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Experimental neuroscience typically uses “p-valued” statistical testing procedures (null hypothesis significance testing; NHST)
in evaluating its results. The rote, often misguided, application of NHST (Gigerenzer, 2008) has led to errors and “question-
able research practices.” Although the problems could be avoided with better statistics training (Lakens, 2021), there have
been calls to abandon NHST altogether. One suggestion is to replace NHST with “estimation statistics” (Cumming and Calin-
Jageman, 2017; Calin-Jageman and Cumming, 2019). Estimation statistics emphasizes the uncertainty inherent in scientific
investigations and uses metrics, e.g., confidence intervals (CIs), that draw attention to uncertainty. Besides procedural steps
and methods, the Estimation Approach prefers expressing “quantitative,” rather than “qualitative” conclusions and making
generalizations, rather than testing scientific hypotheses. The Estimation Approach embodies a philosophy of science—its
ultimate goals, experimental mindset, and specific aims—that diverges unhelpfully from what laboratory-based neuroscience
needs. The Estimation Approach meshes naturally with, e.g., clinical neuroscience, drug development, human psychology, and
social sciences. It fits less well with much of the neuroscience published in the Journal of Neuroscience, for example. In con-
trast, the philosophy behind NHST fits naturally with traditional, evaluative testing of scientific hypotheses. Finally, some
Estimation Approach remedies, e.g., replication, ideally with “preregistration,” are incompatible with much experimental neu-
roscience. This Dual Perspective essay argues that, while neuroscience can benefit from practical aspects of estimation statis-
tics, entirely replacing conventional methods with the Estimation Approach would be a mistake. NHST testing should be
retained and improved.

Significance Statement

Experimental neuroscience relies on statistical procedures to assess the meaning and importance of its research findings.
Optimal scientific communication demands a common set of assumptions for expressing and evaluating results. Problems
arising from misuse of conventional significance testing methods have led to a proposal to replace significance testing with an
Estimation Statistics Approach. Practical elements of the Estimation Approach can usefully be incorporated into conventional
methods. However, the prevailing philosophy of the Estimation Approach does not address certain important needs of much
experimental neuroscience. Neuroscience should adopt beneficial elements of the Estimation Approach without giving up the
advantages of significance testing.

Introduction
Like other experimental sciences, neuroscience needs to test its
hypotheses, determine the efficacy of its experimental treatments
and assess the validity of its claims. In the 1800s, scientific

statistics consisted mainly of comparing the means of group val-
ues and trying to estimate whether they were really different
(Bernard, 1865/1957; Gigerenzer et al., 1989). There was no
appreciation of variance or sample size and no way of rigorously
determining, say, which fertilizer produced the best crop yield.
In the 1930s, Ronald Fisher invented basic “significance testing,”
which grew into null hypothesis significance testing (NHST;
Perezgonzalez, 2015a). Because it was a useful tool for decision-
making, many branches of science adopted NHST. However,
through misuse, misunderstanding, and abuse, NHST became a
“mindless ritual” (Gigerenzer, 2008), which led to calls for its
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abandonment. Instead, this Dual Perspective essay advocates
improving NHST by supplementing it with practical elements of
the Estimation Approach. The inclusion of effect sizes, confi-
dence intervals (CIs), and a heightened awareness of uncertainty
could enhance neuroscience practice and communications.
However, certain philosophical aspects of the Approach make it
less appropriate for many areas of experimental neuroscience.
The discussion assumes the frequentist statistics framework that
most neuroscientists learn. In frequentist statistics, probability is
an objective property of the world that is determined by the
long-run frequency of occurrence of phenomena. Other statisti-
cal frameworks evaluate probability in subjective terms based on
prior knowledge.

This essay will concentrate on advantages of NHST and
shortcomings of the Estimation Approach. A critic of NHST,
Ioannidis (Szucs and Ioannidis, 2017) focuses attention on the
misuse of NHST in “...psychological science, cognitive neuro-
science, and biomedical research,” yet acknowledges that NHST
“may have legitimate uses when there are precise quantitative
predictions...” In much neuroscience, precise predictions of sci-
entific hypotheses are possible, and NHST procedures will con-
tinue to be valuable.

