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Abstract
Oxalate oxidase (EC 1.2.3.4) is an oxalate-decomposing enzyme predominantly found in plants but also described in basidi-
omycete fungi. In this study, we investigated 23 fungi to determine their capability of oxalic acid degradation. After analyz-
ing their secretomes for the products of the oxalic acid-degrading enzyme activity, three groups were distinguished among 
the fungi studied. The first group comprised nine fungi classified as oxalate oxidase producers, as their secretome pattern 
revealed an increase in the hydrogen peroxide concentration, no formic acid, and a reduction in the oxalic acid content. The 
second group of fungi comprised eight fungi described as oxalate decarboxylase producers characterized by an increase 
in the formic acid level associated with a decrease in the oxalate content in their secretomes. In the secretomes of the third 
group of six fungi, no increase in formic acid or hydrogen peroxide contents was observed but a decline in the oxalate level 
was found. The intracellular activity of OXO in the mycelia of Schizophyllum commune, Trametes hirsuta, Gloeophyllum 
trabeum, Abortiporus biennis, Cerrena unicolor, Ceriosporopsis mediosetigera, Trametes sanguinea, Ceriporiopsis subver-
mispora, and Laetiporus sulphureus was confirmed by a spectrophotometric assay.
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Introduction

Oxalic acid is the most common organic acid secreted by 
a majority of fungi (Jarosz-Wilkołazka and Grąz 2006; 
Shimada et al. 1997). It plays multiple roles in fungal 
physiology and exerts an important impact on environ-
mental processes, e.g. nutrient availability, weathering, or 
competition between organisms (Gadd 2007). For exam-
ple, oxalate has a large effect on the availability of phos-
phorous and calcium and is thus linked to the weathering 
of soil minerals and the precipitation of insoluble metal 
oxalates (Gadd et al. 2014; Jarosz-Wilkołazka and Grąz 
2006; Dutton and Evans 1996). Basidiomycota fungi are 
very efficient wood degraders (Janusz et al. 2017). Oxalic 
acid is classified as a low molecular weight compound 
(LMWC) involved in lignocellulose biodegradation. This 
low molecular weight fraction of the fungal secretome 

is involved in all stages of wood decay and comprises 
such compounds as reactive oxygen species, aromatic 
compounds, transition metal coordination complexes, 
peptides, and organic acids (Janusz et al. 2017; Plassard 
and Fransson 2009). In particular, LMWC are involved in 
the initial stages of wood biodegradation due to the fact 
that an intact wood cell wall requires preparation for the 
enzymatic step of degradation (Nousiainen et al. 2014; 
Baldrian and Valaskova 2008). Oxalic acid is an important 
factor in the process of chelation of  Fe3+ ions or heavy 
metal sequestration. It also takes part in free radical for-
mation related to Fenton reaction (Zhu et al. 2016; Gadd 
2007; Aguiar et al. 2006). Oxalate also serves as a donor 
or acceptor of electrons, a metal chelator involved in man-
ganese-dependent peroxidase (MnP) catalytic cycle, or an 
osmotic and pH regulator (Hofrichter 2002; Munir et al. 
2001). The concentration of oxalate in the fungal environ-
ment is controlled due to the toxic effect of oxalates and 
their influence on fungal enzyme activities (Presley et al. 
2018; Hastrup et al. 2012; Shimada et al. 1997). Given 
the role of oxalates in the degradation of the ligninocel-
lulose complex, learning about oxalic acid metabolism in 
fungi can help to develop effective strategies for wood 
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decomposition or protecting wood from fungal decay. It 
seems to be important due to potential application of fun-
gal ability to efficiently lignocellulose complex conversion 
in e.g. biofuel production (Saini and Sharma 2021) or to 
reduce the significant economic costs caused by wood-
degrading fungi (Schmidt 2007). So far, four enzymatic 
activities for the decomposition of oxalic acid have been 
classified and attributed to particular groups of organisms: 
(1) the decarboxylation of oxalic acid catalyzed by oxalate 
decarboxylase (EC 4.1.1.2), typical for fungi, leading to 
the formation of formic acid and carbon dioxide, (2) the 
decarboxylation of activated oxalic acid molecules (oxalyl-
CoA) catalyzed by oxalyl-Co decarboxylase (EC 4.1.1.8) 
yielding formyl-CoA and carbon dioxide, (3) the oxidation 
by thiamine pyrophosphate (TPP)-dependent oxalate oxi-
doreductase (OOR) generating two  CO2 molecules and two 
low-potential electrons, both typical for bacteria, and (4) 
the oxidation of oxalic acid catalyzed by oxalate oxidase 
(EC 1.2.3.4), which is widespread in plants and leads to 
formation of carbon dioxide and hydrogen peroxide (Gib-
son et al. 2016; Mäkelä et al. 2010; Svedruzic et al. 2005). 
There are exceptions to this rigid division. The oxalyl-Co 
decarboxylase activity was proposed in Arabidopsis thali-
ana for oxalic acid degradation (Foster et al. 2012). An 
oxidative pathway of oxalic acid decomposition by fungi 
via the action of fungal oxalate oxidase (OXO, EC 1.2.3.4) 
was also confirmed. Such activity was detected in Ceripo-
riopsis subvermispora (Escutia et al. 2005; Aguilar et al. 
1999) and Abortiporus biennis (Grąz et al. 2016, 2009). 
Effective decomposition of oxalic acid can provide some 
benefits in diagnostic, agricultural, and medical applica-
tions. Oxalate oxidase (OXO) can be applied as a tool in 
diagnostic kits in oxalate concentration assays, as an anti-
fungal factor against plant pathogenic fungi, or in efforts 
to improve the quality of edible plants (Pfau et al. 2020; 
Kumar et al. 2019; Qi et al. 2017; Heller and Witt-Geiges 
2013).

