly selected eight full chips (12 samples 
per chip, 96 subjects total). The same chips 
were used in different simulations, which were 
also true for other data cohorts.

The second dataset denoted as the 450 K-WB 
was based on a study from the National Center for 
PTSD (NCPTSD) and involved 466 veterans and 
their intimate partners, which has been implemen
ted with a PTSD consortium pipeline for quality 
control (QC) [38,39]. One subject was dropped 
due to missing age. Methylation was measured 
from whole blood at 453,466 CpG sites passing 
QC filters. To investigate the performance of 
cohorts using 450 K arrays without a balanced 
chip design, a total of 96 subjects were randomly 
selected regardless of chip ids.

For the EPIC array, the data were from the 
Translational Research Center for TBI and Stress 
Disorders (TRACTS) cohort (denoted as the EPIC- 
WB), which also followed the same pipeline for the 
NCPTSD cohort [40,41]. The EPIC-WB dataset 
included 541 subjects, and its whole blood methyla
tion data include 819,877 CpG sites passing QC 
filters. Eleven subjects were dropped due to missing 
covariates. Among 530 subjects, there are 17 full 
EPIC chips with eight subjects on each available. 
For EPIC-WB we utilized a chip-balanced design, 
and, as the EPIC array only assesses eight samples 
per chip, 12 full chips were randomly selected to get 
the same total number of 96 subjects.

Covariates

In 450 K-Mono, as in the original publication [36], 
we included age, a combination factor (race, sex, 
and study site) and, to control for residual sample 
contamination in the purified monocytes, separate 
enrichment scores computed for B cells, T cells, 
natural killer (NK) cells and neutrophils. In 
450 K-WB, we used age, sex, ancestry information 
(PC1-3) and whole blood cell proportions (CD4 
+ and CD8 + T cells, NK cells, B cells, monocytes) 
as covariates. In EPIC-WB, we used age, sex, 
ancestry information (PC1-3) and blood cell pro
portions (CD4+ and CD8 + T cells, NK cells, 
B cells, monocytes) as covariates. Continuous cov
ariates were all standardized to z-scores in this 
study.
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Data pre-processing and QC

Details of the processing of the 450 K-Mono 
methylation data and generation of covariates 
downloaded from the GEO website are described 
in [36]. In short, data were normalized using the 
R package lumi. Individual probes with methyla
tion levels � 10% samples failing a 5% detection 
p-value threshold were dropped. We did not dis
card probes based on the presence of nearby SNPs. 
Besides, data were checked for mismatches in sex 
and ancestry, and outliers using multidimensional 
scaling plots. More information about the pre- 
processing and QC of 450 K-Mono methylation 
data could be found elsewhere in [36]. The sepa
rate enrichment scores for each blood cell type (B 
cells, T cells, NK cells, neutrophils) were generated 
by GSEA.

In the 450 K-WB, and EPIC-WB cohorts, the 
R packages CpGassoc and ChAMP were then used 
for data cleaning. Individual probes were set to 
missing if they did not satisfy a detection p-value 
threshold of 0.001. Data with missingness was 
filtered on CpG sites (>10%) and subjects (>5%). 
No probes were filtered for low signal intensity. 
Cross hybridizing probes between autosomes and 
sex chromosomes were excluded [42]. We did not 
discard probes based on the presence of nearby 
SNPs. Normalization was implemented using the 
beta mixture quantile dilation method (BMIQ) 
[43] in the R package watermelon, and the batch 
correction was performed using an empirical 
Bayes batch-correction method (ComBat) [44]. 
The proportions of white blood cell counts were 
estimated from the methylation data, including 
CD4+ and CD8 + T cells, NK cells, B cells and 
monocytes using the R package minfi [26,27].

Computational burden

To get an estimate of the relative computational 
burden, we performed each DMR method once on 
450 K-Mono and EPIC-WB data. The same 96 
subjects in the analyses and a simulated continu
ous phenotype from the standard normal distribu
tion were used. Both the cumulative running time 
of the main functions called by the method and its 
allocation of peak memory occurred were col
lected. The estimates were computed using the 

shared compute nodes at the Boston University 
Shared Computing Cluster (SCC). The SCC is 
a Linux cluster suitable for high-performance 
computing. To have comparable computational 
estimates, analyses used the same sandybridge 
CPU architecture and the same Intel Xeon E5- 
2670 processor, an 8-core processor with a base 
frequency of 2.60 GHz and with a max Turbo 
frequency of 3.30 GHz.

