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Abstract

Motivation: Pangenome graphs representing aligned genome assemblies are being shared in the text-based
Graphical Fragment Assembly format. As the number of assemblies grows, there is a need for a file format that can
store the highly repetitive data space efficiently.

Results: We propose the GBZ file format based on data structures used in the Giraffe short-read aligner. The format
provides good compression, and the files can be efficiently loaded into in-memory data structures. We provide
compression and decompression tools and libraries for using GBZ graphs, and we show that they can be efficiently
used on a variety of systems.

Availability and implementation: Cþþ and Rust implementations are available at https://github.com/jltsiren/
gbwtgraph and https://github.com/jltsiren/gbwt-rs, respectively.

Contact: jouni.siren@iki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Pangenome graphs (or genome graphs) (Eizenga et al., 2020b) are
graphs representing sequence variation. Each node in the graph is
labeled with a sequence, and each path represents the concatenation
of the labels on it. Pangenome graphs are often used as reference
genomes. Initial efforts have focused on using graphs as technical
artifacts to improve accuracy in applications such as read alignment
(Garrison et al., 2018; Kim et al., 2019; Li et al., 2020; Rautiainen
and Marschall, 2020; Sirén et al., 2021) and genotyping (Chen
et al., 2019; Ebler et al., 2022; Eggertsson et al., 2017; Hickey et al.,
2020; Kim et al., 2019; Sirén et al., 2021).

There is increasing interest in using graphs as biologically mean-
ingful references that represent sequence variation in the relevant
population. The Human Pangenome Reference Consortium (HPRC)
(Wang et al., 2022) aims to create a human reference genome based
on over 350 high-quality haplotype-resolved assemblies. The refer-
ence will consist of the assembled genomes and pangenome graphs
representing their alignments.

Software tools for pangenome graphs use the text-based
Graphical Fragment Assembly (GFA) format as their data inter-
change format. GFA was originally intended for assembly graphs,
but it is also viable for pangenome graphs with some restrictions and
extensions. A GFA file representing only the graph itself is not too
large, and it is often compressed further with standard data compres-
sors such as gzip. The format becomes inadequate if we also want to
represent the original sequences as paths. While the paths are often
highly similar and should compress well, common general-purpose

data compressors use windows no larger than a few megabytes. With
paths longer than that, the compressor never sees the same region on
multiple paths in the same window. Hence, it cannot compress the
similarities. Decompressing a large text file and reading the graph
and the paths into in-memory data structures can also be expensive.

We propose the GBZ file format for pangenome graphs repre-
senting aligned sequences. The format is based on the data structures
used in the Giraffe aligner (Sirén et al., 2021), and it uses a GBWT
index (Sirén et al., 2020) for storing a large collection of similar
paths space efficiently. GBZ is a path-based format. Paths represent-
ing the original sequences are the primary objects, while the exist-
ence of nodes and edges is inferred from usage. We provide a
standalone Cþþ library and compressor for creating and using GBZ
graphs, as well as a Rust library for using existing graphs. Both
libraries can load GBZ graphs quickly into versatile data structures
that are space-efficient enough to enable working with human pan-
genome graphs on a desktop or a laptop.

Our libraries use Elias–Fano encoded bitvectors for storing
increasing integer sequences. We describe various improvements to
their semantics and the query interface that make them more prac-
tical and may be of independent interest.

Pangenome graph construction pipelines sometimes create highly
collapsed regions that break the assumptions the GBWT makes to
ensure fast queries. We show that decompressing and caching parts
of the GBWT index is enough to restore performance in specific
tasks when such regions are present. Based on this, we suggest
changes to make the in-memory GBWT data structures more robust
with highly collapsed graph regions.
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2 Materials and methods

2.1 Background
2.1.1 Strings

In the following, we refer to semiopen and closed integer intervals as
½a . . . bÞ ¼ ½a;bÞ \ N and ½a . . . b� ¼ ½a; b� \ N, respectively.

A string S ¼ s0 � � � sn�1 of length jSj ¼ n is a sequence of charac-
ters from an ordered alphabet R. For convenience, we often assume
that the alphabet is the set of integers ½0 . . . jRjÞ. We write S½i� ¼ si

and S½i . . . jÞ ¼ si � � � sj�1 to access individual characters and sub-
strings of any sequence S. Prefixes and suffixes are substrings of the
form S½0 . . . jÞ and S½i . . . nÞ, respectively, and we write them as
S½. . . jÞ and S½i . . .Þ. A text string T ends with an endmarker T½jTj �
1� ¼ $ that does not occur in any other text position. The endmarker
is the smallest character in the alphabet, and we often assume that
$ ¼ 0.

We say that alphabet R supports complementation if each char-
acter c 2 R has a complement c 2 R such that c ¼ c for all c 2 R.
Given an alphabet R that supports complementation, the reverse
complement of string S 2 Rn is string S ¼ sn�1 � � � s0 that contains
the complement of each character in S in reverse order.

Space-efficient data structures rely on rank and select queries on
various sequences. For any string S, position i � jSj, and character
c 2 R, we define S:rankði; cÞ as the number of occurrences of charac-
ter c in the prefix S½. . . iÞ. If S½i� ¼ c, we refer to it as the occurrence
of rank S:rankði; cÞ of character c. We also define the inverse oper-
ation S:selectði; cÞ ¼ j, where S½j� is the occurrence of rank i of char-
acter c. (Note that we use 0-based select, where the first occurrence
is of rank 0.)

