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Liver hepatocellular carcinoma (LIHC) remains a lethal disease for humans. Immune checkpoint inhibitors (ICIs) targeting PD1/
PD-L1 and CTLA4 offered new hopes for advanced-stage patients. Novel immune biomarkers and therapeutic targets are urgently
needed. For the first time, we evaluated the expression and prognostic value of Layilin (LAYN) using in silico analyses and
uncovered the carcinogenic role of LAYN in LIHC. The HCG18/hsa-mir-148a/LAYN axis was predicted as the upstream
mechanism. Moreover, gene set enrichment analysis (GSEA) revealed that LAYN and its coexpressed genes primarily
participated in immune response pathways, and LAYN expression was found significantly correlated with tumor immune cell
infiltration in LIHC tissues. In general, our data provided evidence that HCG18/hsa-mir-148a-regulated high expression of
LAYN is associated with immune cell infiltration and unfavorable prognosis of LIHC patients.

1. Introduction

Liver hepatocellular carcinoma (LIHC) represents the vast
majority of primary liver cancers, which leads to the second
most cancer-related mortality worldwide [1]. Risk factors of
developing LIHC include hepatitis B and C virus infection,
alcohol addiction, fungal metabolite aflatoxin B1 intake, and
newly proposed causes such as nonalcoholic fatty liver disease
and metabolic maladies [2–4]. The long-term survival of
LIHC patients remains unsatisfactory, owing to the limited
clinical options for advanced-stage lesions [5]. Novel bio-
markers and therapeutic targets are urgently needed in the
near future.

Layilin (LAYN) is a transmembrane protein with a C-type
lectin. Previous studies suggested that LAYN is involved in
cancer cell invasion and could serve as a prognostic biomarker

in human cancers [6–9]. A single-cell RNA sequencing anal-
ysis revealed that LAYN is upregulated on activated CD8+ T
and Treg cells and represses the CD8+ T cell functions
in vitro [10]. However, the underlying functions of LAYN
and its interplay with immune cell infiltration in LIHC are still
unclear.

To better understand the impacts of LAYN on LIHC
development and the underlying mechanisms, we performed
a comprehensive bioinformatics analyses in this study. Firstly,
we evaluated the expression level and survival significance of
LAYN in the LIHC cohort. The coexpressed genes and func-
tional enrichment pathways were predicted. Next, the
upstream noncoding RNAs (ncRNAs), includingmicroRNAs
(miRNAs), and long noncoding RNAs (lncRNAs) were inves-
tigated and analyzed. Then, the correlation between LAYN
and immune cell infiltration in LIHC was explored. Our
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results provided novel insights into developing underlying
prognostic biomarker and latent therapeutic target in LIHC.

2. Materials and Methods

2.1. UALCAN. UALCAN (http://ualcan.path.uab.edu/) is a
public resource for the comprehensive analysis of gene
expression data of 31 human cancer types from The Cancer
Genome Atlas (TCGA) Project [11]. In this study, the
“Expression Analysis” module was used to evaluate the
mRNA level of LAYN across tumor and normal tissues
and in different subgroups of patients with LIHC. The
expression level and survival value of lncRNA HCG18 in
LIHC were also determined using the UALCAN.

2.2. The Kaplan–Meier Plotter (KM Plotter). The KM plotter
(http://kmplot.com/) is a web platform to assess the effect of
microarray-quantified genes (mRNA, miRNA, and protein)
on survival in 21 human cancer types [12]. The prognostic
values of LAYN and associated miRNAs in LIHC were
obtained from the Kaplan–Meier plotter database. Patients
were divided into a higher expression group and lower
expression group by the best cutoff value.

2.3. LinkedOmics. LinkedOmics (http://www.linkedomics
.org/) is a multidimensional dataset designed to analyze mul-
tiomics data for 32 TCGA Cancer types [13]. The miRNAs
that are reversely associated with LAYN and the coexpressed
genes of LAYN were screened via this website. In addition,
the gene set enrichment analysis (GSEA) module of this
website was used to predict the LAYN-related cellular pro-
cesses and pathways.

2.4. GEPIA. The GEPIA database (http://gepia2.cancer-pku
.cn/) is an interactive web portal that includes gene expres-
sion and prognostic data from TCGA and genotype-tissue
expression (GTEx) projects [14]. The survival heatmaps of
the top 50 genes with significant positive and negative corre-
lations with LAYN are analyzed through this database.