Simulations studies

To compare how FPRs would be affected by phe
notype distributions, we simulated four different 
types of phenotypes independently of DNA 
methylation data 1,000 times for 450 K-Mono, 
EPIC-WB and 450 K-WB, respectively. We gener
ated 1) a continuous phenotype from the standard 
normal distribution (normal phenotype), 2) 
a skewed continuous phenotype from the Chi- 
squared distribution with one degree of freedom 
(skewed continuous phenotype), 3) a dichotomous 
phenotype with 50% cases, and 4) a dichotomous 
phenotype with 25% cases as a comparison to 
allow for unequal cases and controls. For 
450 K-Mono and EPIC-WB, our simulated dichot
omous phenotypes were chip-balanced, i.e., each 
chip contains half cases and half controls, or 25% 
cases and 75% controls. To investigate the perfor
mance of the methods in the unbalanced assign
ment of cases and controls on chips, for the 
dichotomous on 450 K-WB, case and control sta
tus was assigned for the whole cohort of 96 sub
jects without respect to chips. Due to the 
extremely high computational burden in 
Bumphunter, we only simulated 100 times for the 
standard normal continuous and dichotomous 
50% balanced phenotype on 450 K-Mono and 
EPIC-WB and replicated BumphunterNS on the 
same settings to get comparable estimates.

Genome-wide false positive (GFP) rate
The performance of each method was evaluated in 
terms of the genome-wide false positive rate 
(GFP), computed as:

GFP rate ¼
#simulations with any genomewide significant region

#simulations 
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The adjusted p-values which accounted for multi
ple testing as reported for each method were used 
to represent genome-wide significance. The cut-off 
of 0.05 was chosen as the significance threshold. 
Therefore, methods yielding genome-wide signifi
cant DMRs approximately 5% of the time have 
appropriate FP control. Exact binomial confidence 
intervals were computed using the binom.test() 
function in R.

Regional false positive (RFP) rate
We next explored whether some regions had pat
terns of RFP rates that depended on the genomic 
characteristics of the region or pattern of CpGs 
assessed by the chip (e.g., number of CpGs 
assessed, size of the region), which could vary by 
method. We evaluated these relationships for all 
the methods and whether or not their GFP rates 
were well controlled at or near the 5% level. This is 
important, as, even for methods with an overall 
well-controlled false positive rate, there may be 
certain types of regions that are more prone to 
false positives, or for which significance is often 
never observed, which may indicate a lack of 
power. Conversely, even in methods for which 
the false positive rate is not well controlled, with 
a GFP well above 0.05, there may be certain types 
of regions that are more prone to false positives 
and others which are less prone to false positives. 
Previously reported DMRs in regions with char
acteristics that, for a particular method, are found 
to produce false positives at a high rate may war
rant further scrutiny. To investigate each method’s 
performance across genomic regions, we examined 
the relationship between the characteristics of each 
region and a regional false positive (RFP) rate 
calculated based on the nominal significance 
(uncorrected p < 0.05). As DMRcate only reports 
genome-wide significant regions and output very 
few regions from the null simulations, it was not 
considered for this evaluation. Besides, we did not 
present BumphunterNS in the regional analyses 
since using smoothed estimates were suggested 
by Bumphunter developers.

For each region, the RFP rate can be com
puted as

RFP rate ¼
#simulations with any nominal significant region

#simulations 

The supervised methods do not use pre-defined 
regions, and simulations usually output regions with 
varying starting and ending positions. Therefore, to 
correlate the performance of methods to particular 
genomic characteristics, we aggregated the results for 
fixed regions of the genome, and then annotated the 
number of times the results of the supervised method 
intersected with one of these fixed genomic regions. 
Each autosome is manually divided into 500 bp seg
ments, and the RFP and regional characteristics were 
calculated for each of these ‘fixed’ regions. This allows 
us to compare regional statistics across different 
supervised methods. Each fixed region is classified 
as a false positive only once per simulation regardless 
of how many output DMRs it overlaps with. For fixed 
regions, we applied the same rule of retaining regions 
with at least two probes.

