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*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Jonathan Wren

Received on May 4, 2022; revised on September 8, 2022; editorial decision on September 9, 2022; accepted on September 19, 2022

Abstract

Motivation: The volume of public nucleotide sequence data has blossomed over the past two decades and is ripe for re-
and meta-analyses to enable novel discoveries. However, reproducible re-use and management of sequence datasets
and associated metadata remain critical challenges. We created the open source Python package q2-fondue to enable
user-friendly acquisition, re-use and management of public sequence (meta)data while adhering to open data principles.

Results: q2-fondue allows fully provenance-tracked programmatic access to and management of data from the
NCBI Sequence Read Archive (SRA). Unlike other packages allowing download of sequence data from the SRA,
q2-fondue enables full data provenance tracking from data download to final visualization, integrates with the QIIME
2 ecosystem, prevents data loss upon space exhaustion and allows download of (meta)data given a publication
library. To highlight its manifold capabilities, we present executable demonstrations using publicly available
amplicon, whole genome and metagenome datasets.

Availability and implementation: q2-fondue is available as an open-source BSD-3-licensed Python package
at https://github.com/bokulich-lab/q2-fondue. Usage tutorials are available in the same repository. All Jupyter
notebooks used in this article are available under https://github.com/bokulich-lab/q2-fondue-examples.

Contact: nicholas.bokulich@hest.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

The increasing volume of publicly available nucleotide sequence
data is driving a revolution in the life sciences, by enabling compara-
tive studies to discover generalizable trends that are often inaccess-
ible or underpowered in an individual study. Individual studies
addressing similar biological questions can differ in many technical
aspects, including (but not limited to) specific experimental design,
employed sequencing technologies, definitions of the examined tar-
get variables and selection of potential covariates influencing the tar-
get. These inter-study variations can make individual study results
biased (Serghiou et al., 2016) and even contradictory to one another
(Ioannidis and Trikalinos, 2005). Meta-analysis allows the synthesis
of findings from individual studies to reach a more complete under-
standing: identifying consistent and reproducible signatures across
studies and resolving causes of variation among study results
(Gurevitch et al., 2018).

Meta-analyses of nucleotide sequencing-based studies have
intensified within the past decade (see Fig. 1), given the high poten-
tial of these data for reuse in comparative analyses. Meta-analyses
of genome-wide association data have expanded our knowledge of
human polygenic disorders and quantitative traits (Panagiotou
et al., 2013). Comparative genomics has given insights into verte-
brate genome evolution (Meadows and Lindblad-Toh, 2017) and
the processes of genome function, speciation, selection and adapta-
tion (Alföldi and Lindblad-Toh, 2013). Comparative analyses of
global microbiome datasets have driven deepening insight into spa-
tiotemporal and biogeographic variation in Earth’s microbial diver-
sity (Tara Oceans Consortium Coordinators et al., 2015; Thompson
et al., 2017). Re-analysis of the published genome and metagenome
data has enabled the discovery of novel and candidate microbial
clades, as in the Genome Taxonomy Database (Parks et al., 2017),
and highlighted the abundance (Lloyd et al., 2018) and ecosystem-
impact (Zamkovaya et al., 2021) of uncultured microbes, also
known as ‘microbial dark matter’. Since meta-analyses can only be
conducted if the original study data are publicly available, the recent
increase in meta-analyses can be partly attributed to the ongoing
open-science efforts of making sequencing data and accompanying
metadata standardized and publicly available (Berman et al., 2014;
McNutt et al., 2016; The Path to Open Data, 2019; Yilmaz et al.,
2011). The Sequence Read Archive (SRA), established as part of the
International Nucleotide Sequence Database Collaboration
(INSDC) by the National Center for Biotechnology Information
(NCBI), enables free access to sequence data (Kodama et al., 2012;
Leinonen et al., 2011b), including sequences stored on ENA
(Leinonen et al., 2011a) and DDBJ (Mashima et al., 2017). Since its
creation in 2009, the SRA has gathered data at the petabyte scale
and continues to scale its infrastructure to ensure efficient data stor-
age and retrieval (Katz et al., 2021).

A selection of tools to programmatically access data from the
SRA has recently emerged. NCBI offers the sra-tools command-line
toolkit (Leinonen et al., 2011b) for downloading and interacting

with raw sequence data. The entrezpy Python library (Buchmann
and Holmes, 2019) aids in automating the data download from
NCBI’s Entrez databases by providing abstract classes allowing cus-
tom implementations. pysradb (Choudhary, 2019) makes use of the
curated metadata database available through the SRAdb project
(Zhu et al., 2013) to download data from the SRA, and grabseqs
enables fetching of data from not only the SRA but also MG-RAST
(Meyer et al., 2008) and iMicrobe (Youens-Clark et al., 2019).
However, the wider application of these tools in large comparative
analyses is hindered by several challenges, including technical com-
plication and a steep learning curve for users with limited program-
ming skills, and the difficulty of tracking data provenance necessary
for reproducibility and traceability.