The Estimation Approach recommends two main guidelines
for neuroscience. It should, “pose quantitative research ques-
tions...” (i.e., as opposed to “qualitative” ones, see below), and
“countenance uncertainty in all statistical conclusions...” (Calin-
Jageman and Cumming, 2019). Moreover, the Approach holds
that “Inference is at the heart of the scientific method: we collect
finite datasets and then try to make reasonable generalizations
about how the world works.” These principles fail to recognize
certain essential requirements of scientific reasoning.

Successful predictions and accurate descriptions of nature
may come from reasonable generalizations without providing
deeper mechanistic understanding of how the world works.
Moreover, a central feature of the scientific method is the sci-
entific hypothesis (Bernard, 1865/1957; Popper, 1959/2002),
which the Estimation Approach almost entirely ignores. Scientific
understanding is advanced by proposing and rigorously testing
possible explanations (scientific hypotheses) for phenomena.
Progress is made when scientific hypotheses either pass rigorous
tests (and are “corroborated”) or are rejected as false. This scien-
tific-hypothesis testing process requires making “qualitative”
decisions, which the Estimation Approach prefers to avoid.
Accepting outcomes expressed in “quantitative” terms detracts
from the need to reach definite conclusions about the sound-
ness of our ideas. The significance-testing approach facilitates
qualitative decision-making. Emphasizing uncertainty can pro-
vide valuable balance to scientific reports, but it must not
detract from the search for truth.

Scientific versus statistical hypotheses
The term “hypothesis” refers to two quite different concepts: the
scientific hypothesis and the statistical hypothesis. The distinc-
tion is widely overlooked (Box 1). The Estimation Approach im-
plicitly deals almost exclusively with statistical hypotheses, not
with the scientific hypotheses that engage many neuroscientists.

The roots of the scientific hypothesis are centuries old
(Bernard, 1865/1957; Alger, 2019). The modern scientific hy-
pothesis is fundamentally a proposed explanation for some phe-
nomenon or property of the world being the way it is. It provides
a tentative answer to the question “why?” For example, to explain
the extinction of the dinosaurs, Luis and Walter Alvarez (Alvarez

et al., 1980) proposed that ;66 million years ago, an enormous
asteroid hit the earth and caused cataclysmic geological and me-
teorological reactions that killed off the dinosaurs. The Alvarez
hypothesis has been corroborated by many tests and is consid-
ered a good explanation for the extinctions.

The statistical hypothesis is a 20th century invention. It is
part of a mathematical testing procedure and is, itself, nonex-
planatory. In fact, what we now call “significance testing” or
“null-hypothesis significance testing,” has been called, simply,
“data-testing”; the notion of NHST was “concocted” in 1940
(Perezgonzalez, 2015a). A statistical hypothesis is commonly
used to estimate whether sample groups are likely to have come
from the same larger population. For example, a statistical null
hypothesis, Ho, might state that the mean heights of men and
women do not differ “significantly.” (Two sample means will
always differ at some level of measurement resolution. Scientists
are only interested in differences that are “big enough” to be “sig-
nificant.” What counts as significant is a matter of convention.)
A statistical test, say a t test, is applied to randomized samples of
people’s heights to determine whether they are likely to differ
within probability limits. That is all that the test provides: a nu-
merical comparison associated with a probability which must be
interpreted. The outcome of statistical null-hypothesis testing says
nothing about why the groups do or do not differ, or whether a
“significant” difference reveals anything meaningful about the
world. Statistical-hypothesis testing is merely a mechanical tool,
albeit a very useful one, for decision-making.

The scientific hypothesis is an idea about the real world. It
benefits science in many ways. It helps organize thinking and
communication (Alger, 2019). Testing multiple predictions of
a hypothesis improves experimental design and strengthens
the reliability of conclusions about that hypothesis (Alger,
2020). Developing and testing multiple alternative hypotheses
to explain a given phenomenon sharpens analytic reasoning
and helps to reduce biases (“confirmation bias,” “publication
bias”). Creative, detailed thinking about a problem encourages
considerations of “other interpretations” for data and decreases
fallacies (Bernard, 2020). Scientific hypothesis formation and
testing comes naturally to the human mind. People have power-
ful cognitive drives to understand the world (Kahneman, 2011).
A primary inferential reasoning tool is the use of “counterexam-
ples” (Johnson-Laird, 2010). We reflexively assess the soundness
of rules (hypotheses) by trying to find cases which, if true, would
disprove them. Use of the scientific hypothesis thus builds on
natural cognitive tendencies. However, it is essential to state sci-
entific hypotheses explicitly to protect against unconscious biases
that can arise from tacit hypotheses. The appropriate use of sci-
entific hypotheses requires making distinctions and drawing
conclusions, such as whether experimental data are consistent or
inconsistent with the hypothesis. For these reasons and more sci-
entists need rational tools for making decisions. Conventional
significance testing, correctly understood and cautiously applied,
is such a tool.