Regional characteristics
We assessed the relationship between RFP rates and 
five regional statistics summarizing the characteris
tics of a region and the probes in it: 1) average 
absolute pairwise correlation between all probes in 
the region (AAC), 2) number of probes, 3) median 
distance to the closet flanking probes (MDF), which 
is a measure of probe density, 4) region size in bp, 
and 5) average variance of beta-values for all probes 
in the region, a measure of regional variability. Beta- 
value is a numeric measure of methylation level, 
ranging from 0 to 1 [45].

A univariate generalized linear model with a logit 
function was then applied to measure the associa
tion between RFP rates as the outcome on the 
bounded continuous scale between 0 and 1 and 
each of the five regional statistics [46]. Heatmaps 
were used to present the relationship between regio
nal statistics and RFP for each method. The comb-p 
method output a limited number of regions com
pared to others, but its heatmap was still included 
for completeness. To further assist in visualizing the 
relationship between regional statistics and FPRs, 
loess curves were added to the heatmap.

Results

Computational burden

Table 3 presents the relative computational burden 
for each of the methods. For one genome-wide run 
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on 450 K-Mono and EPIC-WB data, respectively, 
Bumphunter required 111.02 GB and 129.76 GB 
for the peak memory and 16.79 hours and 
26.01 hours to finish, while BumphunterNS only 
needed 37.86 and 52.01 GB and 1.08 and 
3.17 hours as a contrast. The method comb-p 
only needed less than 6 GB and less than 3 minutes 
on both. Other methods all used a moderate 
amount of peak memory ranging from 24.96 to 
28.07 GB on 450 K-Mono and 16.79 to 19.94 GB 
on EPIC-WB.

Genome-wide false positive rate

Our null simulations showed a wide disparity between 
DMR methods in terms of GFP rates. On the 
450 K-Mono array, for the normal phenotype, 
coMethDMR and DMRcate had the best performance 
with all well-controlled GFPs (<0.05) (Figure 1a). The 
GFP rates were 0.045 and 0.041 for coMethDMR on 
its pre-defined genic and intergenic regions, respec
tively, and 0.041 for DMRcate. The performance of 
comb-p, mCSEA (CGI, genes, promoters) and 
Bumphunter all had GFP rates well exceeding 0.05. 
Among those, Bumphunter surprisingly identified 
DMRs with genome-wide significance in almost 
every simulation, resulting in a high GFP rate of 
0.88 (95% CI: 0.80–0.94). Without using smoothed 
estimates, the GFP rate of BumphunterNS was still 
high at 0.81 (95% CI: 0.72–0.88). When using the 
skewed continuous phenotype, all methods except 
mCSEA had increased GPF rates compared to using 
the normal phenotype (Figure 1c). coMethDMR and 
DMRcate did not provide controlled GFP rates for the 
skewed continuous phenotype. The GFP rate in 
coMethDMR increased to 0.24 (95% CI: 0.21–0.27) 

compared to 0.045 (95% CI: 0.033–0.060) on the 
genic, and 0.14 (95% CI: 0.12–0.17) compared to 
0.041 (95% CI: 0.030–0.055) on the intergenic. The 
GFP rate in DMRcate increased to 0.53 (95% CI: 
0.50–0.56) from 0.041 (95% CI: 0.030–0.055). The 
performance of comb-p was also poor, offering 
a GFP rate of 0.69 (95% CI: 0.66–0.72) compared to 
0.49 (95% CI: 0.45–0.52) in the normal phenotype. 
The GFP rates in mCSEA were almost identical using 
the normal or the skewed continuous phenotype.

For the dichotomous phenotype with 50% cases, 
coMethDMR and DMRcate performed best with 
similar GFP rates compared to those reported for 
the normal phenotype (Figure 1b). The GFP rates 
were 0.029 and 0.031 for coMethDMR in genic and 
intergenic regions and 0.015 for DMRcate 
(Supplementary Table 1A). Both comb-p and 
mCSEA (CGI, genes, promoters) had GFP rates all 
above 0.1. The GFP rates could be as high as 0.41 for 
comb-p and 0.40 for mCSEA using genes as the pre- 
defined regions. The GFP rates in mCSEA using 
promoters and CGI were slightly better compared to 
that using genes but still not well controlled (0.27 for 
promoters and 0.14 for CGI). Bumphunter again 
provided the highest GFP rate of 0.95 (95% CI: 
0.89–0.98) and BumphunterNS had the second highest 
GFP rate of 0.90 (95% CI: 0.82–0.95).