The purpose of the present work is to verify the mode 
of oxalic acid decomposition in cultures of different wood-
rotting fungi to find whether the oxidative pathway of oxa-
late decomposition can be more widespread than is cur-
rently thought. It is important and may lead to the isolation 
of new enzyme for oxalate decomposition with potentially 
better biochemical properties. They can find biotechnologi-
cal applications like prevention of kidney stone formation 
and control of plant-pathogenic fungi. The excess of oxa-
late in the human diet may promote kidney stone forma-
tion and urinary tract disorders (Buysschaert et al. 2020). 
Oxalate-decomposing enzymes can also be an antifungal 
factor against pathogenic fungi which use oxalic acid as a 
virulence factor in plant tissue disorders (Heller and Witt-
Geiges 2013).

Materials and methods

Fungal strains and culture conditions

All fungal strains used in the study were obtained from 
Fungal Collection (FCL) of the Department of Biochem-
istry and Biotechnology, Maria Curie-Skłodowska Univer-
sity, Lublin, Poland (Table 1). Stock cultures were main-
tained on 2% (m/v) malt agar at 4 °C. Fungal strains were 
precultured on 2% (m/v) malt extract agar for 1 week at 
25 °C. The experiment were performed in 100 mL Erlen-
meyer flasks using 50 mL liquid medium containing glu-
cose (10 g  L−1) and potato extract (4 g  L−1). The inocu-
lated flasks were stationary incubated at 25 °C. On the 
day 7 of culture, oxalic acid (10 mM final concentration in 
culture) was added sterilely to induce oxalic acid catabo-
lism enzymes. The cultivation medium was collected in 
the 7, 8 and 9 day of cultivation and tested for oxalic acid, 
formic acid and hydrogen peroxide.

Table 1  List of the tested fungi with appropriate numbers in the Fun-
gal Collection (FCL) of the Department of Biochemistry and Bio-
technology UMCS

Species Fungal 
collection 
number

Abortiporus biennis 123
Agrocybe aegerita 267
Bjerkandera fumosa 137
Ceriosporopsis mediosetigera 150
Ceriporiopsis subvermispora 273
Cerrena unicolor 139
Flammulina velutipes 68
Fomes fomentarius 25
Fomitopsis pinicola 282
Ganoderma lucidum 188
Gloeophyllum odoratum 124
Gloeophyllum trabeum 83
Laetiporus sulphureus 331
Nematoloma frowardii 275
Phlebia radiata 99
Piptoporus betulinus 307
Pleurotus ostreatus 103
Pleurotus pulmonarius 127
Pleurotus sajor-caju 237
Schizophyllum commune 12
Trametes hirsuta 19
Trametes sanguinea 199
Trametes versicolor 7