Box 1. Comparison of scientific and statistical hypotheses

Similarities
1. Scientific and statistical hypotheses are frequently

used together in scientific work.
2. Both are tested with empirical evidence, and the

tests can only show that the hypotheses are false or
that the results are consistent with them. Evidence
cannot prove that the hypotheses are true.
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Differences
1. Scientific hypotheses attempt to explain phenom-

ena in terms of unobservable objects and processes
(“mechanisms”) that cannot ordinarily be directly
measured. Scientific hypotheses are tested indi-
rectly by deducing and testing measurable predic-
tions that follow from the hypotheses. Unlike
hypotheses, predictions can be tested directly and
determined to be true or false by making meas-
urements. Test results are compared to the pre-
dicted results: if the predictions are false, the
hypothesis is false. If the predictions are true,
the hypothesis might or might not be true.
Confirmed predictions “corroborate” the scientific
hypothesis, but do not “confirm” it (Popper, 1959/
2002). Scientific hypotheses are tested via an enor-
mous variety of empirical measures.

Note: scientific predictions and scientific hypotheses can
be related to each other as “if...then” statements. “If [this
scientific hypothesis is true] then [this prediction that it
makes must also be true].” This is a deductive relation-
ship; we deduce predictions from hypotheses. This is why
falsifying a valid prediction can falsify a hypothesis that
makes it. The “if...then” statement itself is not a hypothe-
sis; it only puts a scientific hypothesis together with one
or more of its predictions so that their relationships are
obvious. The prediction part of the “if...then” statement
generally points to a measurement that can be made to
test the scientific hypothesis.

2. Statistical hypotheses are often used to evaluate the
numerical results obtained by experimentally test-
ing predictions of scientific hypotheses. Statistical
hypotheses themselves do not make predictions
and are tested only mathematically.

3. The two kinds of hypothesis are independent.
Statistical hypotheses can be formulated and tested
outside of science. And scientific hypotheses can
be tested without using statistical hypotheses. The
Alvarez hypothesis predicted that somewhere on
earth there would be a huge impact crater with the
same age as the dinosaur extinction. This predicted
impact was a one-time event. It was confirmed by
finding such a crater in the Yucatan peninsula of
Mexico. No statistics were involved.

For instance, given the observation that rats treated with drug
X lose weight, a scientific hypothesis might be that drug X
depresses appetite. One prediction of this hypothesis is that rats
treated with X will eat less food than nontreated rats. We could
test this prediction by setting up a null statistical hypothesis, Ho,
that the amount of food eaten by the two groups of rats will not
differ significantly. A statistical test of food consumption data
would determine whether any difference in amounts eaten is
likely to have occurred by random chance alone.

Science tries to find real causes and effects and does not
account for reliable effects by saying they “happened by chance.”
In neuroscience, the conventional level for a statistically signifi-
cant difference is “p� 0.05,” i.e., if the probability of getting a
result by chance alone is less than or equal to 1/20, then the result
is tentatively considered to be real. If X-treated rats ate signifi-
cantly less food than untreated rats, then we would reject Ho

(which said that food consumption of the two groups would
not differ). This test would confirm the prediction of the sci-
entific hypothesis that X-treated rats would eat less. Since the
prediction was true, we conclude the scientific hypothesis
that made it might be true.

Ideally, investigators would then go back to their scientific hy-
pothesis, derive another prediction, perhaps that X-treated rats
would not work as hard for food as nontreated rats, set up
another statistical hypothesis, test that one, and so on. Their
objective would be to discover the reason that X-treated rats lost
weight. This is basic reasoning within the significance-testing
NHST framework. By contrast, assuming this was an “explora-
tory” study operating under the Estimation Approach, the
investigators might opt to design a larger, more tightly con-
trolled “confirmatory” study, preferably preregistering it, and
submit their plan for review. Their objective would be to
determine more precisely the quantitative effect of X on rat
food consumption.