2.1.2 Bitvectors

A bitvector is a data structure that encodes a binary sequence (a
string over alphabet f0, 1g) and supports efficient rank/select
queries. We call characters 0 and 1 unset and set bits, respectively. If
A is a strictly increasing sequence of m non-negative integers, we
can encode it as a bitvector B, where B½A½i�� ¼ 1 for all i < m and
B½j� ¼ 0 otherwise. If B is a binary sequence, we can decode it as in-
teger sequence A with A½i� ¼ B:selectði;1Þ. Query B:rankðj; 1Þ can
then be understood as the number of values A½i� < j in sequence A.

Plain bitvectors store the binary sequence without any further
encoding. There are many efficient structures that support rank and
select on plain bitvectors. We use the ones from SDSL (Gog and
Petri, 2014).

A binary sequence is sparse if the number of set bits is much
smaller than the number of unset bits. If a binary sequence is sparse,
jAj � jBj in the corresponding bitvector. In this article, a sparse bit-
vector is a data structure that uses Elias–Fano encoding to store a
sparse binary sequence space efficiently (Okanohara and Sadakane,
2007).

Elias–Fano encoding stores the low and high parts of each value
A½i� separately. The lowest w bits are stored in an integer array low

by setting low½i� ¼ A½i�mod 2w. For the high part, we assign each
value x to a bucket using bucketðxÞ ¼ bx=2wc and encode the buck-
ets in unary. If a bucket contains k values, we encode it as a binary
sequence 1k0. We concatenate the binary sequences for each bucket
to form bitvector high. The encoding works best with
w � log 2jBj � log 2jAj, which makes the number of buckets similar
to the number of values. Bitvector high then contains similar num-
bers of set and unset bits.

If high½j� is the set bit of rank i, we can compute

A½i� ¼ bucketðA½i�Þ � 2w þ low½i� ¼ ðj� iÞ � 2w þ low½i�:

Given i, we can compute j ¼ high:selectði;1Þ. Hence,

B:selectði;1Þ ¼ A½i� ¼ ðhigh:selectði; 1Þ � iÞ � 2w þ low½i�:

For B:rankði; 1Þ, we first find the end of the bucket that would
contain value i using h ¼ high:selectðbucketðiÞ;0Þ. The number of
values in buckets up to bucketðiÞ is l ¼ h� bucketðiÞ. If
high½h� 1� ¼ 1, it is the set bit of rank l � 1. If also
low½l � 1� � i mod 2w, we know that A½l � 1� � i and iterate with

h h� 1 and l  l � 1. If either of the conditions fails, we return
B:rankði; 1Þ ¼ l.

2.1.3 Burrows–Wheeler transform

Let T be a text string of length n. The suffix array of text T is an
array SA of pointers to the suffixes of T in lexicographic order. For
any i < j, we have T½SA½i� . . .Þ < T½SA½j� . . .Þ. Because the text ends
with an endmarker, we always have SA½0� ¼ n� 1.

We can generalize the suffix array for an ordered collection
T0; . . . ;Tm�1 of m texts. Each element of the suffix array is now a
pair SA½i� ¼ ðj; j0Þ that refers to suffix Tj½j0 . . .Þ of text Tj. To make
the lexicographic order unique, we assume that the endmarker of Ti

is smaller than that of Tj for any i < j. Then SA½i� ¼ ði; jTij � 1Þ for
0 � i < m. We use the suffix array to define the document array
DA as an array such that DA½i� ¼ j if SA½i� refers to a suffix of Tj.

The (multi-string) Burrows–Wheeler transform (BWT) (Burrows
and Wheeler, 1994) of a collection of texts is a permutation BWT of
character occurrences in the texts. For each suffix in lexicographic
order, the permutation lists the character preceding the suffix. We
define the BWT using the suffix array: BWT½i� ¼ Tj½j0 � 1� if SA½i� ¼
ðj; j0Þ and j0 > 0. If j0 ¼ 0, we set BWT½i� ¼ $.

Let C be an array of length jRj þ 1 such that C½c� is the total
number of occurrences of all characters c0 < c in the texts. For any
character c, if C½c� � i < C½cþ 1�, and SA½i� ¼ ðj; j0Þ, we know that
Tj½j0� ¼ c. We later use this property for partitioning the BWT into
substrings BWTc ¼ BWT½C½c� . . .C½cþ 1�Þ by the first character of
the corresponding suffix.

Given a text collection T0; . . . ;Tm�1, the lexicographic rank of
string X is the number of suffixes of the collection that are smaller
than X. The key operation on the BWT is the LF-mapping that
maps the lexicographic rank of a suffix to the lexicographic rank of
the preceding suffix. In other words, it is a function such that if
SA½i� ¼ ðj; j0Þ, then SA½LFðiÞ� ¼ ðj; j0 � 1Þ. We leave this form of
LF-mapping undefined when j0 ¼ 0. A more general form of
LF-mapping takes a character c 2 R as a second argument. If the lex-
icographic rank of string X is i, the lexicographic rank of string cX
is LFði; cÞ. In particular, LFðiÞ ¼ LFði;BWT½i�Þ. We leave the func-
tion undefined with c ¼ $.