World Journal of Microbiology and Biotechnology (2023) 39:13 

1 3

Page 3 of 9 13

Determination of oxalic and formic acids

The concentration of organic acids in the fungal cultures 
was monitored by capillary electrophoresis using an Agi-
lent 7100 Capillary Electrophoresis System equipped with 
a DAD detector. The separation was carried out using a 
fused silica capillary 50 µm ID with a 50 cm length to the 
detection window. The voltage applied was − 25 kV and 
the capillary temperature was maintained at 15 °C. Sam-
ples were injected hydrodynamically for 5 s. (50 mbar) and 
organic acid was detected by indirect UV detection at a 
wavelength of 350 nm (bandwidth 20 nm) and a reference 
wavelength of 230 nm (bandwidth 10 nm). The buffer solu-
tion was freshly prepared every day by dissolving phthalic 
acid (5 mM), cetyltrimethylammonium bromide (CTAB, 
0.26 mM), and methanol (0.5% v/v) in MiliQ water (Chen 
et al. 1997). Peak identification was done by spiking with 
commercially available formic and oxalic acids.

Determination of hydrogen peroxide concentration 

Hydrogen peroxide content was determined by the Co(II) 
catalyzed oxidation of luminol. The solutions of luminol 
and Co(II) were prepared according to Pérez and Rubio 
2006.

The reaction mixture contained 0.1  mL of sample 
and 1 mL of a reagent solutions of luminol and Co(II). 
The emitted photons were counted with the luminometer 
(Lumat LB 9507, Berthold. The formation of hydrogen 
peroxide was compared with the calibration curve and 
expressed in micromoles.

Oxalate oxidase (OXO) activity assay 

The standard assay of this enzyme (Aguilar et al. 1999) 
was based on the measurement of enzymatically gener-
ated hydrogen peroxide. The reaction mixture contained 
0.3 mL of 20 mM oxalic acid in 0.05 M succinate buffer, 
pH 3.5, and 0.2 mL of the enzyme. Reaction mixture was 
incubated for 15 min at 40 °C, than 0.45 mL of 0.2 mM 
phenol red solution and 0.05 mL of horseradish peroxidase 
(6.25 U) in 0.05 M succinate buffer, pH 3.5, were added. 
After 15 min incubation at 30 °C, 0.1 mL of 5 M NaOH 
was added and the absorbance at 610 nm was measured. A 
standard curve was used to calculate the amount of  H2O2 
generated during the OXO reaction. One enzyme unit was 
defined as the amount of enzyme required to produce 1 µM 
of  H2O2 per minute, under standard assay conditions.

Results

Secretion of hydrogen peroxide into the culture 
media by fungi after oxalic acid addition

The presence of hydrogen peroxide in the fungal secretome 
may indicate metabolism of oxalic acid via oxalate oxidase; 
therefore, the  H2O2 content was determined in the fungal 
cultures. Figure 1 presents the concentration of hydrogen 
peroxide detected in the control cultures of the fungi and in 
the cultures after 24 h of oxalic acid addition. We observed 
that the addition of oxalic acid stimulated a substantial 
increase in the content of hydrogen peroxide in some fungal 
cultures (Fig. 1). As presented in Fig. 1, we observed a sharp 
increase in the concentration of hydrogen peroxide in some 
cultures, e.g. in C. subvermispora, T. hirsuta, C. unicolor, 
A. biennis, C. mediosetigera, L. sulphureus, S. commune, 
T. sanguinea, G. trabeum, A. aegerita, P. radiata, P. pulmo-
narius, and B. fumosa. In these fungi, the detected hydrogen 
peroxide concentration ranged from 0.14 µM to 1.4 µM, and 
the differences in the hydrogen peroxide content between the 
oxalic acid-induced cultures and the control without oxalic 
acid addition were high, i.e. the content was from 5 to 44 
times higher in the induced cultures. In the rest of the tested 
fungal secretomes (F. fomentarius, F. pinicola, P. sajor-caju, 
P. ostreatus, T. versicolor, F. velutipes, G. odoratum, G. luci-
dum, N. frowardii and P. betulinus), the hydrogen peroxide 
concentration was lower than 0.1 µM both in the oxalic acid-
induced and non-amended cultures. The highest concentra-
tion of hydrogen peroxide was detected in the cultures of 
C. subvermispora and T. hirsuta, i.e. 1.4 µM and 1.3 µM, 
respectively. The A. biennis fungal culture reached a level of 
0.7 µM of hydrogen peroxide in comparison to the content 
of 0.07 µM in the non-induced cultures of this fungus. The 
concentration of hydrogen peroxide in the oxalic acid non-
induced cultures oscillated around values lower than 0.1 µM, 
with the exception of C. subvermispora, where it reached 
0.27 µM. The content of hydrogen peroxide in the F. fomen-
tarius cultures was comparable in both culture variants.