Beneficial practical aspects of the Estimation Approach
Estimation statistics can readily be “translated” into conven-
tional p-values, significance levels, etc. and could, in principle,
be used for the same purposes as NHST is (Perezgonzalez,
2015b; Cumming and Calin-Jageman, 2017). One limit of a
95% CI is the p-value, p= 0.05. Values within the CI are judged
nonsignificant and values outside it, significant. We could have
compared food consumption of drug X-treated and untreated
rats in this way. The CIs would highlight the range of uncer-
tainty within the significance limits but would not fundamen-
tally alter the strategy of testing a scientific hypothesis. The
final result would still be a dichotomous judgment regarding
the truth of a scientific prediction.

Box 2. How CIs could improve conventional practice: an
example

A neuroscientific dispute lasting decades centered on
whether long-term potentiation (LTP), the major pro-
posed neural mechanism of learning and memory, was
mediated by a presynaptic or a postsynaptic mechanism
(for review, see Nicoll, 2017). There was universal agree-
ment that LTP was induced by calcium entering the post-
synaptic cell through NMDA receptors. Therefore, if LTP
was expressed presynaptically, a “retrograde messenger”
would have to go from the postsynaptic cell back to the
presynaptic nerve terminal. Schuman and Madison (1991)
and O’Dell et al. (1991) found that manipulating the nitric
oxide, NO, system affected LTP and proposed the hy-
pothesis that NO was the retrograde messenger in LTP.
NO production seemed to be an “absolute requirement”
for LTP (Hardingham et al., 2013). These findings
quickly became controversial. Some laboratories found
that manipulating NO systems affected LTP while others
did not.
To see how the Estimation Approach could have impacted
this area, I examined the figures in O’Dell et al. (1991).
Their graphs plot the data as mean percentage of control
response amplitudes, plus SEMs at sequential time points.
As shown in their Figure 3, NO inhibitors markedly
reduced mean LTP. However, rough measurements from
the graphs suggest that the 95% CIs, calculated from esti-
mated SEMs of ;25% about the mean responses, were
rather large. The LTP magnitude (raw effect size) was a

8434 • J. Neurosci., November 9, 2022 • 42(45):8432–8438 Alger · Statistical and Scientific Hypothesis Testing



mean ;120% increase over control levels, with a CI
extending from ;71% to 169% (n=21). Two different
NO synthase inhibitors significantly reduced LTP to
;17% (CI = �24%, 58%; n=11) and 42% (CI = �7%,
91%; n=10), respectively. Hence, antagonists of the NO
system did not block LTP in an all-or-none fashion, which
might mean that the role of NO on synaptic transmission
was complicated.
Subsequent demonstrations that LTP is not expressed as
an increase in presynaptic transmitter release (Nicoll,
2017) indirectly ruled out the proposed role for NO in
LTP. However, success in LTP production could depend
on initial transmitter release probability (Larkman et al.,
1992) and several presynaptic targets of NO have been
reported (Hardingham et al., 2013). Possibly, under some
conditions, transmitter release affected by NO contributed
to the variability in the O’Dell et al. (1991) results and the
ensuing controversy. A fuller appreciation of the uncer-
tainty in the initial experiments, as conveyed by CIs,
might have steered research into a more profitable direc-
tion earlier.

The Estimation Approach usefully warns against misinter-
preting “statistical significance,” as meaning “important,”
whereas, as noted above, it simply indicates a result is unlikely to
occur by chance if Ho had been true. Likewise, the Estimation
Approach emphasizes that a “failure to reject Ho” is not the same
as “accepting Ho” and concluding the groups do not differ.
Paying more attention to these concepts should improve stand-
ard neuroscience practices. Nevertheless, this would not call for
abandoning significance testing and replacing it with the
Estimation Approach. The impetus for getting rid of signifi-
cance-testing comes primarily from philosophical aspects of the
latter approach.

Shortcomings of the Estimation Approach as applied to
neuroscience
Specific shortcomings of the Estimation Approach philosophy
include: (1) it fails to distinguish between scientific and statistical
hypotheses; (2) it emphasizes “quantitative,” rather than “qualita-
tive,” research questions; (3) it dwells on cases in which single p-
valued tests are said to provide definitive answers; (4) it does not
recognize the extent to which neuroscience subfields differ from
each other; and finally, (5) it relies too heavily on “preregistra-
tion” procedures to resolve controversies.