The FM-index (Ferragina and Manzini, 2005) is a space-efficient
text index based on the BWT. It computes LF-mapping as

LFði; cÞ ¼ C½c� þ BWT:rankði; cÞ:

Let SA½i . . . jÞ be the range of suffixes starting with pattern
(string) P. Then, the range of suffixes starting with pattern cP, for
any character c 2 R, is SA½LFði; cÞ . . . LFðj; cÞÞ. We can also use LF-
mapping for extracting individual texts from the BWT. The last
character of text Ti is BWT½i�. As long as BWT½j� 6¼ $ at the current
position j, there may be other characters in the text before the ones
we have already extracted. We therefore move to j LFðjÞ and find
the possible previous character at BWT½j�.

2.1.4 Graphs

Let G0 ¼ ðV 0;E0Þ be a directed graph with a finite set of nodes V 0 	
N and a set of edges E0 
 V 0 �V 0. Because we often use value 0 for
technical purposes and store some information for all integers be-
tween node identifiers, we assume that V0 is a dense subset of inter-
val ½a . . . bÞ for some 1 � a < b. Let P be a string over alphabet V 0.
We say that P is a path in graph G0 if ðP½i�;P½iþ 1�Þ 2 E0 for all
0 � i < jPj � 1.

Genome graphs are often represented as bidirected sequence
graphs G ¼ ðV;E; ‘Þ. Each node v 2 V has a non-empty string label
‘ðvÞ over an alphabet that supports complementation, and it can be
seen in two orientations o 2 fþ;�g. If o is an orientation, we use o
to refer to the other orientation. When we visit node v in forward
orientation þ, we read string ‘ðv;þÞ ¼ ‘ðvÞ. For a visit in reverse
orientation –, we read the reverse complement ‘ðv;�Þ ¼ ‘ðvÞ. The
set of edges E is a subset of pairs of node visits ðV � fþ;�gÞ � ðV �
fþ;�gÞ such that ððv; oÞ; ðw; o0ÞÞ 2 E iff ððw;o0 Þ; ðv;oÞÞ 2 E.
Sequence P of node visits is a path in graph G if ðP½i�;P½iþ 1�Þ 2 E
for all i. If P is a path in graph G, the reverse path is the reverse
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complement P, where the complement of a node visit is
ðv; oÞ ¼ ðv; oÞ. That is, the reverse path visits the same nodes in re-
verse order and in the other orientation.

Graph representations often store the topology of a bidirected se-
quence graph G ¼ ðV;E; ‘Þ as a directed graph G0 ¼ ðV 0;E0Þ. Each
node visit ðv;oÞ 2 V � fþ;�g becomes a node w 2 V 0 in the
directed graph.

The libhandlegraph library (Eizenga et al., 2020a) provides a
common Cþþ interface for various bidirected sequence graph
implementations. A HandleGraph is an immutable graph.
PathHandleGraph extends it with a set of named paths, where each
path has a unique non-empty string name.

2.1.5 GFA file format

We restrict our attention to the subset of the GFA file format version
1.1 used by HPRC. (The software versions used in this article output
GFA 1.0, as the status of W-lines in the specification was still un-
clear when we started the (de)compression benchmarks.) As GBZ is
not intended for assembly graphs, we do not support features like se-
quence overlaps between adjacent segments or read coverage anno-
tations. The subset is mostly compatible with the bidirected
sequence graph data model:

• S-lines or segments are the nodes of the graph. They consist of a

unique non-empty string name and a non-empty string label.
• L-lines or links are the edges of the graph. They connect two seg-

ment visits. We do not allow any overlaps between the connected

segments.
• P-lines or paths are named paths in the graph. They consist of a

unique non-empty string name and a non-empty sequence of seg-

ment visits.
• W-lines or walks are paths with metadata suitable for represent-

ing assembled genomes. They consist of a sample name (non-

empty string), haplotype identifier (integer), sequence name

(non-empty string), an optional interval of positions in the

named sequence and a non-empty sequence of segment visits.

2.1.6 GBWT index

The GBWT (Sirén et al., 2020) is a run-length encoded FM-index
that stores a collection of paths in directed graph G0 ¼ ðV 0;E0Þ as
strings over alphabet V 0. Run-length encoding allows it to compress
collections of similar paths well. Because we build the FM-index for
reverse strings, LF-mapping with character w after character v fol-
lows edge (v, w) instead of going backwards on edge (w, v). We
break the BWT into substrings BWTv for each v 2 V 0 and store the
substrings in the nodes. Each node v 2 V 0 also stores a list of out-
going edges (v, w) and some rank information that allows comput-
ing LF-mapping using locally stored information. We compress the
nodes as byte sequences. GBWT queries involve decompressing en-
tire nodes. Hence, we assume that nodes do not have too many
neighbors and paths do not visit them too many times.

We use the GBWT for storing paths in a bidirected sequence
graph G ¼ ðV;E; ‘Þ with the approach described in Section 2.1.4.
The GBWT index is usually bidirectional (Lam et al., 2009). For
each path P, we store both P and P in the index, which enables
extending the pattern in both directions.

