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Abstract

Motivation: Cell type-specific activities of cis-regulatory elements (CRE) are central to understanding gene regulation
and disease predisposition. Single-cell RNA 50end sequencing (sc-end5-seq) captures the transcription start sites (TSS)
which can be used as a proxy to measure the activity of transcribed CREs (tCREs). However, a substantial fraction of
TSS identified from sc-end5-seq data may not be genuine due to various artifacts, hindering the use of sc-end5-seq for
de novo discovery of tCREs.

Results: We developed SCAFE—Single-Cell Analysis of Five-prime Ends—a software suite that processes sc-end5-seq
data to de novo identify TSS clusters based on multiple logistic regression. It annotates tCREs based on the identified
TSS clusters and generates a tCRE-by-cell count matrix for downstream analyses. The software suite consists of a set
of flexible tools that could either be run independently or as pre-configured workflows.

Availability and implementation: SCAFE is implemented in Perl and R. The source code and documentation are freely
available for download under the MIT License from https://github.com/chung-lab/SCAFE. Docker images are available
from https://hub.docker.com/r/cchon/scafe. The submitted software version and test data are archived at https://doi.org/
10.5281/zenodo.7023163 and https://doi.org/10.5281/zenodo.7024060, respectively.

Contact: chungchau.hon@riken.jp or jay.shin@riken.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The expression of genes specifying cell identity is primarily con-
trolled by the activities of their cognate cis-regulatory elements
(CREs), mostly promoters (Forrest et al., 2014) and enhancers
(Andersson et al., 2014). While gene expression can be quantified
with single-cell RNA-sequencing methods (sc-RNA-seq), profiling
of CREs primarily relies on single-cell Assay for Transposase
Accessible Chromatin using sequencing (sc-ATAC-seq) (Buenrostro
et al., 2015). Alternatively, for a subset of CREs that are transcribed
(i.e. tCREs), their transcription can be used as a proxy for their ac-
tivity (Forrest et al., 2014). Previously, we demonstrated the applica-
tion of sc-end5-seq in the C1 platform (Fluidigm) for the detection
of pre-annotated tCREs in single cells (Kouno et al., 2019).
However, de novo discovery of tCREs from sc-end5-seq data is chal-
lenging, due to excessive artifactual transcription start sites (TSS)
arising from strand invasion (Tang et al., 2013) and other sources
(e.g. sequence biases) (Cvetesic et al., 2018) during the template
switching (TS) reactions (Adiconis et al., 2018). This results in

artifactual tCREs detected along the gene body known as ‘exon
painting’ (Kawaji et al., 2014). While a fraction of ‘exon painting’
reads could be attributed to cleavage and recapping (Affymetrix

ENCODE Transcriptome Project and Cold Spring Harbor
Laboratory ENCODE Transcriptome Project, 2009), their exact

molecular origins remain elusive. Here, we have devised a multiple
logistic regression classifier to effectively minimize artifactual TSS.
It is implemented in a software suite, Single-Cell Analysis of Five-

prime Ends (SCAFE), for de novo identification and annotation of
tCREs from sc-end5-seq data.

2 Materials and methods

SCAFE consists of a set of command line tools written in Perl

(Supplementary Fig. S1; Supplementary Table S1). SCAFE accepts
read alignments *.bam files generated from cellranger (https://
github.com/10XGenomics/cellranger) and read 1 should be