Quantitative versus qualitative (dichotomous) differences
One of the core principles of the Estimation Approach is that di-
chotomous—either/or, yes/no—thinking, asking, e.g., “whether
or not an effect is present,” is to be avoided. Instead, neuroscient-
ists should ask, “to what extent” an effect is present. This approach
does not acknowledge that either/or thinking is essential for sci-
ence. Scientists must act and taking action requires making the
dichotomous decision whether to act or not. Moreover, age-old
values and practices of science are bound up in dichotomous
thinking.

Truth/falsehood is a key dichotomy
According to Claude Bernard (Bernard, 1865/1957), “The truth
must be the goal of our studies. Being satisfied by plausibility or
likelihood is the true pitfall.”

The ultimate goal of science is a true understanding of nature.
Although scientific hypothesis testing is not the only way to do
research (see below), it is a principal method and is pervasive. In
this mode, the search for knowledge is conducted by advancing
and testing scientific hypotheses and rejecting the false ones
(Popper, 1959/2002; Platt, 1964). Decisions to accept or reject
hypotheses are dichotomous. The tested and corroborated ones
constitute our current body of scientific knowledge. Falsified
hypotheses constitute valuable “negative information” in scien-
tific knowledge. The distinction between falsified and corrobo-
rated is qualitative.

Quantitative conclusions are like “plausible” or “likely” out-
comes and being satisfied with them is a “real pitfall.” Such out-
comes cannot be rigorously tested and falsified, but only found
to be more-or-less-plausible or likely. Conclusions based on
quantitative thinking mainly stimulate the formation of scientific
hypotheses that must then be qualitatively tested.

Logically valid/invalid
Fallacies are arguments that “seem to be valid but [are] not...”
(Bernard, 2020). Fallacies distort data interpretation and conclu-
sions. Errors caused by fallacies corrupt the scientific literature,
undermine credibility in science, create irreproducible results,
and waste time and money in correcting them. Preventing falla-
cious arguments requires differentiating them qualitatively from
valid ones. An approach that blurs crucial distinctions between
valid and invalid conclusions, even indirectly, diminishes the
force of scientific reasoning.

Action/inaction
Experimental science is an active endeavor. Scientists must do
things that demand making dichotomous choices. Do you com-
mit the time, effort, and resources to conducting a particular
experiment or not? Such yes/no decisions depend, in turn, on
other decisions. Is the current explanation for some phenom-
enon justified? If not, is there a feasible experiment to test it?
Will doing so require obtaining a new knock-out mouse? You
cannot arrange to obtain a knock-out mouse, “to an extent”; you
either do it or not. Scientists continually confront such dichoto-
mous choices. They require rational (even if conventional),
objective grounds for making them. Significance testing proce-
dures such as NHST serve this function.

Neuroscience is not a unitary field
Scientists use NHST for a variety of reasons. A leading statisti-
cian, Daniel Lakens (Lakens, 2021), argues that, properly used,
NHST methods can be valid and valuable in making the dichoto-
mous decisions that scientists must make. There are caveats.
Scientific fields differ in many ways, including their degree of
control over the variables they study, the maturity of the con-
cepts they work with, and the rigor of the logic that holds their
arguments together. In some fields, e.g., psychology, weakness in
these areas have led to concerns that NHST testing procedures
are overused (Scheel et al., 2021). The same critics acknowledge
the utility of significance testing in biology and related fields.
Subfields of neuroscience run the gamut from some that are akin
to psychology, to others, e.g., structural neurobiology, in which
tools and variables are extremely well defined and well con-
trolled. Significance testing will, accordingly, be more necessary
and justified in some neuroscience subfields than others. Also
consider that the effect sizes characteristic of particular neuro-
science-related areas can vary over two orders of magnitude
depending on the area (Cumming and Calin-Jageman, 2017; pp.
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178–179). Effect size is a critical parameter for calculation of sta-
tistical power (Lakens, 2013). Accordingly, variability in the mag-
nitude of effect sizes ought to influence concerns about statistical
power, yet this issue is sometimes overlooked by neuroscience
critics. These general issues highlight a few of the drawbacks to
the blanket proposal to replace NHST with the Estimation
Approach throughout neuroscience.