In order to provide consistent and reliable findings, meta-
analyses must follow Findable, Accessible, Interoperable and
Reusable (FAIR) Guiding Principles (Wilkinson et al., 2016). To this
end, meta-analyses should be performed in a reproducible manner,
making use of consistent workflows while keeping track of all the
performed data retrieval and analysis steps. Despite increasingly
facilitated access to sequencing data, reproducibility and provenance
of primary and secondary studies remain challenging (Amann et al.,
2019; Baker, 2016; Huang and Gottardo, 2013; Kim et al., 2018;
Reichman et al., 2011). Here, we introduce an open-source software
package q2-fondue (Functions for reproducibly Obtaining and
Normalizing Data re-Used from Elsewhere) to expedite the initial
acquisition of data from the SRA, while offering complete proven-
ance tracking. q2-fondue simplifies retrieval of sequencing data and
accompanying metadata in a validated and standardized format
interoperable with the QIIME 2 ecosystem (Bolyen et al., 2019). By
allowing access through multiple QIIME 2 user interfaces, it can be
employed by users of different computational capabilities.

Here, we describe the q2-fondue software package and subse-
quently demonstrate its use in comparative analyses of marker gene,
genome and metagenome sequencing studies. We anticipate q2-fon-
due will lower existing barriers to comparative analyses of nucleo-
tide sequence data, facilitating more transparent, open and
reproducible conduct of meta-analyses.

2 Implementation

2.1 Software overview
q2-fondue is an open source Python 3 package released under the
BSD 3-clause license. It can be installed in a conda environment on
any UNIX-based system as described in the installation instructions
provided on the package website (https://github.com/bokulich-lab/
q2-fondue). q2-fondue has been implemented as a QIIME 2 plugin,
allowing the use of QIIME 2’s integrated data provenance tracking
system, multiple user interfaces and streamlined interoperability
with downstream sequence analysis plugins.

An overview of q2-fondue is shown in Figure 2. Two separate
q2-fondue actions allow easy access to the SRA database: get-
sequences and get-metadata fetch per-sample sequence data and
corresponding metadata (e.g. sample and run information), respect-
ively. The get-all pipeline wraps both of these actions to simultan-
eously retrieve sequences and metadata for a list of SRA accessions.
These three actions, get-sequences, get-metadata and get-all, require
a single input file containing accession IDs of one type to be fetched.
Currently, q2-fondue supports BioProject, study, sample, experi-
ment and run accession IDs. BioProject and study IDs are in a one-
to-one relationship, where a study ID denotes the SRA record of the
associated BioProject ID. All other IDs are in a one-to-many rela-
tionship in the listed order (e.g. one study ID, with its linked
BioProject ID, can have many sample IDs associated with it—see
Fig. 3 for an overview). Run IDs allow direct interaction with the
SRA databases, while the other IDs are first translated into corre-
sponding run IDs using a chain of E-Direct utilities (Kans, 2013;
https://www.ncbi.nlm.nih.gov/books/NBK179288/). An E-Search
query is executed to look up provided IDs in the BioProject (if
BioProject ID was provided as input) or SRA (if study, sample or
experiment ID was provided as input) database, followed by an

Fig. 1. Increasing trend of sequencing-based meta-analyses over the past 30 years.

Displayed article counts were retrieved from PubMed on February 21, 2022 with

the search query ‘(meta-analysis) AND ((omics) OR (genom*) OR (microbio*) OR

(transcriptom*))’ and a requirement for the article type to be a meta-analysis
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E-Link query finalized by an E-Fetch query to retrieve the linked
run IDs.

All data-fetching actions support configurable parallelization to
maximally reduce the processing time. The get-metadata method

employs a multi-threading approach built into the Entrezpy modules
(see Section 2.2.), while get-sequences uses multiple processes and
queues to coordinate the data download with its pre- and post-
processing steps. Note that parallelization does not improve

Fig. 2. Overview of q2-fondue methods. get-sequences method can be used to fetch raw sequencing data (single- and/or paired-end), while get-metadata can download corre-

sponding metadata. Both methods can be run simultaneously by using the get-all pipeline, which produces all outputs (SampleData, SRAFailedIDs and SRAMetadata). get-

sequences, get-metadata and get-all are run with a list of one type of accession IDs (BioProject, study, sample, experiment or run ID). Sequences obtained from multiple fetches

can be combined using combine-seqs and multiple metadata artifacts can be merged with merge-metadata. All accession IDs can be retrieved from Zotero web library collec-

tions with the scrape-collection action

Fig. 3. Structure of the SRA metadata data classes used by the get-metadata action. Each of the classes represents a different level of metadata organization and can contain

other nested metadata objects. As all the objects are linked together, metadata of the entire study and all its children can be retrieved directly from the SRAStudy object

Meta-analysis of NGS meta(data) using q2-fondue 5083



download speed (for which network bandwidth is the limiting fac-
tor), but markedly decreases pre- and post-processing runtime (e.g.
data validation steps) (Supplementary Fig. S1).