2.5. UCSC Xena. UCSC Xena (http://xena.ucsc.edu/)
includes multiomics and clinical data of human cancer and
was used to evaluate the expression level of LAYN-
correlated miRNAs [15].

2.6. StarBase. StarBase (https://starbase.sysu.edu.cn/) focuses
on the RNA-RNA and protein-RNA interaction networks
[16]. The miRNA-lncRNA and lncRNA-mRNA analysis
modules were applied to perform correlation analyses for
hsa-mir-148a-lncRNAs and LAYN-lncRNAs in LIHC.
Moreover, the pancancer module was used to evaluate the
expression level of lncRNA HCG18 in LIHC.

2.7. TIMER. TIMER (http://timer.cistrome.org/) contains
the most comprehensive data on cancer immunity [17].
The correlation between LAYN expression and immune cell
infiltration, as well as a variety of immune cell markers, was
evaluated via the TIMER. The difference in 24 subtypes of
immune cell infiltration between LAYN high and low groups
was evaluated with “GSVA” package by ssGSEA algorithm.

2.8. Statistical Analysis. The plots and statistical results
including either HR or P values in this study were obtained
from the online databases mentioned above. The P value less
than 0.05 (∗), 0.01 (∗∗), and 0.001 (∗∗∗) was considered as
statistically significant. All data were originated from these
public databases; our methods were performed in accor-
dance with the relevant guidelines and regulations.

3. Results

3.1. LAYN Expression in Human Cancer. To understand the
potential role of LAYN in tumorigenesis, we first evaluated
the expression level of LAYN in human cancers using the
UALCAN database. As shown in Figure 1(a), LAYN is
upregulated in several types of human cancer, including
LIHC. The elevated mRNA expression of LAYN in LIHC tis-
sues compared with the normal controls was further deter-
mined using TCGA data (Figures 1(b) and 1(c)).

3.2. Prognostic Significance of LAYN Expression and Its
Correlation with Clinical Features in LIHC. The ROC curve
of LAYN distinguishing LIHC from healthy individuals is
shown in Figure 2(a). The area under the curve (AUC) is
0.800 (95% CI: 0.744-0.856). Next, the prognostic value of
LAYN expression in LIHC was explored using the Kaplan–
Meier Plotter (KM Plotter) database. The inferior overall
survival (OS), disease-specific survival (DSS), and
recurrence-free survival (RFS) were observed in patients
with high expression of LAYN (Figures 2(b)–2(d)). These
results suggested that LAYN is overexpressed and might play
a tumorigenic role in LIHC. In addition, we further per-
formed a subgroup investigation and found the significantly
higher expression of LAYN in the primary cancer patients
than that of healthy controls in terms of age, gender, tumor
grade, cancer stage, nodal metastasis status, and histological
subtypes (Figures 3(a)–3(f)). A nomogram was designed for
patients’ survival prediction based on the LAYN expression
and other clinical parameters including TNM stages, histo-
logic grade, and age. The survival probabilities of 1 year, 3
years, and 5 years could be predictably calculated by the total
points added for each variate in this model. The C-index is
0.646 (0.613-0.679) (Figure 3(g)), which shows good perfor-
mance of the nomogram. Moreover, a calibration plot was
generated. The plot indicates that the survival probabilities
predicted by the nomogram are in good agreement with
the observed survival probabilities (Figure 3(h)).

3.3. LAYN Coexpressed Genes and Functional Analyses. To
further investigate the biological functions of LAYN in
LIHC, we next explored the coexpressed genes of LAYN in
the LIHC cohort. By Pearson correlation, genes that are pos-
itively and negatively associated with LAYN were labeled
with red and green dots, respectively (FDR < 0:01)
(Figure 4(a)). The top 50 genes with significant positive
and negative correlations with LAYN were exhibited in heat-
maps (Figures 4(b) and 4(c)). Then, the prognostic signifi-
cance of these genes in the LIHC cohort was determined
using the GEPIA database. As shown in Figure 4(d), 2 of
the top 50 positively correlated genes are likely to be high-
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risk genes (P < 0:05), whereas eight of the top 50 negatively
correlated genes are with low hazard ratio (HR) (P < 0:05).
In addition, the gene set enrichment analysis (GSEA) mod-
ule of LinkedOmics was used to gain insight of the involved
biological processes and pathways of these genes. Gene
Ontology (GO) term annotation showed that LAYN coex-
pressed genes mainly participate in cell adhesion and multi-
ple inflammatory processes such as T cell activation, B cell
activation, myeloid dendritic cell activation, mast cell activa-
tion, leukocyte proliferation and activation, cellular defense
response, type 2 immune response, and interleukin-4 pro-
duction (Figure 4(e)). Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis revealed gene
enrichment in biological pathways such as the T cell recep-
tor signaling pathway; primary immunodeficiency; Th1,
Th2, and Th17 cell differentiation; platelet activation; and
inflammation-related disease such as asthma, allograft rejec-
tion, autoimmune thyroid disease, inflammatory bowel dis-
ease (IBD), and rheumatoid arthritis (Figure 4(f)). These
data uncovered the widespread impact of LAYN on human
immune response.