One “definitive” test versus many corroborating tests
Descriptions of the Estimation Approach often analyze exam-
ples in which a single statistical test result is proposed to be de-
cisive or “definitive” in establishing an important conclusion.
For instance, Calin-Jageman and Cumming (2019) critique
studies that report beneficial effects of caffeine on memory
(Borota et al., 2014) or whether intranasal oxytocin enhances
human trust behavior (Kosfeld et al., 2005). In the studies,
drug-treated and drug-naive groups of people were compared.
The major conclusions rested on single p-valued tests that
detected marginally statistically significant positive treatment
effects, with wide variability in the CIs. Possible effect sizes
ranged from “negligible” to moderate. Follow-up studies largely
failed to replicate the results. Calin-Jageman and Cumming
(2019) remark that, “this trajectory from a single significant
result to wide-spread acceptance of a categorical claim is the
norm in our field.” They do not specify “our field,” but such a
trajectory is not characteristic of all neuroscience.

In fact, in much laboratory-based experimental neuro-
science, a single statistical test does not convey the main mes-
sage of an investigation. A review of over 52 sequential articles
in the Journal of Neuroscience (Alger, 2020), found that most
(75%) were small laboratory investigations that used a variety
of experimental approaches to test several predictions of one
or more scientific hypotheses. A single p-value was never
“widely accepted” as being definitive. Indeed, while positive
results were generally reported, in many cases the multiple
testing process led to the explicit rejection of alternative
hypotheses, which is evidence that many investigators do take
an appropriately critical approach to evaluating their data.

The Estimation Approach labels such laboratory studies as
“exploratory,” which implies that they are merely preliminary to
a more definitive (“confirmatory”) study. (Note: exploratory
studies are not “pilot studies.” Exploratory studies are small-scale
investigations that are published, whereas pilot studies are infor-
mal trials within a laboratory and are unpublished.) The explora-
tory-confirmatory dichotomy (Wagenmakers et al., 2012) is
widely recognized in psychology and social science, although
some authorities in those areas consider it a “false dichotomy,”
that has mislead researchers (Scheel et al., 2021). Exploratory
studies are considered to have low “evidential status” (Allen and
Mehler, 2019), i.e., to carry less weight, than confirmatory stud-
ies, which are intended to be decisive tests of statistical hypothe-
ses. It is argued by some that exploratory studies, which are often
small and lack statistical power, should not be used to test
hypotheses (Button et al., 2013; Calin-Jageman and Cumming,
2019). Yet exploratory studies play vital roles that cannot be filled
by confirmatory studies (Kimmelman et al., 2014; Lakens, 2021).

In the realm of laboratory research in neuroscience, extensive
scientific-hypothesis testing work is often on the cutting edge.
Cellular, molecular, and genetic studies of LTP, for instance,
have been going on for nearly 50 years and have enormously
advanced the neuroscience of learning and memory, synaptic
physiology, neuronal structure, and behavior. The great majority
of such studies are multi-part tests of scientific hypotheses,

conducted on small samples in small laboratories. To my knowl-
edge, no large “confirmatory” studies have been conducted in
LTP. Dismissing research on LTP as merely “exploratory”misses
the point that, even when contentious, these studies are demon-
strably pushing back the frontiers of neuroscience. The Estimation
Approach philosophy cannot deal effectively with wide swaths of
neuroscience research.

In broad terms, the Estimation Approach does not take into
account the common strategy of employing multiple tests of sci-
entific hypotheses. Multiple testing of a single hypothesis makes
for more robust conclusions than single testing does. Consider
an investigation to test the hypothesis that GABA is the transmitter
at a particular synapse. Nowadays, investigators would typi-
cally combine electrophysiological, pharmacological, ana-
tomic, and genetic experiments in testing such a hypothesis.
For each method used, one or more significance tests is
reported. No one test is given decisive weight. Instead, the
overall conclusion of the paper emerges from an intellectual
synthesis of all of the results.

As argued before (Alger, 2020), it is intuitively clear that the
reliability of an investigation that tests several distinct predictions
of a scientific hypothesis should be greater than that provided by
any one test. As an analogy, consider independent games of
chance offering individual odds of 1/5, 1/10, 1/12, 1/15, and 1/20
to win. The odds of winning any one game are not bad, but the
odds of winning them all in succession are quite low: 1/180,000.
This is because the joint probability of a collection of independ-
ent events is the product of the individual probabilities, the num-
ber we get from multiplying them together.