2.2 Sequence retrieval
The get-sequences action makes use of the sra-tools command-line
toolkit (Leinonen et al., 2011b; https://github.com/ncbi/sra-tools)
developed by NCBI. The prefetch tool is first used to reliably fetch
SRA datafiles using the provided run IDs and the fasterq-dump util-
ity is then executed to retrieve the corresponding sequences (single-
or paired-end) in the FASTQ format. To follow QIIME 2’s naming
convention those sequences are then renamed using their accession
IDs, compressed and finally validated by QIIME 2’s built-in type
validation system. The action keeps track of any errors that occurred
while fetching the sequences and performs available storage checks
on every iteration to ensure no data are lost when space is exhausted
during download. There are three output files generated by the get-
sequences action: two QIIME artifacts corresponding to single- and
paired-end reads, respectively, and one table containing the list of
IDs for which the download failed (if any) including the linked error
messages.

2.2 Metadata retrieval
Retrieval of SRA metadata is possible through the get-metadata ac-
tion. This action uses the Entrezpy package (Buchmann and
Holmes, 2019) to interact with the SRA database by building on top
of its built-in modules for different E-Direct utilities. Specifically, we
implemented a new EFetchResult and EFetchAnalyzer that work in
tandem to request and parse metadata for the provided run IDs. The
result is represented as a table where a single row corresponds to
one SRA run and columns reflect all the metadata fields found in the
obtained response. In order to keep track of different metadata lev-
els (study, sample, experiment and run), we introduced a set of cas-
cading Python data classes to delineate the hierarchical relationship
of the SRA metadata entries (Fig. 3) and to preserve this structure in
the final study metadata. Moreover, tight integration with QIIME
2’s internal type validation system guarantees consistency of meta-
data generated by q2-fondue by ensuring the presence of all required
metadata fields, as specified by NCBI.

2.2 Metadata retrieval
The q2-fondue package contains additional functions to simplify
sequencing (meta)data retrieval and manipulation, particularly
when multiple data fetches are necessary.

• get-all allows the simultaneous download of sequences and

related metadata.
• merge-metadata concatenates metadata tables obtained from

several independent get-metadata runs and allows the generation

of a single, unified metadata artifact.
• combine-seqs merges sequences obtained from multiple artifacts

obtained from several get-sequences runs (or from other external

sources) into a single sequence artifact.
• scrape-collection retrieves accession IDs and associated DOI

names from a Zotero web library collection (https://www.zotero.

org) by using the pyzotero package (Hügel et al., 2019). This

enables seamless workflows for collecting IDs of interest from a

literature collection, automatically downloading the data, and

processing downstream with q2-fondue and QIIME 2.

3 Materials and methods

The q2-fondue plugin can be used to facilitate comparative analysis
of any nucleotide sequence data and metadata available on the SRA.
To demonstrate some example use cases, we used q2-fondue and
QIIME 2 to analyze publicly available marker gene, whole genome

sequence and shotgun metagenome data. All analyses described
below are available as fully reproducible and executable Jupyter
notebooks (available in the Data Availability section). These exam-
ples are provided merely as method demonstrations to showcase
seamless integration/interoperation of q2-fondue with downstream
analyses and do not represent complete analyses of biological data.
Additional steps and larger comparative analyses would be required
to derive meaningful conclusions, and to eliminate potential biases
from covariates, which were not controlled for in this demonstration
analysis.

3.1 Marker gene amplicon sequence data analysis
Marker gene amplicon sequencing (e.g. of 16S rRNA genes) is cur-
rently the most popular method for high-throughput, untargeted
profiling of microbial communities as well as non-microbial diet
metabarcoding and environmental DNA applications. To demon-
strate the use of q2-fondue for comparative cross-study analysis of
marker gene amplicon sequence data, we selected three studies that
analyzed the development of the infant gut microbiome in distinct
geographical locations: Lewis et al. (2017) with BioProjectID
PRJEB16321, Davis et al. (2017) with BioProjectID PRJEB15633
and McClorry et al. (2018) with BioProjectID PRJEB23239. All
three studies sequenced 16S rRNA genes in the V4 region with the
forward 515F primer and a read length of 251 to 253 nucleotides.
McClorry et al. (2018) additionally used the reverse primer R806.

The get-all action of q2-fondue was used to retrieve metadata
and sequence data of all three studies from the SRA. To normalize
metadata features of interest across studies, namely age and health
status, we employed the Python library pandas (McKinney, 2010;
Reback et al., 2020). The downloaded single-read gene sequences
were filtered according to the availability of metadata with the q2-
demux QIIME 2 plugin (https://github.com/qiime2/q2-demux),
denoised with the q2-dada2 QIIME 2 plugin (Callahan et al., 2016),
https://github.com/qiime2/q2-dada2) and finally features were fil-
tered by frequency, rarefied and summarized with the q2-feature-
table QIIME 2 plugin (Bokulich et al., 2018b) https://github.com/
qiime2/q2-feature-table). Finally, the processed metadata and se-
quence data were used to train two Random Forest classifiers with
q2-sample-classifier (Bokulich et al., 2018a), https://github.com/
qiime2/q2-sample-classifier) to predict an infant’s age and its health
status from its gut microbiome. The infant’s age was reported in
four binned age groups: 0–1, 1–4, 4–6 and older than 6 months. For
the health status, an infant was identified as healthy if no disease-
related features were reported, namely no indication of stunting,
wasting, underweight, elevated C-reactive protein status, parasites
or anemia. Both classifiers were trained and tested with 10-fold
cross-validation using Random Forest classifiers grown with 500
trees. The performance of the trained classifiers was evaluated on
the area under the curve (AUC) of the receiver operating characteris-
tics (ROC) curve of the test set of each fold using scikit-learn imple-
mentations (Pedregosa et al., 2011). The entire analysis can be
reproduced by executing the u1-amplicon.ipynb Jupyter notebook,
available in the Data Availability section.