Each path in the graph (which may be stored as two paths in the
GBWT index) may be associated with a structured name. The name
consists of four integer fields: sample identifier, contig identifier,
haplotype/phase identifier and fragment identifier/running count.
Each name is assumed to be unique. GBWT metadata may also con-
tain lists of string names corresponding to sample and contig
identifiers.

The GBWTGraph (Sirén et al., 2021) is the graph representation
used in the Giraffe aligner. It uses a bidirectional GBWT index for
graph topology and stores the labels of both orientations of all nodes
as a single concatenated string. The graph also caches some informa-
tion that can be computed from the GBWT for faster access. A

GBWTGraph is always a subgraph induced by the paths. Paths rep-
resenting DNA sequences are the primary objects, while the exist-
ence of nodes and edges is inferred from usage. This is not a
fundamental limitation of the data structures but a deliberate choice
made due to the path-centric algorithms used in Giraffe.

2.2 Improved sparse bitvectors
Elias–Fano encoded sparse bitvectors are often used for partitioning
integer intervals ½a . . . bÞ into subintervals ½selectði;1Þ . . .
selectðiþ 1;1ÞÞ. For example, we may want to store an ordered col-
lection of strings S0; . . . ; Sm�1 as a single concatenated string X for
faster disk I/O. A sparse bitvector B of length jXj can then serve as
an index. If we set B½j� ¼ 1 at the starting position of each string, we
can access the original strings as Si ¼ X½B:selectði; 1Þ . . .
B:selectðiþ 1;1ÞÞ (with B:selectðm; 1Þ ¼ jXj for convenience).
However, bitvector semantics and the rank/select query interface
limit the practicality of this approach.

If some of the strings S½i� are empty, we have A½i� ¼ A½iþ 1�,
which would require setting bit B½A½i�� twice. However, Elias–Fano
encoding is not limited to storing strictly increasing sequences. The
encoding and selectð�; 1Þ queries work correctly as long as all values
in bucket i occur before the values in bucket j in the integer sequence
A, for all buckets i < j. For rankð�;1Þ queries, the algorithm works
correctly as long as the sequence is non-decreasing. The semantics of
rankð�;0Þ and selectð�; 0Þ queries become unclear when duplicate
values are allowed.

When we want to retrieve string S½i�, we have to compute both
B:selectði;1Þ and B:selectðiþ 1;1Þ. Computing them directly is in-
efficient, as they involve relatively expensive high:selectð�;1Þ
queries. To avoid this, select queries should return an iterator with
internal state ði; high:selectði; 1ÞÞ. We can compute B:selectði; 1Þ ef-
ficiently from those values. When we want to advance the iterator,
we set i iþ 1 and scan for the position of the next set bit in high.
This is efficient on the average, as we have chosen a width w such
that high contains similar numbers of set and unset bits. The iterator
can also be used for decompressing the integer sequence A
efficiently.

Given a value j 2 ½a . . . bÞ, we may want to retrieve the subin-
terval ½selectði;1Þ . . . selectðiþ 1; 1ÞÞ containing it, as well as the
rank i of the subinterval. This can be achieved using a predecessor
query B:predðjÞ ¼ ði;B:selectði;1ÞÞ, where i is the last position with
A½i� � j. We can compute it naively by first finding the rank i ¼
B:rankðjþ 1;1Þ � 1 and then computing B:selectði; 1Þ. This is ineffi-
cient, as rank queries on B involve computing high:selectð� ; 0Þ,
while select queries on B require high:selectð�;1Þ. A better imple-
mentation is similar to a rank query. We first find the end of the
bucket that would contain value j, and then we iterate backward
until we find a value A½i� � j or run out of values.

2.3 GBZ file format
2.3.1 General

The GBZ file format is based on the serialization format used in the
Simple-SDS library. A file is an array of elements: unsigned little-
endian 64-bit integers. If the file is memory-mapped, all objects with
alignment of eight bytes or less are properly aligned in memory. A
vector is serialized by writing the number of items as an element, fol-
lowed by the concatenated items. If the size of an item is not a mul-
tiple of 64 bits, the vector must be padded with 0-bits. Optional or
implementation-dependent structures may be serialized by writing
the size of the serialized object in elements as an element, followed
by the object itself. A reader can then easily skip the object or pass it
through as a vector of elements.

Two general principles have guided the development of the GBZ
file format: determinism and backward compatibility with the in-
memory representation of existing GBWT indexes. The former
means that the same data should always be compressed in the same
way, without any variation that depends on the implementation or
the execution environment. When these principles are in conflict,
compatibility has prevailed in the first version of the file format.
Compatibility also required making some complex requirements to
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support old GBWT indexes. Future versions of the file format may
choose simplicity and determinism over compatibility.

See Figure 1 for an overview of the file format and
Supplementary material S1 for further details.

2.3.2 Building blocks

Simple-SDS provides a number of basic succinct data structures.
They are serialized by encoding some header information as ele-
ments and storing the data in lower-level structures. The fundamen-
tal structure is the raw bitvector that stores a binary sequence of
length n in a vector of elements. An integer vector stores a sequence
of n integers of width w each as a raw bitvector. Plain bitvectors
store the data as a raw bitvector, followed by optional rank/select
support structures. The support structures are optional and unspeci-
fied, as they are implementation-dependent and can be built quickly
from the bitvector itself. Sparse bitvectors use a plain bitvector for
high and an integer vector for low.