sequenced for >35 genome-mappable nucleotides for confident
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identification of cDNA 50ends. First, scafe.tool.sc.bam_to_ctss
extracts the TS oligo/cDNA junction on read 1 and detects extra G
mismatches (i.e. unencoded-G) at cDNA 50end (Cumbie et al., 2015)
(Supplementary Note S1). This unencoded-G information will be
later incorporated into a multiple logistic regression model to iden-
tify genuine TSS clusters. Then, scafe.tool.cm.remove_strand_in-
vader removes the artifactual TSS due to strand invasion (Tang
et al., 2013) (Supplementary Note S2 and Supplementary Fig. S2a).
Next, tool scafe.tool.cm.cluster defines TSS clusters by parametric
clustering of cDNA 50ends (i.e putative TSS) using Paraclu (Frith
et al., 2008) (Supplementary Note S3). Then scafe.tool.cm.filter
extracts the properties of TSS clusters (Fig. 1a) and fits into a mul-
tiple logistic regression model (pre-trained or user-trained) to obtain
probabilities for TSS classification (Fig. 1b). The multiple logistic re-
gression model was trained to distinguish TSS clusters that are likely
genuine (e.g. with high ATAC-seq signal, as true positives) and like-
ly artifactual (e.g. with low ATAC-seq signal, as true negatives)
(Fig. 1a; Supplementary Note S4). Users can supply their own epige-
nomic data for training (e.g. ATAC-seq signal), or use a model pre-
trained with matched bulk-ATAC-seq and sc-end5-seq data on
human iPSC. Next, scafe.tool.cm.annotate defines tCREs by merg-
ing closely located TSS clusters and annotates these tCREs as prox-
imal or distal based on their distance to annotated gene TSS. It also
defines hyperactive distal loci by stitching closely located distal
tCREs with disproportionately high activities, analogous to super-
enhancers (Chang et al., 2019) (Supplementary Note S5). Finally,
scafe.tool.sc.count counts the number of unique molecular

identifiers (UMI) within each tCRE in single cells and generates a
tCRE-by-cell UMI count matrix and scafe.tool.cm.directionality
quantifies the strand biases of their expression (Supplementary Note

S6). Workflows are available for various user scenarios, e.g. aggre-
gating multiple libraries, and other tools available for processing

bulk 50end RNA-sequencing data (Shiraki et al., 2003).

3 Results

We have used SCAFE to identify tCREs from sc-end5-seq data on
human iPSCs and benchmarked with matched bulk—ATAC-seq

and bulk-CAGE data (Supplementary Note S7; genome browser
view available, see ‘Data availability’). About 3% of reads were

identified as strand invasion artifacts and removed (Supplementary
Fig. S2b). TSS clusters were defined (n¼429 668). We observed a
substantially higher proportion of TSS clusters along the gene body

in sc-end5-seq methods than bulk-CAGE (Supplementary Fig.
S3a), consistent with the fact that ‘exon painting’ is more prevalent

in TS-based methods (Cumbie et al., 2015). We benchmarked the
properties of TSS clusters for the classification of genuine and arti-
factual TSS clusters (Fig. 1a). The UMI counts within the TSS clus-

ter (cluster count) performed the worst [area under receiver
operating characteristic (ROC) curve (AUC) ¼ 0.641], and its per-

formance decreased with sequencing depth (Fig. 1a and c). Two
other common metrics, UMI count at TSS summit (summit count,
AUC¼0.725) and within 675nt flanking its summit (flanking

count, AUC¼0.737) performed only marginally better than the
cluster count (Fig. 1a), suggesting these commonly used metrics are
at best mediocre classifiers for TSS. As ‘exon painting’ artifacts are

positively correlated with transcript abundance, making count-
based thresholds poor performers, we examined other metrics that

are independent of transcript abundance, including UMI counts
corrected for background expression (corrected expression) and
percentage of reads with 50mismatched G (Cumbie et al., 2015)

(unencoded-G percentage) (Supplementary Note S4). Notably,
both metrics performed well across sequencing depths with AUC

>0.9 (Fig. 1c).
We found the combination of flanking count, unencoded-G per-

centage and corrected expression achieved the best performance.
Therefore, these three predictors were used to devise a combined
TSS classifier using multiple logistic regression (Fig. 1b), which

achieved AUC >0.98 across sequencing depths (Fig. 1c). Its accur-
acy is high for TSS clusters at various genomic regions across a wide

range of cutoffs (Supplementary Fig. S4a), which is well-validated
by chromatin accessibility, promoter motifs, CpG island, sequence
conservation (Supplementary Fig. S4b–f) and histone marks

(Fig. 1d). At the default cutoff (probability¼0.5), �98% of sense
exonic TSS clusters were removed (Supplementary Fig. S4a). These
removed TSS clusters are void of marks for active CREs but overlap

marks for transcription elongation, suggesting our combined TSS
classifier effectively removed ‘exon painting’ artifacts (Fig. 1d). In

addition, the TSS clusters located at gene TSS are marked with a bi-
modal H3K4me1 pattern which indicates active promoters, in con-
trast to the others that are marked with relatively unimodal