3.2 Comparative whole-genome sequence data analysis
The initial list of SARS-CoV-2 whole genome sequencing data acces-
sion IDs was generated based on the metadata obtained from the
Nextstrain.org platform (Hadfield et al., 2018; https://data.next
strain.org/files/ncov/open/metadata.tsv.gz, access date: February 08,
2022). Only records with available SRA accession IDs and the least
amount of missing data (column QC_missing_data =¼ ‘good’) were
retained. Furthermore, to limit the scope of this use case only those
geographical regions were considered where enough samples were
collected (at least 2000 samples per region). The get-metadata action
of q2-fondue was used to retrieve metadata of 37 500 randomly
sampled genomes (12 500 genomes per location) from the SRA.
Obtained metadata was then supplemented with the original
Nextstrain metadata by merging the two datasets on a common
SRA run ID and only samples sequenced using single-end reads on
the Illumina NextSeq 500/550 platforms were retained. Finally,
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sequencing data for 500 randomly sampled genomes (250 genomes
per location) was fetched from the SRA using q2-fondue’s get-
sequences method. Reads shorter than 35 nt were discarded using
the trim_single method from the q2-cutadapt plugin (Martin, 2011;
https://github.com/qiime2/q2-cutadapt) and the quality of the
sequences was evaluated using the summarize action from the q2-
demux QIIME 2 plugin (https://github.com/qiime2/q2-demux).
MinHash signatures were computed for every sample and compared
using the q2-sourmash plugin (compute and compare methods, re-
spectively) (Ondov et al., 2016; https://github.com/dib-lab/q2-sour
mash). A t-SNE plot was generated from the resulting distance ma-
trix using q2-diversity (tsne method with a learning rate of 125 and
perplexity set to 18, https://github.com/qiime2/q2-diversity, Halko
et al., 2011) and visualized using matplotlib and seaborn Python
packages (Hunter, 2007; Waskom, 2021). Finally, to determine
whether MinHash signatures are predictive of SARS-CoV-2 geo-
graphic origin, k-nearest-neighbors classification with 10-fold cross-
validation was applied through the q2-sample-classifier plugin
(Bokulich et al., 2018a; https://github.com/qiime2/q2-sample-classi
fier). The entire analysis can be reproduced by executing the u2-
genome.ipynb Jupyter notebook, available in the Data Availability
section.

3.3 Shotgun metagenome sequence data analysis
To fetch metadata for all the shotgun metagenome samples from the
Tara Oceans Expedition (Tara Oceans Consortium Coordinators
et al., 2015) we used q2-fondue’s get-metadata action with the fol-
lowing BioProject IDs: PRJEB1787, PRJEB4352, PRJEB4419,
PRJEB9691, PRJEB9740 and PRJEB9742. After the removal of
missing values, the resulting metadata table was randomly sampled
to 100 records and used as input to the draw-interactive-map action
from the q2-coordinates plugin (Bokulich and Caporaso, 2018;
https://github.com/bokulich-lab/q2-coordinates) to visualize values
of the sensors used during the expedition according to their geo-
graphical location. Additionally, sequences corresponding to 10
samples at two different locations were fetched using the get-sequen-
ces action. To reduce the computational time required for this use
case demonstration, the reads were subsampled to 20% of the ori-
ginal read count and the resulting artifact (containing single-end
reads) was used to calculate and compare MinHash signatures (see
the previous section). A PCoA analysis was performed on the result-
ing distance matrix using the pcoa action from the q2-diversity plu-
gin (https://github.com/qiime2/q2-diversity; Halko et al., 2011) and
the PCoA plot was visualized using matplotlib and seaborn Python
packages (Hunter, 2007; Waskom, 2021). The entire analysis can be
reproduced by executing the u3-metagenome.ipynb Jupyter note-
book, available in the Data Availability section.

4 Results

Any meta-analysis can be carried out using raw experimental data,
its associated metadata or a combination of both. To demonstrate
the versatility of q2-fondue in all those scenarios, and seamless inte-
gration/interoperability with downstream bioinformatics tools, we
performed three example use case data analyses using amplicon,
whole genome, and shotgun metagenome sequencing data and
related metadata. All three use cases employ QIIME 2 plugins to
process received data and illustrate how q2-fondue can immensely
increase data analysis reproducibility and transparency by including
details on the raw data fetching in the QIIME 2 provenance. These
analyses are only meant to demonstrate some example use cases for
q2-fondue and should not be interpreted as biologically meaningful
results.