String array stores an ordered collection of strings as a single
concatenated string, as described in Section 2.2. The serialized struc-
ture uses a sparse bitvector as an index and compresses the strings
using alphabet compaction. For example, if the strings only contain
characters in fA;C;G;N;Tg, they are stored as an integer vector
containing values in ½0 . . . 5Þ. In-memory structures may decompress
the index as an integer vector and the strings as a byte vector for
faster access.

Dictionary encodes a bidirectional mapping between an ordered
collection of distinct strings S0; . . . ; Sm�1 and their identifiers
½0 . . . mÞ. In the serialized structure, the strings are stored as a string
array. An integer vector stores the identifiers in lexicographic order.
In-memory structures may decompress the dictionary into a more
appropriate representation.

Tags are key-value pairs used for annotation. Keys are case-
insensitive strings, and they are assumed to be distinct. Values can
be arbitrary strings. Serialized tags are stored as a string array, while
in-memory structures may use more appropriate representations.
Key source identifies the library used for serializing the data. The
reader may use it for determining if it can understand any optional
structures that are present.

2.3.3 GBWT

The serialization format for the GBWT resembles the compressed
in-memory structure. It starts with a header and tags. Node records
are compressed as byte sequences using the original encoding, and
the sequences are concatenated in a byte vector. A sparse bitvector is
used as an index over the nodes.

The GBWT uses document array samples for mapping BWT
positions to the identifiers of the corresponding paths. They are seri-
alized as an optional structure in an unspecified format. The struc-
ture is optional, because many applications do not need that
functionality. The format is left unspecified, as the original structure
is complex and not particularly efficient. Future versions of the file
format may specify a better structure based on the r-index (Gagie
et al., 2020).

GBWT metadata is stored in an optional structure. The structure
is optional, because the GBWT may also be useful in applications
outside genomics. Metadata starts with a header, followed by a vec-
tor of path names. Sample and contig names are serialized as
dictionaries.

2.3.4 GBWTGraph

As the GBWTGraph uses a GBWT index for graph topology, it only
needs to store a header and node labels. While the in-memory data
structure used in Giraffe stores the labels in both orientations for
faster access, serializing the reverse orientation is clearly unneces-
sary. The forward labels are concatenated and stored as a string
array.

While GFA graphs have segments with string names, bidirected
sequence graphs have nodes with integer identifiers. And while the
original graph may have segments with long labels, it often makes
sense to limit the length of the labels. For example, the minimizer
index used in Giraffe supports up to 1024 bp nodes. Some algo-
rithms create temporary copies of node labels, and long labels may
also be inconvenient to visualize.

For this purpose, the GBWTGraph includes a node-to-segment
translation. The translation consists of a string array storing segment
names S0; . . . ; Sm�1 and a sparse bitvector B mapping node ranges to
segments. If the translation is in use, the set of nodes is assumed to
be V0 ¼ ½1 . . . jV 0j�. Segment Si is then the concatenation of nodes
v 2 ½B:selectði;1Þ . . . B:selectðiþ 1; 1ÞÞ.

2.3.5 GBZ

GBZ is a container that stores a bidirectional GBWT index and a
GBWTGraph. It also includes a header and tags. The format inter-
prets GBWT metadata in a specific way.

Paths corresponding to sample name _gbwt_ref are named
paths. They correspond to paths in a PathHandleGraph and P-lines
in GFA. The name of the path is stored as a contig name.

Other paths correspond to GFA W-lines. GBWT path names
map to GFA walk metadata in the following way. Sample names
and haplotype identifiers can be used directly. GBWT contig names
become GFA sequence names. GBWT fragment identifier is used as
the start of the GFA sequence interval.

2.4 GFA compression
2.4.1 Compression algorithm

We propose a GBZ compression algorithm that makes several passes
over a memory-mapped GFA file. The algorithm works best when,
for each weakly connected component in the graph and each line
type, all lines from that component with that type are consecutive in
the file.Fig. 1. Overview of the GBZ file format
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In the first pass, the algorithm determines the starting position
and type of each line in the file. It determines whether a node-to-
segment translation is necessary. A translation is created if a segment
contains a sequence longer than the user-defined threshold (1024 bp
by default) or if segment names cannot be interpreted as integer
identifiers. The algorithm also chooses an appropriate size
for GBWT construction buffers based on the length of the longest
path.

In the second pass, the algorithm processes all segments. It builds
the node-to-segment translation if necessary and stores node labels
in a temporary structure. The third pass processes links and creates
a temporary graph. The algorithm finds the weakly connected
components of the graph and sorts them by the minimum node iden-
tifier. It then determines GBWT construction jobs by using large
components directly as jobs and combining consecutive small com-
ponents into larger jobs.

The fourth pass builds GBWT metadata from P-lines and W-
lines. If there are W-lines present, the algorithm interprets P-lines as
named paths, as described in Section 2.3.5. Otherwise, the algorithm
breaks P-line names into fields using a user-provided regex and
maps the fields to the components of GBWT path names.