On the EPIC-WB array, coMethDMR consis
tently exhibited well-controlled GFP rates across 
all three phenotypes (Figure 2a-c). DMRcate only 
provided controlled GFP rate of 0.037 (95% CI: 
0.026–0.051) in the normal phenotype, but not in 
the skewed continuous (0.22, 95% CI: 0.19–0.25) 
or the dichotomous (0.15, 95% CI: 0.13–0.17; 
Supplementary Table 1B). The comb-p method 
consistently generated high GFP rates, around 

Table 3. Summary of Relative Computation Burden.
450 K-Mono EPIC-WB

Methods Functions Peak Memory Time Peak Memory Time

Bumphunter bumphunter() 111.02 GB 16.79 hours 129.76 GB 26.01 hours
BumphunterNS bumphunter() 37.86 GB 1.08 hours 52.01 GB 3.17 hours
comb-p comb-p 5.54 GB <2 mins 5.60 GB <3 mins
DMRcate cpg.annotate() 24.96 GB <1 mins 19.94 GB <6 mins
mCSEA mCSEATest() 25.12 GB <2 mins 18.42 GB <3 mins
coMethDMR CoMethAllRegions() 

lmmTestAllRegions() 
AnnotateResults()

28.07 GB 1.94 hours 16.79 GB 10.71 hours

*450 K-Mono: 450 K monocytes data; EPIC-WB: EPIC whole blood data. 
*Interpret results relatively. The computational estimates were computed by the shared compute nodes at Boston University Shared 

Computing Cluster. 
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0.40 in the normal and the skewed continuous and 
0.60 in the dichotomous phenotype simulations. 
Bumphunter was still highly inflated but output 
relatively lower GFP rates compared to that on 

450 K-Mono. In Bumphunter, the GFP rates 
were 0.35 (95% CI: 0.26–0.45) for the normal 
phenotype simulations and 0.43 (95% CI: 0.33– 
0.53) for the dichotomous. For BumphunterNS, 

Figure 1. The Genome-wide False Positive Rates on 450 K-Mono: a. Normal Phenotype, b. Dichotomous Phenotype with 50% Cases, 
C. Skewed Continuous Phenotype.
*Genome-wide FP: genome-wide false positive rate.*450 K-Mono: 450 K monocytes data. *Bumphunter was not available due to 
computational limits. *BumphunterNS: Bumphunter with no smoothing function. 
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when not using a smoothed function, the GFP 
rates reduced but still slightly inflated at 0.10 
(0.049–0.18) and 0.19 (0.12–0.28) for the normal 
and dichotomous phenotypes. The GFP rates in 

mCSEA varied from 0.27 to 0.42 across the three 
pre-defined region types.

On both 450 K-Mono and EPIC-WB, the results 
for the dichotomous with 25% cases were very 

Figure 2. The Genome-wide False Positive Rates on EPIC-WB: a. Normal Phenotype, b. Dichotomous Phenotype with 50% Cases, 
C. Skewed Continuous Phenotype.
*Genome-wide FP: genome-wide false positive rate.*EPIC-WB: EPIC whole blood data. *Bumphunter was not available due to 
computational limits. *BumphunterNS: Bumphunter with no smoothing function. 
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similar to that for the dichotomous with 50% cases 
(Supplementary Figure 1A-B), except that 
DMRcate became more inflated on EPIC-WB. 
The number of regions being reported from each 
method with or without significance was also pro
vided. (Supplementary Table 2).

Additionally, methods were examined using the 
450 K-WB data with whole-blood methylation 
(Figure 3a-d and Supplementary Table 1C). 
Compared to 450 K-Mono where methylation 
was measured predominately on monocytes, 
across three phenotypes except the skew continu
ous, coMethDMR and DMRcate performed simi
larly, and comb-p slightly performed better but 
still with high GFP rates (0.34–0.36). For the 
skewed continuous, coMethDMR, comb-p and 
DMRcate all got lower GFP rates but only 
coMethDMR provided controlled GFP rates. 
Regardless of phenotype types, mCSEA had con
sistently high GFP rates varying between 0.37 
and 0.65.

Regional characteristics and false positive rates

We compared the associations between RFP rates 
and five regional statistics (AAC, number of 
probes, average variance, region size and MDF) 
of each DMR method across different phenotypes 
and arrays (Supplementary Table 3).