3.4. Predictive Analyses of Upstream miRNAs of LAYN in
LIHC. Past studies have changed our understanding of
ncRNAs from “junk” transcripts to gene regulatory mole-
cules. These ncRNAs, particularly miRNAs, lncRNAs, and
circRNAs, could modify the expression of their target genes
and have been identified as oncogenic drivers or suppressors
in human cancers. According to the acknowledged ceRNA
mechanism, lncRNAs typically regulate the specific mRNA
expression at the posttranscriptional level by competitively
targeting miRNAs [18]. In this study, we constructed a
ceRNA network using comprehensive bioinformatics analy-
ses. Firstly, we predicted the possible upstream miRNAs of
LAYN in LIHC. Figure 5(a) showed the analysis flow of
screening miRNAs. As depicted, 73 out of 345 miRNAs are
significantly negatively associated with LAYN expression
using the LinkedOmics portal (P < 0:05). Among these miR-
NAs, 15 miRNAs positively correlate with OS of LIHC
patients in the KM Plotter database, and only one miRNA
of them, namely, hsa-mir-148a, was found downregulated
in LIHC cancer tissues. Indeed, hsa-mir-148a is negatively
correlated with LAYN expression (HR = −0:375, P < 0:001)
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Figure 1: Pancancer analyses of LAYN expression in multiple types of human cancer (a) and the expression of LAYN in LIHC unpaired (b)
and paired tissues (c).
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(Figure 5(b)) and is associated with favorable survival out-
come in LIHC. The expression level of hsa-mir-148a was
determined in the UCSC Xena database, and the results
showed that hsa-mir-148a is significantly downregulated in
LIHC cancer tissues compared with the normal tissues
(Figure 5(d)). In addition, the expression level of hsa-mir-
148a was observed gradually decreased with the rise of
tumor grade (Figure 5(e)). These data suggested that hsa-
mir-148a might be the most likely upstream miRNA of
LAYN in LIHC.

3.5. Predictive Analyses of Upstream lncRNAs of hsa-mir-
148a in LIHC.miRNAs interact with other types of ncRNAs,
such as circRNAs and lncRNAs, to regulate their biological
properties. lncRNA could upregulate the target gene expres-
sion through competitively sequestrating mutual miRNAs.
Therefore, the upstream lncRNAs should be negatively cor-
related with hsa-mir-148a expression, while they should be
positively correlated with LAYN expression. Figure 6(a)
depicts the screening process of upstream lncRNAs. Using
the StarBase database, a total of 14 lncRNAs were found to
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Figure 2: The prognostic value of LAYN in LIHC using the KM plotter database. (a) ROC curve of LAYN in LIHC. (b) OS: overall survival.
(c) DSS: disease-specific survival. (d) RFS: recurrence-free survival.
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Expression of LAYN in LIHC based on patient`s age
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be significantly negatively correlated with hsa-mir-148a-3p,
and 12 of them are positively correlated with LAYN expres-
sion. We next screened these lncRNAs by evaluating their
expression levels in the LIHC cohort and found that 10
lncRNAs are upregulated in LIHC cancer tissues. Among
them, only one lncRNA, namely, lncRNA HCG18, is nega-
tively correlated with OS of LIHC patients using the UAL-
CAN database. As shown in Figures 6(b) and 6(c), the
expression of lncRNA HCG18 is negatively associated with
hsa-mir-148a-3p (HR = −0:259, P < 0:001) and positively
correlates with LAYN (HR = 0:333, P < 0:001). The expres-
sion of lncRNA HCG18 is elevated in LIHC cancer tissues
(Figure 6(d)) and gradually increases in patients with higher
tumor grades (Figure 6(e)). Moreover, the high expression of
lncRNA HCG18 indicates inferior survival outcome of LIHC

patients (Figure 6(f)). These data uncovered that lncRNA
HCG18 might be the upstream regulatory molecule of the
hsa-mir-148a-LAYN axis in LIHC.

