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Abstract

Summary: Reverse-Phase Protein Array (RPPA) is a robust high-throughput, cost-effective platform for quantita-
tively measuring proteins in biological specimens. However, converting raw RPPA data into normalized,
analysis-ready data remains a challenging task. Here, we present the RPPA SPACE (RPPA Superposition
Analysis and Concentration Evaluation) R package, a substantially improved successor to SuperCurve, to meet
that challenge. SuperCurve has been used to normalize over 170 000 samples to date. RPPA SPACE allows ex-
clusion of poor-quality samples from the normalization process to improve the quality of the remaining sam-
ples. It also features a novel quality-control metric, ‘noise’, that estimates the level of random errors present in
each RPPA slide. The noise metric can help to determine the quality and reliability of the data. In addition, RPPA
SPACE has simpler input requirements and is more flexible than SuperCurve, it is much faster with greatly
improved error reporting.

Availability and implementation: The standalone RPPA SPACE R package, tutorials and sample data are available
via https://rppa.space/, CRAN (https://cran.r-project.org/web/packages/RPPASPACE/index.html) and GitHub (https://
github.com/MD-Anderson-Bioinformatics/RPPASPACE).

Contact: rakbani@mdanderson.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Reverse-Phase Protein array (RPPA) platform, inspired by dot-
blot technology, enables quantitative, cost-effective, high-through-
put measurement of protein expression of total and phosphoproteins
with high sensitivity and precision (Akbani et al., 2014; Kornblau
et al., 2010; Liotta et al., 2003; Uhlmann et al., 2012). Initially pre-
sented in 2001, RPPA has been used in a variety of applications over
the last two decades (Paweletz et al., 2001; Spurrier et al., 2008).
The SuperCurve R package was developed to provide comprehen-
sive modules for normalization, quality control, spatial adjustment
and protein loading control in a single package (Hu et al., 2007; Ju
et al., 2015; Kaushik et al., 2014; Neeley et al., 2012). Details of the
Super curve modules are provided in Supplementary materials. To
date, it has been used to process over 170 000 samples at MD
Anderson Cancer Center and elsewhere. Some of the datasets

generated using it, including 7578 samples from The Cancer
Genome Atlas and 966 samples from the Cancer Cell Line
Encyclopedia, can be found at The Cancer Proteome Atlas Portal,
https://tcpaportal.org/ (Li et al., 2013). Normacurve, another pack-
age based on SuperCurve, integrates simultaneous normalization
(based on background fluorescence, spatial variation and variation
in total spotted protein) with the quantitation (Troncale et al.,
2012). Another published modified version of SuperCurve assumes
serial dilution of RPPA samples as a time-series structure and sug-
gests taking the difference between the dilutions in order to minim-
ize the influence of background noise (Sun et al., 2015).

Here, we present RPPA SPACE (RPPA Superposition Analysis
and Concentration Evaluation), a standalone R package, the succes-
sor to SuperCurve. Figure 1A shows the different steps implemented
in RPPA SPACE to normalize raw data. Detailed guidelines on input
and output formats are provided in the Supplementary material.
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The standalone R package offers substantial improvements over
SuperCurve (Supplementary Table S1), as highlighted below.

2 Materials and methods

We obtained text files and slide images for 10 sets from the RPPA
Functional Proteomics Core facility at MD Anderson Cancer
Center. Experimental details of slide processing and quantitation are
described at https://www.mdanderson.org/research/research-resour
ces/core-facilities/functional-proteomics-rppa-core.html. The RPPA
SPACE package (with different numbers of compute cores) and the
SuperCurve package were run on all 10 sets individually by random-
ly selecting 100 antibodies from each set. RPPA SPACE analysis was
repeated to study the effect of the number of antibodies by randomly
selecting 20, 40, 60, 80 and 100 antibodies. Speedup for each set
was calculated by the following formula:

Speedup ¼ Time required for SuperCurve run/Time required for

RPPA SPACE run using specified number of cores

The mean of the 10 runs was used to compute a single-point esti-
mate shown in Figure 1B, and the standard deviation was used to
compute the error bars.

3 Distinguishing features of RPPA SPACE

3.1 Improved quality control

1. Exclusion of poor-quality samples: Like SuperCurve, RPPA

SPACE uses all spots from all samples on a slide to construct a

single curve of intensity versus relative concentration that best

fits all of the data. If there are a few outlier spots, their effect on

the final curve is usually small. However, in some cases, a small

number of large residuals can have a substantial effect. To miti-

gate such effects, RPPA SPACE allows users to specify which

samples to exclude from all slides when creating the curves.

Once the curves are created, the user can choose to use them to

normalize data from the outlier samples. The suggested work-

flow is to run all samples and examine the output plots to deter-

mine which samples are outliers with large residuals, then

choose which, if any, spots to exclude.

2. Noise estimation: It is crucial for a user to know the estimated

level of random errors, or noise, in the measurements. Those

parameters had thus far been difficult to quantitate for RPPA be-

cause they varied from one antibody to the next, and even from

one slide to the next for the same antibody. To overcome that

problem, we developed a simple, yet effective method to com-

pute noise on a per-slide basis. The user runs several technical

replicates on the slide that express the protein of interest. RPPA

SPACE computes their standard deviation to estimate the magni-

tude of noise on the slide. Since they are technical replicates, any

variations in their measurements cannot be attributed to biology

and are concluded to be due to measurement errors. We found

that the errors had a very low correlation with the magnitude of

protein expression (R ¼ 0.16 across 4261 slides, Supplementary

Fig. S1). That implies that they can be used to estimate noise

level across an entire slide because they don’t vary much based

on the expression levels of individual samples. A high noise level

(compared with prior data) indicates a poor-quality slide. RPPA

SPACE also outputs the mean expression across the technical

replicates. Like SuperCurve, RPPA SPACE allows for spatial ad-

justment using technical replicates (Neeley et al., 2012), and the

same replicates can be used for noise estimation. It is worth men-

tioning that, although RPPA SPACE algorithms have the poten-

tial to expand to other non-RPPA technologies in the future, in

its current form, RPPA SPACE cannot be applied to one-dot for-

mat microarrays due to its requirement for serial dilutions.