In general, for coMethDMR, the AAC and aver
age variance were significantly and positively asso
ciated with RFP rates on EPIC-WB and 
450 K-WB, and the number of probes was signifi
cantly positively associated on EPIC-WB. 
However, none of the associations on 
450 K-Mono was nominally significant except the 
positive association between RFP rates and AAC 
on the dichotomous with 25% cases 
(p-value = 0.043). AAC had the largest absolute 
standardized estimate among all available regional 
statistics, which was also true in mCSEA. We then 
visualized how RFP rates interacted with AAC for 
the normal phenotype on 450 K-Mono and EPIC- 
WB (Figure 4). The normal phenotype was illu
strated as the example here as the patterns for the 
dichotomous phenotype with 50% cases are very 
similar (Supplementary Figure 2). In Figure 4a, the 
RFP rates increased as AAC increased on both 
450 K-Mono and EPIC-WB, but the trend tilted 

more on EPIC-WB. Most regions had AACs below 
0.05 which were consistent with the low GFP rates 
in coMethDMR. On 450 K-Mono, the plot was 
radially distributed, and more regions were con
centrated in the middle. The regions on EPIC-WB 
were heavily concentrated in the lower left, and 
more regions had smaller AACs. From 
Supplementary Figures 3A and 4A, we did not 
observe clear patterns against RFP rates for the 
other four regional statistics (number of probes, 
MDF, region size, and average variance).

In mCSEA, its AAC, number of probes and 
average variance were significantly and positively 
associated with RFP rates, while MDF was nega
tively significant for all arrays. The regional size 
was positively significant for all four phenotypes 
on 450 K-WB only. In Figure 4b, the RFP rates in 
mCSEA increased along with AAC on the normal 
phenotype for both 450 K-Mono and EPIC-WB, 
and the patterns did not show much disparity 
between arrays. For both arrays, regions were 
more clustered with smaller AACs, and most 
regions had RFP rates above 0.05. Besides, some 
regions tended to always have nominal signifi
cance with RFP rates as high as 0.79 and 0.74 on 
450 K-Mono and EPIC-WB for the normal phe
notype, and 0.81 and 0.73 for the dichotomous 
phenotype with 50% cases.

In Bumphunter, we only evaluated the normal 
phenotype and dichotomous phenotype with 50% 
of cases on 450 K-Mono and EPIC-WB. The AAC 
and average variance were significant and posi
tively associated with RFP rates on both arrays, 
and the number of probes was significantly posi
tively associated on 450 K-Mono only. In 
Figure 4d, most regions had RFP rates above 0.05 
which were consistent with their high GFP rates. 
For both arrays, regions tended to have smaller 
AACs and the pattern was more clearly observed 
on EPIC-WB than 450 K-Mono. Besides, the RFP 
rates increased as AACs increased on both arrays. 
Some regions had RFP rates as high as 0.68 and 
0.60 on 450 K-Mono and EPIC-WB for the normal 
phenotype, and 0.69 on both arrays for the dichot
omous with 50% cases. Also concerning, many of 
the regions never appeared as significant DMRs, 
with RFP = 0 for 59.91% and 51.28% regions for 
the normal and 58.04% and 50.70% for the dichot
omous with 50% cases on 450 K-Mono and EPIC- 
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WB. We did not observe distinct regional features 
distinguishing those regions with RFP = 0. The 
plot for comb-p should be used with caution as it 
was included mainly for completeness (Figure 4d). 

The numbers of original regions (not fixed 
regions) output by comb-p were much fewer com
pared to the other methods, and those original 
regions were all nominally significant for the 

Figure 3. The Genome-wide False Positive Rates on 450 K-WB: a. Normal Phenotype, b. Dichotomous Phenotype with 50% Cases, 
C. Skewed Continuous Phenotype.
*Genome-wide FP: genome-wide false positive rate. *450 K-WB: 450 K whole blood data. *Bumphunter was not available due to 
computational limits. *BumphunterNS: Bumphunter with no smoothing function. 
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normal and the dichotomous with 50% cases on 
both 450 K-Mono and EPIC-WB (Supplementary 
Table 2A and 2B). Among those reported regions 

in comb-p, they tended to be clustered towards 
bigger AACs. In comb-p, none of its associations 
were significant, and the increasing trends of RFP 

Figure 4. Regional False Positive Rates vs Average Absolute Pairwise Correlations on 450 K-Mono and EPIC-WB for the Normal 
Phenotype with Overall Trend Indicated by a Loess Curve in Red: A. coMethDMR, B. mCSEA, C. Bumphunter, D. comb-p.
*Regional FP: regional false positive rate. *AAC: average absolute pairwise correlation. *450 K-Mono: 450 K monocytes data; EPIC-WB: 
EPIC whole blood data. 
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rates still existed but were flatter compared to 
other methods based on the limited number of 
regions reported for comb-p.