4.1 Use Case 1: amplicon sequence data analysis
As a demonstration of q2-fondue’s capacities in enabling the collec-
tion and analysis of amplicon sequencing data, we selected three in-
fant gut microbiome development studies from distinct geographical
locations: the study by Lewis et al. (2017) from Georgia, Davis et al.
(2017)’s study from Gambia and McClorry et al. (2018)’s study

from Peru. We used the BioProject IDs reported by those studies to
fetch the corresponding raw metadata and sequencing data. This
provided us with 350 sequence samples each annotated with 148
metadata features.

After performing filtering, normalization and denoising steps on
the raw 16S rRNA gene sequences (see Fig. 4A for an overview of
plugins and actions used throughout this use case), a total of 3880
amplicon sequencing variants (ASVs) were identified for 330 sam-
ples. The available metadata was used to define binned age groups.
The distribution of samples per age group as well as the analyzed
age range differ markedly between studies (Fig. 4B). We further
defined a binary health status which denotes whether the sample
stems from a healthy or unhealthy infant (see Methods for more
details). Across all studies, 194 unhealthy and 136 healthy infant
samples were identified. Figure 4C displays the fraction of healthy
infants in each of the three geographic locations covered by the
selected studies. It shows that the fraction of healthy infants is very
different between studies and geographical locations with Lewis
et al. (2017) having analyzed only healthy infants in Georgia and
Davis et al. (2017) and McClorry et al. (2018) having analyzed
mainly unhealthy infants in Gambia and Peru, respectively.

Finally, we trained two Random Forest classifiers with 10-fold
cross-validation on the processed microbiome sequence data to pre-
dict the age group and health status of each sample, respectively.
The classifiers were evaluated on the test set of each fold and
revealed a better performance in predicting age groups (macro aver-
aged AUC¼0.85, Fig. 4D) than health status (macro averaged
AUC¼0.58, Fig. 4E). This initial result would, however, require
further careful analysis as the individual studies differ in many varia-
bles (e.g. age range, health status and geographical location) which
we did not account for in this demonstration. Hence, differences in
predicted age bins and health status could be artificially inflated by
the differences in geolocation or study design. The classifiers trained
here might not be capturing age-specific or health-specific features
but rather features stemming from the particular study setups.

4.2 Use Case 2: Whole genome sequence data analysis
To illustrate how q2-fondue can be used as an entry-point to ana-
lysis of whole genome sequencing data we turned to one of the most
rapidly growing datasets of the recent years: the SARS-CoV-2 gen-
ome dataset. We used all of the pre-processed metadata obtained
through the Nextstrain.org platform (Hadfield et al., 2018) to iden-
tify samples that have been deposited in the SRA. We subsampled
genomes of SARS-CoV-2 variants from two geographic locations:
Europe and North America. We then fetched the corresponding
SRA metadata using q2-fondue, which was used to prepare our final
list of genomes. To simplify the analysis and reduce technical vari-
ability, we focused only on samples sequenced using single-end reads
on the Illumina NextSeq 500/550 platforms. Following the quality
control step, we used the sourmash tool to readily compare viral
genomes to one another by computing their MinHash signatures
(Ondov et al., 2016). The resulting distance matrix was then used to
generate a t-SNE plot visualizing how sampled genomes group to-
gether. Figure 5B shows that the samples taken at different locations
group together to form distinct geographic clusters. Finally, we used
k-nearest-neighbors clustering to quantitatively compare genome
MinHash signatures to predict SARS-CoV-2 geographic origin
(Fig. 5C). We found that it was possible to classify the SARS-CoV-2
origin with an accuracy of 92%. This result is intended as a simple
demonstration of the capability of q2-fondue in conjunction with
other QIIME 2 plugins but should not be considered as final.
Additional factors may need to be taken into account to get a com-
plete picture of the relationship between geographic location and
viral genome MinHash signatures: other sequencing platforms
should be included and more samples from other continents should
be added, as well as a careful evaluation of covariates that could
bias these results. An overview of plugins and actions applied in this
use case can be found in Figure 5A.
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Fig. 4. Analysis of amplicon sequencing data from three infant gut microbiome development studies. (A) Overview of QIIME 2 actions used during the amplicon data

analysis. (B) Counts of samples in the defined age groups per study. (C) Fraction of healthy infants in the geographic locations covered by the selected studies. (D and

E) ROC curves of Random Forest classifiers predicting age groups (D) and health status (E), indicating better predictive accuracy for age groups (macro averaged