Monitoring fungal secretomes for products 
of enzyme activities involved in oxalic acid 
degradation

To establish more precisely the oxalate degradation path-
way in the tested fungi, the concentration of oxalic acid and 
changes in the formic acid level were monitored. Depend-
ing on the enzymes involved in oxalic acid degradation in 
fungi, two main products are expected to be found in fungal 
secretomes: formic acid or hydrogen peroxide. To demon-
strate the pathway of oxalic acid degradation in the tested 
fungal cultures, the concentrations of oxalic and formic acids 
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were monitored as well as the hydrogen peroxide content. 
As a result of monitoring the secretomes of the tested fungi 
for the oxalic acid, formic acid, and hydrogen peroxide con-
tent, the three main groups were identified. The first group 
(Fig. 2) comprised fungi with potential oxalate oxidase 
activity, and the following strains were classified into this 
group: Abortiporus biennis, Ceriporiopsis subvermispora, 
Trametes hirsuta, Gloeophyllum trabeum, Phlebia radiata, 
Cerrena unicolor, Laetiporus sulphureus, Ceriporiopsis 
mediosetigera, and Trametes sanguinea. These fungi were 
characterized by a drop in the oxalate concentration during 
two days of testing and a constant concentration of formic 
acid or a relatively insignificant increase in its content, as in 
the case of T. sanguinea and C. subvermispora. The main 
important feature observed was the significant increase in 
the hydrogen peroxide content in the tested media over the 
two days of the observation. Except for P. radiata, where 
the hydrogen peroxide concentration reached a maximum 
of 0.18 µM, in all secretomes of fungal strains classified 
to this group, hydrogen peroxide detected exceeded 0.5 µM 
reaching a value even above 1 µM, as in the case of T. hir-
suta and C. subvermispora. The second group (Fig. 3) com-
prised fungal strains that accumulated formic acid in their 
culture media after the addition of exogenous oxalic acid. 
This may indicate the oxalate decarboxylase activity decom-
posing oxalic acid into formic acid and carbon dioxide. The 
following fungi were classified into this group: Trametes 
versicolor, Gloeophyllum odoratum, Piptoporus betulinus, 
Nematoloma frowardii, Bjerkandera fumosa, Schizophyllum 
commune, Agrocybe aegerita, and Fomes fomentarius. In 

all fungal cultures in the second group, the decline in the 
oxalate content was associated with an increasing formic 
acid concentration and a low level of hydrogen peroxide, 
whose concentration was below 0.25 µM. The exception 
was S. commune, where the increase in the formate con-
tent was observed in the presence of the increasing (up to 
0.4 µM) level of hydrogen peroxide on cultivation day 9. 
The third group (Fig. 4) identified in the study comprised 
fungi exhibiting no significant increase in the contents of 
formic acid and hydrogen peroxide. The concentration of 
oxalic acid declined, but the content of oxalate in the case 
of P. ostreatus was not changed during the observation. This 
group included Flammulina velutipes, Ganoderma lucidum, 
Fomis fomitopsis, Pleurotus sajor-caju, Pleurotus pulmoris, 
and Pleurotus ostreatus.  

Oxalate oxidase activity in selected fungi

Based on the observation of the composition of the products 
of enzymatic oxalic acid degradation in the secretomes, the 
mycelia of fungi classified into the first group and S. com-
mune from the second group were selected for the study of 
intracellular OXO activity. S. commune was selected due 
to the increasing content of both formic acid and hydrogen 
peroxide in their secretome. The activity was measured in 
the mycelia after 24 h of oxalic acid addition and compared 
to the control mycelia cultured without induction with oxalic 
acid. Figure 5 shows the oxalate oxidase activity detected 
in the mycelia of the tested fungi. The highest activity was 
detected in the induced mycelium of L. sulphureus (166 U/

Fig. 1  Hydrogen peroxide concentration in fungal cultures after 24 h of oxalic acid addition for the induction of oxalate-decomposing enzymes 
(+ OxA) versus non-induced cultures (control)
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mL). This activity was 22 times higher in comparison to 
the non-induced mycelium of this fungus. Similar induction 
of OXO activity after oxalic acid addition was observed in 
A. biennis, where it reached 30 U/mL and was 8.5 times 
higher than in the non-induced mycelium. The exception 
from this observation was C. subvermispora, which demon-
strated higher OXO activity in the mycelia from the oxalic 
acid non-amended cultures. The rest of the tested mycelia 
exhibited higher OXO activity in the oxalic acid-amended 
cultures but this induction was not significant.