Discussion

This study evaluated the GFP control at the level 
of 0.05 for five array-based DMR methods: comb- 
p, Bumphunter, DMRcate, mCSEA and 
coMethDMR on Illumina 450 K and EPIC arrays. 
We also investigated how genomic patterns of RFP 
rates affected GFP rates by studying the associa
tions between RFP rates and five regional statistics 
including correlation, number of probes, probe 
density, region size, and probe variability.

Our null simulations indicated good perfor
mance for coMethDMR and DMRcate in several 
situations. coMethDMR generally provided consis
tently well-controlled GFP rates (<0.05) across all 
predefined regions regardless of the varieties in all 
arrays and phenotypes, except the skewed contin
uous phenotype on 450 K-Mono. DMRcate per
formed well on 450 K-Mono except for the skewed 
continuous phenotype, but it only performed well 
on EPIC-WB for the normal phenotype. The only 
difference between 450 K-Mono and 450 K-WB 
was coMethDMR’s performance on the skewed 
continuous phenotype. The method coMethDMR 
provided controlled GFP rates for the skewed con
tinuous simulation for 450 K-WB but not on 
450 K-Mono. Based on these results, we recom
mend the use of coMethDMR given GFP rates as 
the criteria on both 450 K and EPIC data and, as 
an alternate method, DMRcate performed well on 
450 K. Both methods worked well on normally 
distributed continuous phenotypes, although GFP 
rates were increased substantially in our analyses 
of skewed continuous distributions. We recom
mend that normal transformations of non- 
normal continuous phenotypes be used to control 
GFP rates in practice. Common normal transfor
mation methods include square root, cubic root 
and logarithm transformations for positively 
skewed (or right-skewed) data, and square and 
cubit transformations for negatively skewed (or 
left-skewed) data. A rank-based inverse normal 
transform can also be applied to nonnormally dis
tributed phenotypes, using the function 
RankNorm() which has been implemented in the 

R package RNOmni. For computational burden, 
DMRcate was superior in running time required, 
while it took hours for coMethDMR to finish. To 
reduce running time, one could parallelize jobs, 
increase the number of compute nodes or switch 
to using high-performance nodes as appropriate, 
though parallelizing jobs often comes with an 
increase of peak memory used. Both 
coMethDMR and DMRcate used a moderate 
amount of peak memory.

We could not recommend the other three ana
lysis packages for usage in the scenarios evaluated 
in this paper. Of these three, mCSEA had the best 
performance, and the computational costs of 
mCSEA were reasonable. With the chip-balanced 
design on 450 K-Mono and EPIC-WB, mCSEA 
had reasonable performance, but rates were 
above 0.096 across generating conditions. We 
also noted some sensitivity to unbalanced chip 
design in mCSEA which was not apparent in the 
other analysis methods. We also observed some 
irregularities in the pre-defined regions used in 
mCSEA. Some probes within the same regions 
were somehow found on different chromosomes, 
based on the Illumina annotations. Resolving the 
issue of inaccurate pre-defined regions might help 
mCSEA control its GFP rates.

The other two supervised methods, 
Bumphunter and comb-p, did not yield satisfac
tory GFP rates. Bumphunter and BumphunterNS 
both had high GFP rates >0.1 across all simulation 
conditions and up to 0.95 in one generating con
dition. We also noted that Bumphunter required 
the biggest peak memory and most cumulative 
running time, which could be demanding, even 
for high-performance computing clusters, 
although disabling smoothing (BumphunterNS) 
greatly reduced computing requirements. Again, 
parallelizing Bumphunter runs across multiple 
cores could also be used to reduce runtime, 
although we did not evaluate this here, as we 
wanted to get an estimate of the overall computa
tional burden that was comparable across meth
ods. The GFP rates of comb-p were also more than 
the target 5% rate and greater than 0.34 across all 
chip and phenotype combinations investigated. 
Based on these results, we cannot recommend 
the use of these two methods for EWASs. These 
high FPR rates are inflated enough that they may 
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warrant re-evaluation of previously published 
DMR results obtained using these two methods. 
In general, supervised methods tended to have 
worse performance in GFP rates for all four phe
notypes and three arrays (Figure 1, 2 1 1). It had 
previously been noted that was usually more chal
lenging for supervised methods to maintain con
trol of type I error, as the same data were used 
twice to both define the regions and their signifi
cance [47].