A p-value is a probability. Therefore similar, although not
identical, reasoning can be applied to a collection of tests that
yield p-values. It would be highly unlikely for a group of inde-
pendent, p-valued tests of a hypothesis to come out significant
by chance alone. Thus, the conclusion of a multipart test of a
scientific hypothesis should be more robust than the results of
any one experiment. Authors of such investigations essentially
make this point in their Discussions. Currently, no quantitative
method for combining disparate p-valued results is in general
use, although such methods exist. The Fisher Method described
by R. A. Fisher sums the lns of a collection of p-values of inde-
pendent tests of a given hypothesis to yield an aggregate signifi-
cance value for the collection (Alger, 2020). An alternative
approach would combine results via a meta-analysis (Cumming
and Calin-Jageman, 2017; Alger, 2020). Such a combined test
could be useful in evaluating studies that test scientific hypothe-
ses in neuroscience.

A combined significance test offers several advantages: (1) it
diminishes the influence of any one p-value; (2) there is no
“cutoff” significance level for inclusion of p-values; all p-values
of whatever magnitude go into the calculation. This should
decrease the unhealthy focus on specific p-values and associated
questionable practices; (3) its proper use requires careful think-
ing about the logic of the experiments. The scientific hypothesis
must be stated explicitly because only genuine, independent
tests of predictions can be included; and (4) it would summa-
rize the strength of the overall conclusions relating to the
hypothesis.

The key point is that qualitative approaches to improving sci-
entific-hypothesis testing, such as a combined significance test,
fit naturally with conventional NHST, but are outside the pre-
ferred scope of the Estimation Approach with its emphasis on
quantitative problems, single p-valued tests, and lack of distinc-
tions between scientific and statistical hypotheses.
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Additional concerns raised by the Estimation Approach
philosophy
Replication (or “reproducibility”) is a foundational virtue of
science—true results should be reproducible. (Reproducible results
are not necessarily true, of course, and thinking they are is a fallacy;
Bernard, 2020.) The Estimation Approach holds up reproducibility
of specific results as, perhaps, the highest scientific standard.
However, neuroscience is exceedingly complex and there are
countless legitimate reasons that a published finding might be
irreproducible by another laboratory. The effects of biological
sex of experimenters on rodent behavior (Sorge et al., 2014), or
of a contaminant in a commercially supplied drug on synaptic
transmission (Lafourcade et al., 2009) are among the innumerable
subtle and unforeseeable reasons for irreproducibility. Therefore,
it is not a simple matter to say just how the quest for reproducibil-
ity should come into the daily practice of neuroscience.

Initially, there is very little information in an irreproducible
result. If study B fails to reproduce study A, it is unknown which
is right and, of course, they might both be right (or wrong). To
settle the issue, the Estimation Approach recommends more rep-
lication studies accompanied by a meta-analysis of the data.
Ideally, there will be large, meticulously planned confirmatory
studies that formally state their methods in advance and “prereg-
ister” them. Preregistration is basically a promise to carry out a
study exactly as described and to report the results exactly as
obtained. In return, approved preregistered studies are guaran-
teed publication of whatever results are obtained. The preregis-
tration strategy can be invaluable in the right context (e.g.,
clinical trials). Preregistration, although not an integral compo-
nent of the Estimation Approach, nevertheless epitomizes its pri-
mary concern with replication. Preregistration is not applicable
throughout experimental neuroscience, however, and there are
problems with the preregistration strategy itself.

Replication
An investigator whose laboratory pilot study has failed to repro-
duce a published result must decide whether to try to pinpoint
the problem and pursue replication studies, or to set aside the
irreproducible results, derive other predictions from the scien-
tific hypothesis at stake and test them. Conducting a full-scale
replication study may demand substantial time, effort, and
money (Allen and Mehler, 2019). The intranasal oxytocin study
(Kosfeld et al., 2005) has been the subject of numerous
attempted replications and its findings have not, so far, been
reliably reproduced (Nave et al., 2015). The failures have been
attributed to everything from inadequate research practices
(Calin-Jageman and Cumming, 2019) to a variety of “person-
specific” variables, e.g., personality traits, genetic factors, etc.
(Kurokawa, et al., 2021). It is an open question whether more pro-
gress has been made by investigations of other predictions of the
oxytocin hypothesis, or by repeating the original protocol many
times. It may be that replication studies serve more to determine
the degree of reproducibility of published observations than to
investigate the validity of the ideas they are connected to.