GBWT construction happens in the fifth and final pass that
builds a separate GBWT index for each job. The jobs are started
from the largest to the smallest (by the number of nodes in the com-
ponents), and multiple jobs can be run in parallel. Each job first
processes P-lines and then W-lines in the corresponding components
and appends the paths into a buffer. When the buffer is full, the
paths are inserted into the GBWT index using the direct construc-
tion algorithm (Sirén et al., 2020).

After all construction jobs have finished, the algorithm merges
the partial GBWT indexes into a final index. Because the jobs are
based on weakly connected components, the partial indexes do not
overlap, and node records from them can be used directly in the
merged index (Sirén et al., 2020). The algorithm builds a
GBWTGraph from the final GBWT index, node labels, and node-to-
segment translation, and then it serializes everything in the GBZ
format.

2.4.2 Decompression algorithm

Decompressing GFA from a GBZ file is straightforward. We first it-
erate over the node-to-segment translation (or nodes if there is no
translation) and output the S-lines in that order. Then, we iterate
over all edges in order determined by the source node, select the
ones that connect segments and output them as L-lines. Because
each edge ððv;oÞ; ðw; o0ÞÞ of a bidirected sequence graph implies
the existence of the reverse edge ððw; o0 ÞÞ; ððv;oÞÞ; we only write the
smaller of the two (in the usual tuple ordering) as an L-line. Writing
L-lines is slower than writing S-lines, because it requires partial de-
compression of the node records. Hence, it may be useful to write
them using multiple threads. When multiple threads are used, we do
not guarantee the exact order for performance reasons.

Then, we write named paths as P-lines and finally other paths as
W-lines, both according to their order in the GBWT index. We inter-
pret GBWT metadata as described in Section 2.3.5. As extracting
the paths from the GBWT index is the most expensive part of de-
compression, this should be done using multiple threads. Again,
when multiple threads are used, we do not guarantee the exact
order.

3 Results

3.1 Experimental setup
The main GBZ library is written in Cþþ. It builds on the original
GBWT implementation. The graph supports the PathHandleGraph
interface from libhandlegraph, exposing named paths through the
interface. Other paths can be accessed using a custom interface.
There is also a Rust library that can use existing GBWT and GBZ
structures but not build new ones.

There are some differences between the implementations. The
Rust implementation does not use document array samples. Because

the Cþþ implementation uses Giraffe data structures, it decom-
presses and stores node labels in both orientations. The Rust imple-
mentation only stores the forward orientation. The GFA
decompression algorithm in the Cþþ implementation uses addition-
al memory to speed up decompression. It decompresses the node-to-
segment translation and large (>1024-byte) GBWT node records for
faster access. The Rust implementation uses the query interface dir-
ectly without caching. Finally, the Cþþ implementation writes both
edges and paths using multiple threads, while the Rust implementa-
tion only uses multiple threads for paths.

Both implementations use an external library for basic succinct
data structures. The Cþþ implementation uses the vgteam fork of
SDSL (Gog et al., 2014), which includes the sparse bitvector
improvements and supports the Simple-SDS serialization format.
The Rust implementation uses Simple-SDS.

As our test data, we used two 90-haplotype human graphs based
on year 1 data from HPRC (Liao et al., 2022). Cactus was built
using the Minigraph–Cactus pipeline (Hickey et al., 2022) with
GRCh38 as the reference. PGGB was built using the Pangenome
Graph Builder pipeline (Garrison et al., 2022). We also created a
1000GP dataset with 5008 human haplotypes by combining the full
1000 Genomes Project (The 1000 Genomes Project Consortium,
2015) indexes from the Giraffe paper (Sirén et al., 2021). See
Table 1 for details.

Chromosome 16 of the PGGB graph contains a highly collapsed
repetitive region, where the average haplotype visits a few nodes
tens of thousands or even hundreds of thousands of times. These
nodes also have a large number of neighbors. This breaks the
assumptions made by the GBWT, making compression much slower
than expected. The Cþþ implementation successfully mitigates the
issue during decompression by caching large node records. Hence, a
better in-memory representation for large records should be enough
to fix this and other similar issues.

We used four systems for most experiments: Desktop (iMac
2020), Laptop (MacBook Air 2020), Intel Server (AWS i3.8xlarge)
and ARM Server (AWS r6gd.8xlarge). For scalability experiments
with the 1000GP dataset, we used another system with more disk
space: Large (AWS i4i.16xlarge). See Table 2 for details. All data
were stored on a local SSD. While we used different Cþþ compilers
on different systems, the Rust compiler was always rustc version
1.58.1.

We used the general-purpose gzip compressor to establish a base-
line for performance. As gzip is often used in bioinformatics tools
and pipelines, we chose it over more modern compressors such as
zstd.

See Supplementary materials S2–S4 for further details.

3.2 Compression
We compressed the Cactus and PGGB datasets in the GBZ format
using the compressor included in the Cþþ implementation. File
sizes were 3.6 times and 2.5 times smaller, respectively, than those
achieved by gzip (see Table 1). The compression ratio improves fur-
ther as the number of haplotypes increases, as seen with the 1000GP
dataset.