3.6. Correlation between LAYN Expression and Immune Cell
Infiltration in LIHC. Of note, cancer cells are infiltrated by
plentiful noncancer cells including immune cells, which are
recruited in the tumor microenvironment (TME) and have
vital impacts on cancer progression and survival [19, 20].
In view of the immune-related pathways which LAYN and
its coexpressed genes are enriched in, we next investigated
the correlation between LAYN and immune cell infiltration
using the TIMER database. As shown in Figure 7(a), LAYN
expression is significantly correlated with tumor purity
(R = −0:302, P < 0:001) and the infiltration of six types of
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Figure 3: The correlation of LAYN with clinical features including age (a), gender (b), tumor grade (c), cancer stage (d), node metastasis (e),
and histologic subtype (f). The nomogram (g) and calibration plot (h).
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immune cells including B cells (R = 0:325, P < 0:001), CD4+
T cells (R = 0:379, P < 0:001), CD8+ T cells (R = 0:482, P <
0:001), macrophages (R = 0:435, P < 0:001), neutrophils
(R = 0:379, P < 0:001), and dendritic cells (R = 0:567, P <
0:001) in LIHC tissues. Furthermore, the discrepant infiltra-
tion level between the high- and low-LAYN expression
groups was observed in all 24 subtypes of immune cells apart
from Tcm, Th17 cells, and Treg (Figure 7(b)).

We further explored the LAYN crosstalk with diverse
tumor-infiltrating immune cell markers, including markers
of B cells, CD4+ T cells, CD8+ T cells, tumor-associated mac-
rophages (TAMs), monocytes, M1/M2 macrophages, neu-
trophils, DCs, and natural killer (NK) cells. Besides, other

subpopulations of T cells, such as T helper 1 (Th1), T helper
2 (Th2), follicular helper T (Tfh), Th17, regulatory T
(Tregs), and checkpoint marker expression, were also deter-
mined. After correlation adjustment by tumor purity, the
results revealed that LAYN is significantly correlated with
B cell biomarkers (CD19 and CD79A), CD8+ T cell bio-
markers (CD8A and CD8B), CD4+ T cell biomarker
(CD4), general T cell biomarkers (CD3D, CD3E, and
CD2), monocyte biomarkers (CD86, C3AR1, CSF1R,
CX3CR1, and CD14), TAM biomarker (CCL2, CD68, and
IL10), M1 macrophage biomarkers (NOS2, IRF5, and
PTGS2), M2 macrophage biomarkers (CD163, VSIG4, and
MS4A4A), neutrophil biomarkers (ITGAM and CCR7),

(e)

(f)

Figure 4: LAYN coexpressed genes and functional analyses in LIHC. (a) A scatter diagram of LAYN coexpressed genes. (b, c) The heatmaps
of top 50 positively and negatively correlated genes of LAYN. (d) The survival maps of top 50 positively and negatively correlated genes of
LAYN. (e, f) GO and KEGG analysis results of LAYN and its coexpressed genes in LIHC.
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Total of 345 miRNAs negatively correlated with
LAYN in LIHC using LinkedOmics

73 miRNAs significantly negatively correlated
with LAYN in LIHC using LinkedOmics (P < 0.05)

15 miRNAS positively correlated with OS
using KM-Plotter (P < 0.05)
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Figure 5: Prediction and analysis of upstream miRNAs of LAYN. (a) Analysis flow regarding correlations, gene expression, and survival. (b)
The correlation between hsa-mir-148a and LAYN expression in LIHC. (c) The prognostic value of hsa-mir-148a in LIHC. (d, e) The
expression of hsa-mir-148a in LIHC based on sample type (d) and tumor grade (e).
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Total of 14 lncRNAs significantly negatively
correlated with mir-148-3p in LIHC using starBase

1 lncRNAs significantly negatively
correlated with OS using UALCAN

12 lncRNAs significantly positively correlated 
with LAYN in LIHC using starBase

10 lncRNAs significantly upregulated
in LIHC using starBase

lncRNA HCG18
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HCG18, expression level: log2 (FPKM+0.01) 
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Expression of HCG18 in LIHC based on tumor grade
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natural killer cell biomarkers (KIR2DL1, KIR2DL3,
KIR2DL4, KIR3DL1, KIR3DL2, and KIR2DS4), and den-
dritic cell biomarkers (HLA-DPB1, HLA-DQB1, HLADRA,
HLA-DPA1, CD1C, NRP1, and ITGAX) in LIHC (Table 1).