AUC¼0.85) than health status (macro averaged AUC¼0.58) which is not to be trusted as the individual studies differ in many covariates that were not adjusted for in

this demonstration
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4.3 Use case 3: shotgun metagenome sequence data

analysis
We used the Tara Ocean expedition dataset (Tara Oceans
Consortium Coordinators et al., 2015) to illustrate how geographic
location included in sample metadata deposited in the SRA can be
used to display sample properties, using q2-fondue and QIIME 2
(see Fig. 6A for an overview of plugins and actions used throughout
this use case). We fetched metadata for six BioProjects containing
1049 ocean samples obtained through size fractionation followed by
shotgun metagenome sequencing (Fig. 6B and C). As geographical
coordinates of every sample are included in the SRA metadata, we
could directly draw an array of interactive maps visualizing various
sample properties using the q2-coordinates plugin (Bokulich and
Caporaso, 2018). As an example, Figure 6D illustrates sample tem-
peratures across the globe. Moreover, we randomly selected 10 sam-
ples collected at two distinct locations and used the corresponding
sequences to calculate and compare their MinHash signatures.
Using PCoA analysis of the resulting distance matrix, we could
show that the samples can be separated by location when using only
their genome hash signatures (Fig. 6E). More interactive visualiza-
tions can be found in the Jupyter notebook accompanying this
manuscript (see Data Availability section).

4.4 Integration with QIIME 2 ecosystem
Since q2-fondue is a QIIME 2 plugin, it tightly integrates with and
benefits from the rest of the QIIME 2 ecosystem. Sequences obtained
through the get-sequences action can be directly passed into any
other QIIME 2 action that accepts this data type (see Fig. 7 for an
overview of actions applied in this study). In addition to defining
format checks for SRA metadata objects, q2-fondue has

implemented transformer functions to allow the metadata down-
loaded through the use of get-metadata action to serve as input to
any QIIME 2 action that requires sample metadata. Furthermore,
integration with QIIME 2’s built-in provenance tracking system
ensures that data fetching from the SRA is also included in the prov-
enance graph (stored directly in all data outputs), enabling research-
ers to track and completely reproduce the entire analysis pipeline
from data download to final visualizations.

5 Discussion

Declining costs and increasing throughput of nucleotide sequencing
have fueled an exponential increase in published sequence data over
the past two decades (Stephens et al., 2015). These data have an im-
mense reuse potential, which has led to a growing trend of
sequencing-based meta-analyses (Fig. 1), paving the way to add-
itional discoveries regarding general biological trends (Abbas et al.,
2019; Panagiotou et al., 2013; Thompson et al., 2017). However,
such studies remain technically challenging and data acquisition and
management are significant bottlenecks.

We developed q2-fondue to lower these hurdles, and to facilitate
reproducible acquisition and management of metadata and nucleo-
tide sequence datasets from the SRA (see Table 1 for a summary of
the most important features). Its integration with the QIIME 2
framework offers complete provenance tracking of the entire pro-
cess, multiple user interfaces, and thorough input/output data valid-
ation, allowing to conduct meta-analyses in a reproducible manner.
Furthermore, q2-fondue outputs can be directly used with a wide
range of QIIME 2 plugins, offering the user a smooth incorporation
with any sequence-based analysis that is (or will become) available

Fig. 5. Genome MinHash signatures are predictive of SARS-CoV-2 geographic origin. (A) Overview of QIIME 2 actions used during the genome data analysis. (B) t-SNE ana-

lysis of the SARS-CoV-2 genome MinHash distance matrix shows that virus samples can be grouped into distinct geographic clusters based on only genome hash signatures.

(C) The same distance matrix can be used to reliably predict virus origin from genome hashes. K-nearest-neighbors clustering approach with 10-fold cross-validation was used

to classify samples—a confusion matrix constructed from all test sets is shown
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within the QIIME 2 ecosystem. Even though the main target of the
QIIME 2 framework is microbiome research, q2-fondue itself is
intended to be agnostic to the research field and non-microbiome
researchers can equally profit from its most important features (see
Table 1) when performing downstream analyses without QIIME 2
(see tutorials at https://github.com/bokulich-lab/q2-fondue). Finally,
q2-fondue’s integration with QIIME 2 offers users unparalleled sup-
port through the QIIME 2 forum—an exchange platform between
users and plugin developers (with a current total of 5700 signed-up
members).

Despite its ease of use, q2-fondue does not free the user of their
due diligence in checking the details on the extracted datasets in the
accompanying publications, where mismatches with obtained run
metadata or sequences could be detected. The same holds for follow-
ing best practices when performing meta-analyses or comparative

analyses with data obtained using q2-fondue. The user must investi-

gate sources of heterogeneity among individual studies included in
the analysis (Thompson, 1994) and follow statistical procedures to
ensure that the detected signals are not an artifact of the different

study setups (Gurevitch et al., 2018).
The q2-fondue demonstrations shown here represent only a few

possible (although simplified) use cases for the software, and we en-
vision many other possible applications for the analysis of diverse
nucleotide sequence data types.