We noted that while some methods were better 
or worse performing overall, not all regions were 
equally likely to produce a false positive. In gen
eral, across methods, there was a tendency for 
increased false positive rates as the correlation 
between probes (as measured by the AAC) 
increased (Figure 4). The implications of this dif
fered by the method. For the method with well- 
controlled false positive rates (coMethDMR), this 
might imply that method tended to be conserva
tive in regions where most of the probes were 
independent, or near independent. However, for 
the methods with poorly controlled false positive 
rates (mCSEA, Bumphunter), this would indicate 
that a previously reported DMR in a high- 
correlation region should be viewed with addi
tional scepticism. Another consequence of this 
observation was that, in general, false positive 
rates were lower for the EPIC chip than for the 
450 K chip, as the EPIC chip has a lower correla
tion on average between adjacent probes as 
a function of the chip design [8,48]. However, as 
each method defines regions using different cri
teria, this impact was not observed uniformly 
across methods. For example, no clear difference 
was observed in comb-p, as the low-correlation 
regions were not represented in the output for 
either chip, and the average correlation across 
reported regions for the EPIC chip was elevated. 
Although we expected more regions with lower 
correlations from EPIC chips, the low-correlation 
regions in comb-p were not well represented in the 
output from either chip. This was evident when 
looking at the average correlations for the EPIC 
regions, which were higher than for other 
methods.

This study had several limitations. The perfor
mance of methods we examined could be impacted 
greatly by the parameter settings [11], but we did 

not find published studies that include suggested 
parameter settings for genome-wide analyses. 
Optimizing parameter settings was beyond the 
scope of this study. Therefore, the default or 
recommended parameters settings were used for 
each method, or the settings from the authors’ 
illustrated examples were substituted if the pre
vious information was not available. It is quite 
possible that a motivated researcher would be 
able to identify parameters for the methods that 
perform better than we have indicated here. 
However, our investigation should make clear 
that any such optimization should include 
a rigorous evaluation of false positive rates based 
on genome-wide simulations. R scripts for running 
genome-wide null simulations using each evalu
ated DMR method are available on GitHub 
( h t t p s : / / g i t h u b . c o m / g g z h e n g / D M R _  
NullSimulations). The scripts include notes on the 
steps needed to clean and run simulations using 
the publicly available monocyte data examined 
here. It can be used with minor modifications to 
analyse other datasets or adapted to perform simu
lations using other DMR methods. Also, the per
formance was evaluated mainly based on GFP rates 
but not on power or other criteria. Though 
coMethDMR and DMRcate generally guaranteed 
controlled GFP rates, their ability to identify truly 
significant DMRs should be evaluated in the 
future. Another limitation of this study is that 
only three datasets were used in the simulations. 
The three data sets we used in this study had 
substantial heterogeneity in age ranges, propor
tions of women participants, different tissue 
types, and methylation array types. Within each 
tissue type, the genome-wide nature of the exam
ination leads to an evaluation of many different 
types of regions in terms of the number of probes, 
the correlation between probes, probe spacing, etc. 
Variations between datasets may likely shift the 
proportion of regions with particular characteris
tics, for example, the shift from 450 K to EPIC 
probes increased the number of probes and 
decreased the correlation between adjacent probes 
on average. However, for methods that exhibited 
considerable inflation, such as Bumphunter and 
mCSEA, the inflation was not restricted simply to 
one particular type of region. That is, inflation was 
observed across a wide variety of regions, although 
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it was true that a high correlation between probes 
tended to increase correlation somewhat. In addi
tion, coMethDMR appeared quite robust in terms 
of GFP rate control across different simulating 
conditions and within regions with different types 
of characteristics under each condition. We would 
encourage users who are concerned about analyses 
of a particular type of data in DMR analyses, who 
are interested in evaluating a new DMR analysis 
method, or who are interested in exploring addi
tional parameter options for the methods which we 
evaluated to modify the supplied simulation code 
to fit their particular needs and to perform 
a genome-wide null simulation.
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