In addition, the expression of LAYN was significantly
correlated with the expression of marker genes of different
functional T cell subsets, including Th1 (TBX21, STAT4,
STAT1, IFN-γ, and TNF-α), Th2 (GATA3, STAT6, and
STAT5A), Tfh (BCL6), Th17 (STAT3 and IL17A), and Treg
(FOXP3, CCR8, STAT5B, and TGFβ) (Table 1).

Immune checkpoint inhibitors (ICIs), such as anti-PD-1,
anti-PD-L1, and anti-CTLA-4 antibodies, have gained clini-
cal efficiency in LIHC outcomes. Notably, LAYN expression
is positively correlated with various immune checkpoint
markers including PDCD1, CD274, CTLA4, LAG3, TIGIT,
and TIM-3 (Table 1 and Figures 8(a)–8(f)). These results
indicated that tumor immune cell infiltration is involved in
LAYN-mediated tumorigenesis in LIHC.

4. Discussion

The global incidence and mortality of LIHC are still on the
rise [21]. Due to the stealthiness of cancer progression and
metastasis, the curative treatment for most patients remains
a major challenge [22]. The liver is the largest immune organ
in the human body; hepatic tumorigenesis is closely related
to hepatocellular inflammation and fibrosis [23]. Indeed,

LIHC is not only composed of cancer cells but also contains
a large number of infiltrated immune cells, which have
major impacts on cancer outcomes. Given the potential
and delightful clinical efficiency of existing immunothera-
peutic agents for advanced disease, novel immune biomark-
ers and treatment targets for LIHC are urgently needed in
the near future.

LAYN, a transmembrane protein, mainly participates in
cell adhesion. A recent study revealed that LAYN plays a role
in T cell-related immunity. To better elucidate the potential
functions and mechanism of LAYN in LIHC carcinogenesis,
we performed this in silico analysis using multiple public
databases to provide evidence for future studies.

In the present study, we found the elevated expression
level of LAYN in the primary cancer patients than that of
healthy controls regarding sample type, age, gender, tumor
grade, cancer stage, nodal metastasis status, and histological
subtypes. Next, the impacts of LAYN expression on the sur-
vival of LIHC patients were determined, showing that high
expression of LAYN indicates poorer OS, DSS, and RFS of
LIHC patients. Our data suggest that LAYN might play a
protumorigenic role in LIHC, which was in accordance with
the results of previous studies [7, 8].

To better understand the functions and involved biolog-
ical processes of LAYN, we explored its coexpressed genes in
LIHC (Figures 3(a)–3(c)). The survival maps of the top 50
positively and negatively correlated genes were analyzed
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Figure 7: Correlation analyses between LAYN and six infiltrating immune cells (a) and 24 subtypes of tumor immune cells (b) in LIHC.
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Table 1: Correlation analyses between LAYN and markers of immune cells in LIHC via the TIMER database.

LIHC

None Purity

Description Gene markers Cor P Cor P

CD8+ T cell
CD8A 0.42 ∗∗∗ 0.35 ∗∗∗

CD8B 0.37 ∗∗∗ 0.291 ∗∗∗

CD4+ T cell CD4 0.418 ∗∗∗ 0.356 ∗∗∗

T cell (general)