5.1 Future plans
The q2-fondue package remains under active development, and sev-
eral additional functionality upgrades are planned in the future. As
q2-fondue operates on large amounts of sequencing data we will

Fig. 6. Tara Oceans expedition (meta)data analysis. (A) Overview of QIIME 2 actions used during the metagenome analysis. (B) Counts of samples in the retrieved dataset

according to BioProject ID. (C) Counts of samples corresponding to different fractions obtained through size fractionation. (D) PCoA analysis of the metagenome MinHash

signatures of 10 samples taken at two randomly selected locations. Fraction of explained variance is shown for two plotted dimensions. (E) Temperature of samples taken at

different geographical locations. Only 100 randomly selected samples are shown
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Fig. 7. Overview of q2-fondue integration with other QIIME 2 plugins and actions as applied in the three use cases presented in this study. This is only a limited demonstration

of possible downstream uses for three different nucleotide sequence data types, not an exhaustive list

Table 1. Selection of the most significant issues faced by users when retrieving large amounts of sequencing data, together with their user-

friendly solutions offered by q2-fondue

Problem Solution offered by q2-fondue

Plethora of accession ID types complicates retrieval of sequences/

metadata.

Conversion between different accession IDs is performed automatically.

All associated parent and child accession IDs are recorded in the final

metadata table.

Potential data loss on space exhaustion when fetching large amounts

of runs.

q2-fondue keeps track of available disk space and will abort without

data loss when the amount of space is insufficient.

Sequencing data requires pre-processing/name normalization before

it can be used in downstream analyses.

q2-fondue takes care of renaming/standardizing all the files after

retrieval.

Merged datasets and subsequent data analysis steps are not always

reproducible.

Tight integration with QIIME 2 ensures that every data fetching and ana-

lysis detail is recorded in provenance stored together with every single

output.

Diversity of metadata fetched from multiple studies complicates its

application in subsequent analyses.

Metadata retrieved by q2-fondue is normalized into a single table with

standardized columns.

Network issues and other errors lead to data loss and require

cumbersome, repeated data fetches.

Data retrieval can be automatically repeated in case of encountered

errors. In case of repeated failures, all errors are reported and can be

investigated by the user once the download is finished. No data loss

occurs.

Parallelization of custom SRA access scripts is complicated and

time-consuming.

q2-fondue takes care of data retrieval/processing in a parallel way, mak-

ing use of multiple threads and CPUs available on the user’s system.
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introduce several performance-enhancing updates that will allow
better management of free storage space available during download
as well as streamline downloading large numbers of accession IDs to
avoid multiple re-fetches.

q2-fondue’s metadata retrieval action already greatly simplifies
downloading metadata of multiple projects and formatting those as
a single result table. Several additional functions are planned to as-
sist with the management and integration of diverse study and sam-
ple metadata. Moreover, we acknowledge that additional features
may be needed, particularly for accessing non-microbial datasets (as
the demonstrations in this publication focus on microbial datasets).
We are motivated to further improve q2-fondue to encompass di-
verse use cases and invite feature requests via q2-fondue’s GitHub
repository or the QIIME 2 forum.

Finally, to unlock the potential of sequencing data stored in and
processed by other repositories we will add support for (meta)data
retrieval from various other databases (e.g. MGnify; Mitchell et al.,
2020). Altogether, we hope that q2-fondue can become the tool of
choice for interacting with the SRA and other similar repositories,
while at the same time seamlessly integrating with the whole QIIME
2 ecosystem, hence enabling a wide range of available analysis
types.
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Hügel,S. et al. (2019) Urschrei/Pyzotero: Zenodo Release. Zenodo. https://

doi.org/10.5281/zenodo.2917290.

Hunter,J.D. (2007) Matplotlib: a 2D graphics environment. Comput. Sci.

Eng., 9, 90–95.

Ioannidis,J.P.A. and Trikalinos,T.A. (2005) Early extreme contradictory esti-

mates may appear in published research: the Proteus phenomenon in mo-

lecular genetics research and randomized trials. J. Clin. Epidemiol., 58,

543–549.

Kans,J. (2013) Entrez direct: e-utilities on the Unix command line. In: Entrez

Programming Utilities Help [Internet].National Center for Biotechnology

Information (US), Bethesda (MD).

Katz,K. et al. (2022) The sequence read archive: a decade more of explosive

growth. Nucleic Acids Res., 50, D387–D390.

Kim,Y.-M. et al. (2018) Experimenting with reproducibility: a case study of

robustness in bioinformatics. GigaScience, 7, 1–8. https://doi.org/10.1093/giga

science/giy077.

Kodama,Y. on behalf of the International Nucleotide Sequence Database

Collaboration. et al. (2012) The sequence read archive: explosive growth of

sequencing data. Nucleic Acids Res., 40, D54–D56.

Leinonen,R. et al. (2011a) The European nucleotide archive. Nucleic Acids

Res., 39, D28–D31.

Leinonen,R. et al.; International Nucleotide Sequence Database Collaboration.

(2011b) The sequence read archive. Nucleic Acids Res., 39, D19–21.

Lewis,Z.T. et al. (2017) The fecal microbial community of breast-fed infants

from Armenia and Georgia. Sci. Rep., 7, 40932.