We measured the time and memory usage of GBZ compression
and the time usage of gzip compression. (Memory usage of gzip
compression is negligible.) The results can be seen in Table 3.
Because the input GFA is memory-mapped, any parts of the input
stored in the disk cache are included in the memory usage of the
compressor. We did not use Laptop for this benchmark due to the
limited amount of memory.

With the Cactus dataset, multi-threaded GBZ compression
required a similar time to single-threaded gzip compression. Intel
Server and ARM Server were faster than Desktop, both with individ-
ual GBWT construction jobs and by the total running time multi-
plied by the number of parallel jobs. This was likely caused by the
higher memory bandwidth of the server processors.

The compression speed of the PGGB dataset was dominated by
the highly collapsed region of chromosome 16. Without chromo-
some 16, the compression would have finished in 60–90 min (de-
pending on the system), which is slightly higher than gzip
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compression time. The GBWT construction job for chromosome 16
took an order of magnitude longer. Dealing with such collapsed
regions will require changes to the in-memory data structures used
in the GBWT (see Section 4). Desktop was faster than the servers
due to the higher single-core speed of its processor. Its memory
usage was also lower because there was not enough memory for
caching the entire input.

3.3 In-memory structures
The GBZ file format has been designed for fast loading into
in-memory data structures. In the Cþþ implementation, these are
the same GBWT and GBWTGraph structures that are used in the
Giraffe aligner. The structures in the Rust implementation are simi-
lar. While some structures must be rebuilt when loading the file and
other parts are decompressed for faster access, most of the GBWT
can be copied from the file to the data structures.

We measured the time and memory usage of loading GBZ files.
The results can be seen in Table 3. Loading the structures took tens
of seconds. Desktop and Laptop were faster than Intel Server and
ARM Server due to their higher single-core performance. The Cþþ
implementation used more memory than the Rust implementation
because it stores node labels in both orientations.

Laptop used less memory than the other systems, especially with
the PGGB dataset. This is because we defined memory usage as resi-
dent set size. When memory usage approaches memory capacity, the
operating system starts swapping out inactive memory regions to
compressed memory and ultimately to disk.

3.4 Decompression
We decompressed the Cactus and PGGB datasets from GBZ format
to GFA format on all four systems using the Cþþ and Rust decom-
pressors. Time and memory usage of can be seen in Table 3. We also
measured the time used by gzip decompression for a comparison.

With the Cactus dataset, the multi-threaded Cþþ decompressor
was about as fast as the single-threaded gzip decompressor on
macOS. The Linux version of gzip was several times slower. The
Rust decompressor was also slower because it uses the query inter-
face directly without caching. ARM Server was faster than Intel
Server due to having more CPU cores.

Chromosome 16 in the PGGB dataset caused issues again. The
Cþþ decompressor managed to decompress it in a reasonable time,
as it caches large GBWT node records. Decompression time was rea-
sonable even on Laptop, which only had half the memory required
for the in-memory data structures. This is because the memory ac-
cess patterns during decompression are mostly sequential, and swap-
ping does not slow it down too much. The Rust implementation was
more than an order of magnitude slower than the Cþþ implementa-
tion. Gzip decompression was again slower in Linux than in macOS.

3.5 Scalability
We tested the scalability of the GBZ (de)compressors with the
1000GP dataset. Because the GFA file was too large for the other
systems, we ran these experiments on the Large system with
13.5 TiB of local SSD space. The results can be seen in Table 3.
Note that because Large is a newer system, the running times are

Table 1 Datasets and their properties

Dataset .gfa .gfa.gz .gbz GBWT Sequence Paths S-lines L-lines P-lines W-lines

Cactus 44.9 GiB 11.1 GiB 3.11 GiB 1.49 GiB 3.3 billion 8.8 billion 81.4 million 113.0 million 2580 24 456

PGGB 88.6 GiB 14.6 GiB 5.73 GiB 2.09 GiB 8.4 billion 16.3 billion 110.9 million 154.8 million 34 796 0

1000GP 9534.9 GiB 2231.3 GiB 16.84 GiB 7.97 GiB 3.2 billion 2125.1 billion 293.2 million 372.9 million 0 115 184

Note: We list the size of the file in uncompressed and gzip-compressed GFA format and in the GBZ format. GBWT refers to the size of the GBWT index

without document array samples. We also list total sequence length (in bases) in the graph and the total length of the paths (in nodes) stored in the GBWT index,

as well as the number of lines of each type in the GFA file

Table 2 Systems used for the experiments

System Processor CPU Cores Jobs RAM OS Cþþ compiler

Desktop Intel Core i9-10910 10 physical (20 logical) 10/10 128 GiB macOS 12.2.1 GCC 11.2.0

Laptop Apple M1 4 performance þ 4 efficiency –/4 16 GiB macOS 12.2.1 Apple Clang 13.0.0

Intel Server Intel Xeon E5-2686 v4 16 physical (32 logical) 16/16 244 GiB Ubuntu 20.04 GCC 9.3.0

ARM Server AWS Graviton2 32 16/32 256 GiB Ubuntu 20.04 GCC 9.3.0

Large Intel Xeon Platinum 8375C 32 physical (64 logical) 32/32 512 GiB Ubuntu 20.04 GCC 9.3.0

Note: Jobs indicates the number of parallel compression/decompression jobs.