Discussion

The generally accepted division assumes that fungi degrade 
oxalic acid via oxalic acid decarboxylase activity (ODC) 
(Sverduzić et al. 2005). The known fungal ODC are intracel-
lular and have an inducible character (Mäkelä et al. 2002). In 
Dichomitus squalens, addition of oxalic acid stimulated oxa-
late decarboxylase activity but no increase in the transcript 
amount was detected, which suggests non-transcriptional 
upregulation of ODC (Mäkelä et al. 2009). The activities 
of oxalate degrading enzymes can be stimulated not only 
by oxalic acid but also by lowering the pH value of fun-
gal cultures. This was demonstrated in D. squalens in the 

case of ODC and in A. biennis regarding OXO (Hu and Guo 
2009; Mäkelä et al. 2014; Grąz et al. 2016). The oxidative 
pathway of oxalate degradation via OXO activity has been 
described predominantly in plants. It has been detected in 
barley (Kotsira and Clonis 1997; Requena and Bornemann 
1999), wheat (Hu and Guo 2009), oats, rice, and rye (Lane 
2000), maize (Vuletic and Sukalovic 2000; Lane 2000), and 
beet leaves and stems (Varalakshmi and Richardson 1992). 
We were prompted to look for oxalate oxidase in fungi by 
the fact that the ability to degrade oxalate via the oxidative 
pathway has been proved so far only in C. subvermispora 
(Aguilar et al. 1999; Escutia, et al. 2005) and A. biennis 
(Grąz et al. 2009, 2016). It is worth noticing that the well-
characterized OXO from C. subvermispora is classified as 
a bicupin protein similar to fungal ODC, and the known 
OXO originating from plants are monocupins (Dunwell et al. 
2000; Escutia et al. 2005). We observed in this study that 
the induction of oxalate-degrading enzymes by oxalic acid 
addition can elevate the hydrogen peroxide concentration 
in the fungal secretomes. The increased level of hydrogen 
peroxide in the cultures may indicate the oxidative pathway 
for oxalic acid degradation via oxalate oxidase. The reactive 
oxygen species were formed in the proposed catalytic cycles 
of ODC and OXO (Just et al. 2004; Burrell et al. 2007; Pas-
tore et al. 2021). The presence of the hydroperoxyl radical 

Fig. 2  Secretome pattern of oxalic acid (OxA), formic acid (ForA), and hydrogen peroxide at 24 and 48 h after oxalic acid addition in fungal 
strains classified as oxalate oxidase producers, 0 – time of OxA addition
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during the turnover of Bacillus subtilis ODC was observed 
by Twahir et al. (2015). Hydrogen peroxide is needed by 
basidiomycete fungi, as these organisms produce extracel-
lular enzymes which require hydrogen peroxide as a co-
substrate. These classes of enzymes involved directly in 

lignin decomposition include heme-containing peroxidases 
(POD), namely lignin (LiP), manganese (MnP), and versatile 
(VP) peroxidase, as well as heme-thiolate haloperoxidases 
(Janusz et al. 2017). Oxidases found in fungal secretomes 
may be a source of hydrogen peroxide needed for reactions 

Fig. 3  Secretome pattern of oxalic acid (OxA), formic acid (ForA), and hydrogen peroxide after 24 and 48 h of induction of the cultures by 
oxalic acid addition in fungal strains classified as oxalate decarboxylase producers, 0 – time of OxA addition