Lloyd,K.G. et al. (2018) Phylogenetically novel uncultured microbial cells

dominate earth microbiomes. MSystems, 3, e00055–18.

Martin,M. (2011) Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet. J., 17, 10.

Mashima,J. et al. (2017) DNA data bank of Japan. Nucleic Acids Res., 45,

D25–D31.

McClorry,S. et al. (2018) Anemia in infancy is associated with alterations in

systemic metabolism and microbial structure and function in a sex-specific

manner: an observational study. Am. J. Clin. Nutr., 108, 1238–1248.

McKinney,W. (2010) Data Structures for Statistical Computing in Python. pp.

56–61. https://doi.org/10.25080/Majora-92bf1922-00a.

McNutt,M. et al. (2016) Liberating field science samples and data. Science,

351, 1024–1026.

Meadows,J.R.S. and Lindblad-Toh,K. (2017) Dissecting evolution and disease

using comparative vertebrate genomics. Nat. Rev. Genet., 18, 624–636.

Meyer,F. et al. (2008) The metagenomics RAST server—a public resource for

the automatic phylogenetic and functional analysis of metagenomes. BMC

Bioinformatics, 9, 386.

Mitchell,A.L. et al. (2020) MGnify: the microbiome analysis resource in 2020.

Nucleic Acids Res., 48, D570–D578.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-

tion using MinHash. Genome Biol., 17, 132.

Panagiotou,O.A. et al. (2013) The power of meta-analysis in genome wide as-

sociation studies. Annu. Rev. Genomics Hum. Genet., 14, 441–465.

Parks,D.H. et al. (2017) Recovery of nearly 8,000 metagenome-assembled

genomes substantially expands the tree of life. Nat. Microbiol., 2,

1533–1542.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in python. In:

Machine Learning in Python, Vol. 6, 2826–2830. https://doi.org/10.48550/

ARXIV.1201.0490.

5090 M.Ziemski et al.

https://github.com/bokulich-lab/q2-fondue/blob/main/tutorial/tutorial.md
https://github.com/bokulich-lab/q2-fondue/blob/main/tutorial/tutorial.md
https://github.com/bokulich-lab/q2-fondue-examples
https://doi.org/10.1045/january2014-berman
https://doi.org/10.1045/january2014-berman
https://doi.org/10.5281/zenodo.2124295
http://arxiv.org/abs/1007.5510
https://doi.org/10.5281/zenodo.2917290
https://doi.org/10.5281/zenodo.2917290
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.48550/ARXIV.1201.0490
https://doi.org/10.48550/ARXIV.1201.0490


Reback,J. et al. MomIsBestFriend (2020) Pandas-Dev/Pandas: Pandas 1.0.3.

Zenodo. https://doi.org/10.5281/zenodo.3715232.

Reichman,O.J. et al. (2011) Challenges and opportunities of open data in ecol-

ogy. Science , 331, 703–705. https://doi.org/10.1126/science.1197962.

Serghiou,S. et al. (2016) Field-wide Meta-analyses of observational associa-

tions can map selective availability of risk factors and the impact of model

specifications. J. Clin. Epidemiol., 71, 58–67.

Stephens,Z.D. et al. (2015) Big data: astronomical or genomical? PLoS Biol.,

13, e1002195.

Pesant,S. et al.; Tara Oceans Consortium Coordinators. (2015) Open science

resources for the discovery and analysis of Tara oceans data. Sci. Data, 2,

150023.

(2019) The path to open data. Nat. Rev. Nephrol., 15, 521.

Thompson,L.R. et al.; Earth Microbiome Project Consortium. (2017) A com-

munal catalogue reveals earth’s multiscale microbial diversity. Nature, 551,

457–463.

Thompson,S.G. (1994) Why sources of heterogeneity in meta-analysis should

be investigated. BMJ (Clinical Research Ed.), 309, 1351–1355.

Waskom,M. (2021) Seaborn: statistical data visualization. J. Open Source

Softw., 6, 3021.

Wilkinson,M.D. et al. (2016) The FAIR guiding principles for scientific data

management and stewardship. Sci. Data, 3, 160018.

Yilmaz,P. et al. (2011) Minimum information about a marker gene sequence

(MIMARKS) and minimum information about any (x) sequence (MIxS)

specifications. Nat. Biotechnol., 29, 415–420.

Youens-Clark,K. et al. (2019) iMicrobe: tools and data-driven discovery platform

for the microbiome sciences. GigaScience, 8. https://doi.org/10.1093/giga

science/giz083.

Zamkovaya,T. et al. (2021) A network approach to elucidate and prioritize

microbial dark matter in microbial communities. ISME J., 15, 228–244.

Zhu,Y. et al. (2013) SRAdb: query and use public next-generation sequencing

data from within R. BMC Bioinformatics, 14, 19.

Meta-analysis of NGS meta(data) using q2-fondue 5091

https://doi.org/10.5281/zenodo.3715232
https://doi.org/10.1126/science.1197962
https://doi.org/10.1093/gigascience/giz083
https://doi.org/10.1093/gigascience/giz083