CD3D 0.396 ∗∗∗ 0.315 ∗∗∗

CD3E 0.471 ∗∗∗ 0.391 ∗∗∗

CD2 0.447 ∗∗∗ 0.364 ∗∗∗

B cell
CD19 0.341 ∗∗∗ 0.255 ∗∗∗

CD79A 0.395 ∗∗∗ 0.306 ∗∗∗

Monocyte

CD86 0.55 ∗∗∗ 0.495 ∗∗∗

C3AR1 0.541 ∗∗∗ 0.481 ∗∗∗

CD115 (CSF1R) 0.523 ∗∗∗ 0.449 ∗∗∗

CX3CR1 0.435 ∗∗∗ 0.395 ∗∗∗

CD14 -0.098 0.06 -0.132 ∗

TAM

CCL2 0.502 ∗∗∗ 0.408 ∗∗∗

CD68 0.368 ∗∗∗ 0.282 ∗∗∗

IL10 0.439 ∗∗∗ 0.354 ∗∗∗

M1 macrophage

INOS (NOS2) 0.238 ∗∗∗ 0.224 ∗∗∗

IRF5 0.292 ∗∗∗ 0.309 ∗∗∗

COX2 (PTGS2) 0.51 ∗∗∗ 0.429 ∗∗∗

M2 macrophage

CD163 0.433 ∗∗∗ 0.357 ∗∗∗

VSIG4 0.4 ∗∗∗ 0.341 ∗∗∗

MS4A4A 0.437 ∗∗∗ 0.398 ∗∗∗

Neutrophils

CD66b (CEACAM8) -0.007 0.899 -0.036 0.509

CD11b (ITGAM) 0.396 ∗∗∗ 0.319 ∗∗∗

CCR7 0.448 ∗∗∗ 0.35 ∗∗∗

Natural killer cell

KIR2DL1 0.132 ∗ 0.106 ∗

KIR2DL3 0.271 ∗∗∗ 0.225 ∗∗∗

KIR2DL4 0.284 ∗∗∗ 0.25 ∗∗∗

KIR3DL1 0.266 ∗∗∗ 0.247 ∗∗∗

KIR3DL2 0.236 ∗∗∗ 0.2 ∗∗∗

KIR3DL3 0.068 0.194 0.067 0.215

KIR2DS4 0.162 ∗∗∗ 0.167 ∗∗∗

Dendritic cell

HLA-DPB1 0.535 ∗∗∗ 0.454 ∗∗∗

HLA-DQB1 0.421 ∗∗∗ 0.342 ∗∗∗

HLA-DRA 0. 512 ∗∗∗ 0.433 ∗∗∗

HLA-DPA1 0.545 ∗∗∗ 0.468 ∗∗∗

BDCA-1 (CD1C) 0.383 ∗∗∗ 0.289 ∗∗∗

BDCA-4 (NRP1) 0.535 ∗∗∗ 0.5 ∗∗∗

CD11c (ITGAX) 0.482 ∗∗∗ 0.416 ∗∗∗
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via the GEPIA database (Figure 3(d)). Two positively corre-
lated genes, namely, PGF and GPX8, were supposed as high-
risk genes, while eight negatively correlated genes including
BDH1, CPN2, UPB1, DMGDH, DAO, CYP4F12, BHMT2,
and MLXIPL were deemed as low-risk genes. PGF is upreg-
ulated under hypoxic conditions and promotes cancer
angiogenesis [24–26]. Previous studies indicated that over-
expression of PGF is correlated with cancer progression
and poorer prognosis of several types of cancer patients,
including LIHC [27, 28]. In addition, GPX8, a member of
the selenoproteome, is identified to promote cancer growth
and progression in gastric cancer [29] and non-small-cell
lung cancer [30], while the role of GPX8 in LIHC is not well
identified.

For years, studies in tumor biology were confined to the
expression and modification of the transcribed genomes,
which only accounts for 2% of the entire human genome
[31]. Over the past few decades, there has been increasing
evidence that other types of RNAs, particularly ncRNAs,
play vital roles in both normal cellular activity and human
disease, including cancer progression [32, 33]. Noncoding
RNAs are thought to act as cancer drivers or suppressors
by regulating protein-coding gene expression. lncRNAs
sponge miRNAs, thereby attenuating the inhibitory effect

of miRNA on the downstream protein-coding target genes
[34]. In this study, we further investigated the regulation
mechanism of LAYN expression mediated by ncRNAs.
Using multiple publicly available portals, we screened and
supposed hsa-mir-148a as the most likely upstream miRNA
of LAYN in LIHC. In line with our results, previous studies
demonstrated that hsa-mir-148a is downregulated in LIHC
cancer tissue and could suppress LIHC cell proliferation by
regulating the MAPK pathway [35, 36]. Besides, plasma
hsa-mir-148a expression level in LIHC patients is signifi-
cantly lower than that in noncancer controls, suggesting that
hsa-mir-148a might be a latent noninvasive biomarker for
liver cancer screening [37].