Table 3 Wall clock time and peak memory usage for various tasks on different datasets and systems

Dataset System Compression gzip Loading

(Cþþ)

Loading

(rust)

Decompression

(Cþþ)

Decompression

(rust)

gunzip

Cactus Desktop 40 min/96.5 GiB 25 min 23 s/11.8 GiB 19 s/5.9 GiB 116 s/15.5 GiB 239 s/7.1 GiB 80 s

Cactus Laptop — — 23 s/9.4 GiB 16 s/5.9 GiB 186 s/9.7 GiB 304 s/6.5 GiB 80 s

Cactus Intel Server 19 min/111.5 GiB 39 min 37 s/11.7 GiB 35 s/5.9 GiB 125 s/14.5 GiB 193 s/6.5 GiB 361 s

Cactus ARM Server 16 min/111.0 GiB 48 min 33 s/11.7 GiB 33 s/5.9 GiB 86 s/14.5 GiB 138 s/7.1 GiB 350 s

PGGB Desktop 890 min/114.7 GiB 34 min 43 s/27.2 GiB 39 s/13.1 GiB 309 s/32.7 GiB 7226 s/14.2 GiB 121 s

PGGB Laptop — — 70 s/8.0 GiB 40 s/7.6 GiB 638 s/7.2 GiB 18451 s/12.5 GiB 116 s

PGGB Intel Server 1365 min/194.6 GiB 54 min 73 s/27.1 GiB 73 s/13.0 GiB 335 s/32.2 GiB 9194 s/13.5 GiB 603 s

PGGB ARM Server 1232 min/194.3 GiB 66 min 65 s/27.1 GiB 68 s/13.0 GiB 187 s/33.5 GiB 3499 s/14.7 GiB 551 s

1000GP Large 779 min/489.2 GiB 4341 min 48 s/28.1 GiB 35 s/12.3 GiB 7462 s/49.3 GiB 7677 s/18.8 GiB 48618 s
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not directly comparable with the other server instances. Loading
times are comparable with Desktop, as the processors have similar
single-threaded performance.

Compression took 13 h. With the input much larger than memory
capacity, roughly half of the memory usage was for in-memory data
structures and a half for caching parts of the input. The initial valid-
ation pass took 165 min, or about 1 s/GB. Passes 2 to 4 (segments,
links and metadata) needed a total of 7 min, including 4 min for find-
ing weakly connected components. The final construction pass took
605 min. Note that while there were enough CPU cores for 32 paral-
lel construction jobs, there were only 23 jobs to run. Decompression
times were similar with both Cþþ and Rust implementations, as the
CPU was fast enough that disk I/O became the bottleneck.

Run-length encoded BWT is effective in compressing repeated
substrings that have many copies in the file. Increasing the number
of copies only increases run lengths, which take logarithmic space to
encode. As haplotypes are generally inherited in large blocks shared
by many samples, the size of a GBWT index depends primarily on
the number of nodes in the graph. We see this in Table 1, where the
1000GP index is only a few times larger than the Cactus and PGGB
indexes despite storing over 50 times more haplotypes. We also see
it in the sizes of in-memory structures, which are very similar be-
tween 1000GP and PGGB. While 1000GP needs more space for the
GBWT index, the PGGB graph contains much more sequence.

See also Supplementary material S5 for experiments on the effect of
the number of parallel jobs on compression/decompression performance.

4 Discussion

We have proposed the GBZ file format for pangenome graphs repre-
senting aligned genomes. The file format is based on data structures
used in the Giraffe aligner, and it is the preferred graph format for
the aligner. GBZ graphs are widely supported in vg (Garrison et al.,
2018), and we also provide standalone libraries for using them in
other software tools.

GBZ compresses GFA files with many similar paths well. The
compression speed is competitive as long as the graph does not con-
tain certain degenerate structures. A GBZ file can be decompressed
quickly into a GFA file for tools that do not support GBZ. The
graph and the paths in the file can also be loaded quickly into in-
memory data structures.

There are two main data models for representing paths metadata
in pangenome graphs. The W-line/GBWT model is based on struc-
tured names appropriate for assembled genomes. The P-line/lib-
handlegraph model uses string names, which are harder to interpret
but suitable for more diverse applications. GBZ supports both mod-
els. Some applications of pangenome graphs require specifying a set
of paths that acts as a linear reference sequence. Neither model has a
way of specifying whether the graph contains a preferred reference
sequence or if any sample is an equally valid choice. If such a con-
vention emerges, GBZ can support it using tags.

The GBWT assumes that the nodes of the graph do not have too
many neighbors and the paths do not visit the same nodes too many
times. Pangenome graph construction pipelines sometimes produce
graphs that violate these assumptions. Because the GBWT has to de-
compress the node record every time it computes LF-mapping from
that node, this can cause significant performance loss. However, as
we saw in the decompression benchmarks (Section 3.4), caching
large records in a more suitable format helps to avoid the issue.
While the format we used was only appropriate for extracting paths
from the GBWT, a proper solution such as a run-length encoded
wavelet tree should work in most situations. The ones from the
DYNAMIC library (Prezza, 2017) look promising. However, using
them in the GBWT may require significant engineering effort and
changes to the query interface.
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