Preregistration
Preregistration will not work for laboratory scientists who are
actively and continually engaged in a “dialogue” with nature (cf.
Bernard, 1865/1957). That is, where scientists test predictions that
falsify the hypothesis, come up with another hypothesis, or make
an unanticipated observation, and pursue the new line of research,
etc. Many such factors militate against preregistration in highly
competitive, fast-moving research fields. Preregistration would not

have been appropriate for the labs racing to figure out the mecha-
nisms of LTP, for instance. In such fields, too little is known to be
able to specify in advance all of the relevant variables or the likely
outcomes of the manipulations to make preregistration a viable
option. The risk that a clever, original idea could become known
to one’s competitors during preregistration review may also be a
disincentive. More generally, the constraints of preregistration will
make this method unappealing to a large group of neuroscientists.

While preregistration is intended to eliminate investigator
bias and certain questionable practices, the preregistration sys-
tem itself is not immune to abuse (Yamada, 2018; Allen and
Mehler, 2019). One scheme is called PARKing (preregistration
after results are known; Yamada, 2018). In PARKing, investiga-
tors “propose” to do a well-planned and tightly-controlled study
that they have in fact already done. Knowing how their experi-
ments turned out, they can describe their methods, “expected
results,” analytic procedures, etc., for preregistration review.
Once their sham proposal has been accepted, the investigators
report their previously gathered data with publication guaran-
teed. This integrity of preregistration can be further undermined
if investigators use selective reporting of data, i.e., withholding
data that does not support their ideas. After a study is reviewed
and registered, there is no control over the data that are reported.
Selective reporting is of course not a unique problem for prereg-
istration, but its possibility shows how a system that is expressly
intended to guarantee the trustworthiness of results may still be
undermined.

Concern has been raised about the increasing number of nega-
tive results from preregistered studies (Warren, 2018). While this
may reflect honest data reporting, it could also reflect a ploy by
investigators wondering what to do with negative data that might
be hard to publish via traditional peer-review. Investigators could
“propose” the work for preregistration, without disclosing that
they have already done it. Once their proposal is accepted and
publication is guaranteed, their problem is solved.

Most disappointingly, perhaps, for preregistration advocates,
Claesen et al. (2021) found that, of 27 properly vetted, preregis-
tered studies, 25 of them did not fully adhere to the promised
protocol. Of the 25, only one fully disclosed all of its deviations,
and nine failed to disclose any of their deviations. These viola-
tions of trust, together with the questionable practices mentioned
above, undercut the purpose and benefits of preregistration.

Preregistration is accepted as a high standard for ensuring the
reliability of published results. The pitfalls associated with pre-
registration are relevant here because of the central place that
replication holds in the Estimation Approach philosophy. Other
less rigorous forms of replication studies must have the same
potential for abuse that preregistration has.

Discussion
The Estimation Approach recommends that neuroscience
“countenance uncertainty,” and advocates large, well-controlled
replication studies to reduce uncertainty. Its goal is to determine
the extent to which variability influences final conclusions. In
contrast, the conventional approach, aided by significance test-
ing, uses explanatory scientific hypotheses and attempts to elimi-
nate variability by correctly accounting for and explaining the
disparate factors and arriving at a true understanding of nature.

Plainly, neuroscience needs standards of truth and ways of
evaluating its results to know whether its hypotheses have been
corroborated or falsified. It needs clear standards, expressed in
dichotomous thinking, for separating truth and falsehood; falla-
cious from valid reasoning; the logical relationship between
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scientific hypotheses and predictions, etc. Neuroscience will ben-
efit from adopting practical elements of the Estimation
Approach and correcting the misuse of NHST-based significance
testing (Lakens, 2021). Yet much will be lost if neuroscientists
become less attentive to the rigors of genuine scientific hypothe-
sis testing and the reasoning that supports and sustains it.

In an essay evaluating estimation statistics in eNeuro papers,
Christophe Bernard (Bernard, 2021) concludes, “However, it is
important to keep in mind that estimation statistics and signifi-
cance testing can complement each other. They provide different
types of information. One just has to know how to use these
techniques and be aware of their limitations.”

Neuroscience can improve its current procedures by taking
advantage of both approaches without “replacing” one with the
other.
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