3.2 Simpler requirements and improved flexibility

1. No slide design file required: The layout of an RPPA slide can

vary among different laboratories from a single rectangular grid

to multiple grids and sub-grids. SuperCurve requires users to

specify the layout in a separate slide-design file. RPPA SPACE

does not require that additional file. Instead, it automatically

determines the slide design features (e.g. slide layout, dilution

factor, series ID and spot type) from the first valid input file and

assumes the same design for all subsequent slides in the set. A

typical slide design handled by RPPA SPACE is described in

Supplementary material.

2. Reduced dependencies and more flexible image handling: Unlike

SuperCurve, RPPA SPACE does not require installing third-

party software, i.e. ‘ImageMagick’ for image handling. RPPA

SPACE can input image files in various formats (tiff, png, bmp,

gif, jpg) and different orientations. The package has built-in

functionality that enables the user to rotate the images for all the

slides by multiples of 90� until they are properly oriented. The

slide images are used in generating the final output image file,

but they are not used in the quantitation. Conversion of the data

from scanned image to numerical values is done outside of

RPPA SPACE, so the image format (and its associated dynamic

range) used for scanning is not part of the program.

3. Flexibility to use third-party protein loading correction: RPPA

SPACE implements all the post-processing protein loading nor-

malization methods available in SuperCurve, but unlike

SuperCurve, it also allows the user to select ‘no normalization’,

so protein loading adjustments can be done after RPPA SPACE

using any user-given method.

3.3 Faster run time
SuperCurve typically takes 9–10 h to run a batch of 1056 samples
and 500 antibodies in our laboratory (single core used, Intel Xeon
CPU E7-4850, 2 GHz). RPPA SPACE has a much faster run time, in
part due to the ability to use parallelization on multiple CPU cores
for computationally expensive steps such as curve fitting and spatial
correction (Fig. 1B). SuperCurve allows the use of only a single core.
Another advantage in terms of speed is due to image processing:
SuperCurve generates a computationally expensive and somewhat
unnecessary image of curve estimations and residual plots along

A B

Fig. 1. (A) RPPA SPACE processing. Processing steps executed by RPPA SPACE,

showing serial and parallel steps. Steps in blue are optional. Parallelograms indicate

input/output steps. (B) Speedup of RPPA SPACE relative to its predecessor,

SuperCurve. For each run, 100 antibodies were randomly selected from a set of

250–500 antibodies. The means across 10 runs, each from a different set, are plotted

here, along with standard error bars, as a function of the number of cores used.

SuperCurve allows use of only one CPU core (A color version of this figure appears

in the online version of this article.)
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with the input slide image. In RPPA SPACE, image generation is op-
tional. Figure 1B displays the speedup of RPPA SPACE over
SuperCurve on batches of 1056 samples and 100 antibodies. By
using 20 cores, we obtained a maximum speed up of 3.5-fold over
SuperCurve with image generation on and 8.3-fold with it off.
Interestingly, the performance appeared to degrade beyond 20 cores
for our specific experimental setup, likely because the cost of inte-
grating data from additional cores became higher than the benefit
from adding them. We recommend an initial exploratory run to de-
termine the appropriate number of cores to use for each experimen-
tal setup (e.g. 10–15 cores were appropriate for our application).
Not surprisingly, run time increases linearly with an increasing num-
ber of antibodies in a batch, since each additional antibody just adds
another sequential step to the process (Supplementary Fig. S2). A
typical RPPA set requires two or three iterations of runs. The first
run is used to detect any problematic slides, which are then cor-
rected, if possible (e.g. by re-staining) and re-run. Two or three runs
of SuperCurve at 9–10 h each translates into 2–3 additional business
days of turnaround time. However, using RPPA SPACE a user can
finish such a run in just over an hour, hence easily enabling the com-
pletion of two or three runs in a single business day.

3.4 Improved error reporting
Run-time errors are handled more effectively by RPPA SPACE; one
problematic slide does not halt the processing of subsequent slides.
Additionally, run-time error messages are more specific, and the fact
that they are tracked in error text files and warning text files facili-
tates troubleshooting.

4 Conclusion

RPPA SPACE offers major improvements over its predecessor,
SuperCurve (Supplementary Table S1), and its variants (Sun et al.,
2015; Troncale et al., 2012). The variants of SuperCurve offer modi-
fied algorithms for data normalization and quantification, but they
do not offer the advanced features of RPPA SPACE, such as
enhanced quality control of the data, more flexible input require-
ments and the ability to utilize multiple CPU cores. RPPA SPACE
runs up to eight times faster than SuperCurve (using multiple CPU
cores) and has improved tolerance towards errors. It is currently
being used as a replacement for SuperCurve by MD Anderson
Cancer Center’s RPPA core facility, and it has been extensively
tested on over 10 000 customer samples. We expect it to be useful
for other researchers as well for normalizing raw RPPA data.
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