On the basis of ceRNA mechanism, lncRNA could com-
petitively sequestrate the mutual miRNAs to upregulate the
target gene expression. We next explored the latent
upstream lncRNAs, which are positively correlated with
LAYN and negatively correlated with hsa-miR-148a in LIHC
using the StarBase website. Our data revealed that lncRNA
HCG18 played an oncogenic role and might be the upstream
regulatory lncRNA of the hsa-mir-148a/LAYN axis in LIHC.
Of note, lncRNA HCG18 was identified as an oncogene in
several human cancers, including LIHC [38–40]. A recent
study showed that lncRNA HCG18 is overexpressed in

Table 1: Continued.

Th1

T-bet (TBX21) 0.402 ∗∗∗ 0.316 ∗∗∗

STAT4 0.323 ∗∗∗ 0.27 ∗∗∗

STAT1 0.396 ∗∗∗ 0.386 ∗∗∗

IFN-γ (IFNG) 0.296 ∗∗∗ 0.221 ∗∗∗

TNF-α (TNF) 0.379 ∗∗∗ 0.283 ∗∗∗

Th2

GATA3 0.534 ∗∗∗ 0.467 ∗∗∗

STAT6 0.244 ∗∗∗ 0.255 ∗∗∗

STAT5A 0.483 ∗∗∗ 0.435 ∗∗∗

IL13 0.098 0.058 0.062 0.254

Tfh
BCL6 0.206 ∗∗∗ 0.224 ∗∗∗

IL21 0.095 0.066 0.072 0.18

Th17
STAT3 0.368 ∗∗∗ 0.338 ∗∗∗

IL17A 0.122 ∗ 0.113 ∗

Treg

FOXP3 0.271 ∗∗∗ 0.219 ∗∗∗

CCR8 0.448 ∗∗∗ 0.397 ∗∗∗

STAT5B 0.264 ∗∗∗ 0.342 ∗∗∗

TGFβ (TGFB1) 0.541 ∗∗∗ 0.467 ∗∗∗

Checkpoints

PDCD1 0.424 ∗∗∗ 0.36 ∗∗∗

CD274 0.402 ∗∗∗ 0.366 ∗∗∗

CTLA4 0.382 ∗∗∗ 0.305 ∗∗∗

LAG3 0.253 ∗∗∗ 0.206 ∗∗∗

TIGIT 0.466 ∗∗∗ 0.408 ∗∗∗

TIM-3 (HAVCR2) 0.534 ∗∗∗ 0.48 ∗∗∗
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Figure 8: Continued.
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Figure 8: Correlation analyses between LAYN and immune checkpoint markers including PDCD1 (a), CD274 (b), CTLA4 (c), LAG3 (d),
TIGIT (e), and TIM-3 (f).
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LIHC tissues and could promote the proliferation and
migration of cancer cell lines [41]. These results are consis-
tent with our data.

Moreover, GSEA revealed that LAYN participates in
multiple inflammatory processes such as immune cell activa-
tion and the regulation of multiple subsets of T cell differen-
tiation. These data were in line with the results of subsequent
immune-related analyses, suggesting that the immunomod-
ulatory property of LAYN might be responsible for its protu-
morigenic impact in LIHC.

Tumor lymphocyte infiltration is associated with cancer
progression and survival. Our data uncovered the close asso-
ciation between LAYN expression and the vast majority of
tumor-infiltrating immune cells as well as diverse immune
cell markers. These results suggested that LAYN may regu-
late immune cell infiltration in the LIHC microenvironment.
In addition, the expression of LAYN was also significantly
correlated with the expression of marker genes of different
functional T cell subsets, including Th1, Th2, Tfh, Th17,
and Treg, indicating that LAYN might be involved in the
regulation of T cell responses. Novel agents targeting check-
point molecules such as PD1/PD-L1 and CTLA4 have
gained early success in LIHC. Another finding of this study
was the correlation between LAYN and several immune
checkpoint markers in LIHC, suggesting that tumor immune
escape might be involved in LAYN-mediated tumorigenesis
in LIHC.

In conclusion, the present study provided a perspective
on the oncogenic roles of LAYN via regulating tumor
immune cell infiltration in LIHC. The upstream regulatory
mechanism of the HCG18/hsa-mir-148a/LAYN axis was
also identified. Future studies should focus on the underly-
ing molecular mechanisms of LAYN on TIICs, which may
further broaden the immunotherapy options for LIHC.
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