Fig. 4  Secretome pattern of oxalic acid (OxA), formic acids (ForA), and hydrogen peroxide after 24 and 48 h of induction of the cultures by 
oxalic acid addition in fungal strains classified as oxalate decarboxylase or oxalate oxidase non-producers, 0 – time of OxA addition
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catalyzed by peroxidases. Among them, glucose oxidase 
(EC 1.1.3.4), glyoxal oxidase (GLOX; EC 1.2.3.5), aryl 
alcohol oxidases (AAO; EC 1.1.3.7), pyranose 2-oxidase 
(POX; EC 1.1.3.10), and cellobiose dehydrogenase (CDH; 
EC 1.1.99.18) are very important and well establish (Janusz 
et al. 2017). We postulated for OXO from A. biennis such 
a role in fungal metabolism in our earlier study (Graz et al. 
2016). Oxalic acid supplementation can stimulate the secre-
tion of MnP in C. subvermispora (Aguiar and Ferraz 2012). 
The stabilizing role of oxalic acid in the catalytic cycle of 
MnP is well known (Hofrichter 2002). In our earlier study, 
we reported changes in the gene expression level in A. bien-
nis as a response to oxalic acid induction. This transcrip-
tional study revealed that the oxalic acid addition caused 
down-regulation of genes coding for lignolytic enzymes, 
especially genes encoding VP and, to a lesser extent, MnP. 
The up-regulation was determined for the gene for cellulo-
lytic enzymes, especially endo-β-1,4-xylanase (Grąz et al. 
2017). The detailed analyses of the fungal secretome car-
ried out to determine the content of oxalic acid degradation 
products presented in this study revealed that fungi with a 
low concentration of hydrogen peroxide in their secretome 
after 24 h of induction with oxalic acid had an increased 
level of formic acid and a reduced concentration of oxalic 
acid. This was observed in the cultures of T. versicolor, 
G. odoratum, P. betulinus, N. frowardii, B. fumosa, S. com-
mune, A. aegerita, F. fomentarius, and T. sanguinea. This 
pattern of the secretome allows a conclusion that these fungi 
metabolized oxalates via oxalate decarboxylase. A similar 
drop in the oxalic acid concentration was also found in the 
secretomes of fungi classified to the group decomposing 

oxalate in the oxidative manner via oxalate oxidase, with 
the detectable increase in the hydrogen peroxide level in the 
media. A different situation was observed in the third group 
of the tested fungi, which demonstrated no increase in the 
content of hydrogen peroxide or formate in their secretomes 
and yet a decrease in the concentration of oxalic acid or even 
little accumulation of oxalic acid were observed, as in the 
secretome of P. ostreatus. The observed drop in the oxalic 
acid concentration may be related to its precipitation because 
divalent metal oxalates are insoluble and were not detectable 
in the secretomes during the experiment. Oxalic acid has the 
ability to chelate metals but can also be a metal precipitant. 
The deposition of oxalate salt is well known, with calcium 
and lead oxalate as the least soluble salts (Gadd et al. 2014; 
Gadd 2021). Finally, we managed to confirm the intracellular 
OXO activity in nine fungal mycelia of S. commune, T. hir-
suta, G. trabeum, A. biennis, C. unicolor, C. mediosetigera, 
T. sanguinea, C. subvermispora, and L. sulphureus. Among 
them, only two fungi, i.e. C. subvermispora and A. biennis 
were previously described in the literature as OXO produc-
ers. In this study, only A. biennis and L. sulphureus showed 
potent induction of OXO activity after the oxalic acid addi-
tion. Further studies are necessary to establish whether this 
induction in L. sulphureus was connected with the pH value 
decline after the oxalic acid addition, as in the case of A. 
biennis (Grąz et al. 2016) or whether it was due to the sub-
strate induction. The similarity of the catalytic mechanisms 
proposed for OXO and ODC is known (Just et al. 2004). 
OXO isolated from C. subvermispora exhibited a low rate 
of decarboxylase activity (Escutia et al. 2005). In the case of 
B. subtilis, it has been demonstrated that ODC activity can 

Fig. 5  Intracellular oxalate oxidase activity of selected fungi in oxalic acid induced and non-induced cultures
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be converted into OXO activity by mutation in the active 
site of the enzyme (Burrell et al. 2007). To the best of our 
knowledge, there are some protein sequences for OXO in 
the NCBI database described for basidiomycete fungi, but 
there are no literature reports on oxalate oxidase activities 
in basidiomycete fungi, except for the C. subvermispora and 
A. biennis fungi mentioned above. This study provides the 
first description of the OXO activities in the analyzed fungi.

Conclusions

As shown in the present study, the analyzed fungi can poten-
tially decompose oxalic acid via the oxidative pathway, lead-
ing to the generation of hydrogen peroxide. We detected the 
OXO activity in nine basidiomycete fungi. It is necessary 
to further study the mechanism of the catalytic action of 
these enzymes and their structure. The elucidation of the 
regulation of the oxalate content and potential application 
of enzymes in the removal of excess of oxalates may be a 
promising tool in agriculture and medicine. Effective meth-
ods for oxalate removal can improve the nutritional value of 
forage plants and protect plants against fungal pathogens. 
Enzymes with new biochemical properties can be used in 
the diagnosis and prevention of kidney diseases caused by 
the precipitation of calcium oxalates.
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