H3K4me1 pattern which indicates active enhancers (Cheng et al.,
2014) (Fig. 1d). Finally, tCREs (n¼34 684) were defined as either

proximal (n¼24 808) or distal (n¼9878) based on their distance to
annotated gene TSS (Supplementary Fig. S3b). The genome-wide
distribution of tCREs defined by sc-end5-seq and bulk-CAGE data

are similar (Supplementary Fig. S3c). Considering the excessive
exonic TSS cluster in sc-end5-seq before filtering (Supplementary

Fig. S4a), our combined TSS classifier effectively minimize these
‘exon painting’ artifacts, which cannot be easily distinguished from
genuine TSS clusters solely using count-based metrics (Fig. 1a). Our

combined TSS classifier thus provides an integrated metric that is
mostly independent of RNA expression levels and robustly distin-
guishes genuine TSS from artifacts.

0.1 0.5 0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

Metric values [scaled value]

N
um

be
r

of
T

S
S

cl
us

te
r

[s
ca

le
d

nu
m

be
r]

Gold standard TSS Clusters
Low ATAC
signal

High ATAC
signal

AUC
0.641

AUC
0.725

AUC
0.737

AUC
0.908

AUC
0.968

Cluster
count

Summit
count

Flanking
count

Corrected
expression

Unencoded G
percentage

0.1 0.5 0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

False positive rate

Tr
ue

po
si

tiv
e

ra
te

(a)

0.1

0.5

0.9

0.1 0.5 0.9
Metric values [probability]

N
um

be
r

of
T

S
S

cl
us

te
r

[s
ca

le
d

nu
m

be
r]

AUC
0.984

Probability
(TSS classifier)

0.1 0.5 0.9

0.1

0.5

0.9

False positive rate

Tr
ue

po
si

tiv
e

ra
te

(b)

0.5

0.6

0.7

0.8

0.9

1.0

0M 50M 100M 150M
Sequencing depth [million UMI]

A
re

a
U

nd
er

R
O

C
cu

rv
e

(A
U

C
)

Metrics

Probability
(TSS classifier)

Unencoded G
percentage

Corrected
expression

Flanking
count

Summit
count

Cluster
count

(c)

n=47,679 [11.10%]

n=4,023 [0.94%]

n=187,910 [43.73%]

n=14,958 [3.48%]

n=71631 [16.67%]

n=13,465 [3.13%]

n=8,444 [1.97%]

n=58,401 [13.59%]

n=5,267 [1.23%]

n=3,987 [0.93%]

n=1,203 [0.28%]

n=5,492 [1.28%]

n=2,788 [0.65%]

n=4,420 [1.03%]

Below cutoff 0.5 Above cutoff 0.5

G
ene

T
S

S
(sense)

G
ene

T
S

S
(antisense)

E
xonic

(sense)
E

xonic
(antisense)

Intronic
(sense)

Intronic
(antisense)

Intergenic
regions

−5
,0

00

−2
,5

00 0
2,

50
0

5,
00

0

−5
,0

00

−2
,5

00 0
2,

50
0

5,
00

0

20

40

60

20

40

60

10

20

30

40

10

20

30

40

50

10

20

30

40

10

20

30

40

10

20

30

40

Distance relative to cluster summit [nt]

P
er

ce
nt

ag
e

of
T

S
S

cl
us

te
rs

ov
er

la
p

hi
st

on
e

m
ar

k
pe

ak
s

[%
]

Histone marks

H3K27ac

H3K4me1

H3K4me3

H3K36me3

(d)

Fig. 1. De novo identification of genuine TSS. (a) Distribution of TSS clusters prop-

erties (left) and their classification performances measured as AUC (right). (b)

Distribution of probability (TSS classifier) (left) and its classification performance

measured as AUC (right). (c) Performance of various metrics as a TSS classifier in

(a) and (b) across various sequencing depths. (d) Histone marks at TSS clusters with

a probability below (left) or above (right) 0.5 cutoff, at annotated gene TSS, exonic

or intronic regions in sense or antisense orientations, or otherwise intergenic

regions. n, number of TSS clusters; %, percentage of TSS clusters in all genomic

locations regardless of probability thresholds
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