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Clinical prospects of WRN inhibition as a treatment for MSI
tumours
David A. Morales-Juarez 1✉ and Stephen P. Jackson 1,2✉

The discovery of synthetic lethal interactions with genetic deficiencies in cancers has highlighted several candidate targets for drug
development, with variable clinical success. Recent work has unveiled a promising synthetic lethal interaction between inactivation/
inhibition of the WRN DNA helicase and tumours with microsatellite instability, a phenotype that arises from DNA mismatch repair
deficiency. While these and further studies have highlighted the therapeutic potential of WRN inhibitors, compounds with
properties suitable for clinical exploitation remain to be described. Furthermore, the complexities of MSI development and its
relationship to cancer evolution pose challenges for clinical prospects. Here, we discuss possible paths of MSI tumour development,
the viability of WRN inhibition as a strategy in different scenarios, and the necessary conditions to create a roadmap towards
successful implementation of WRN inhibitors in the clinic.
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SYNTHETIC LETHALITY – ACCELERATING PRECISION
ONCOLOGY
Precision oncology aims to tailor cancer treatments to the specific
biology of patients and their underlying tumours through genomic
profiling, biomarker-mediated stratification, and choice of selected
therapies1. Therefore, the potential for precision oncology hinges
on improvement of profiling strategies, identification of therapeu-
tically relevant biomarkers, and development of novel drugs to
selectively target different cancer types2. Advances in next-
generation sequencing technologies, such as deep-sequencing
approaches and epigenomic profiling, are constantly improving
our ability to genetically map tumour heterogeneity and enable
better patient stratification3–5. However, the discovery of action-
able candidates for targeted therapy and downstream drug
development processes is time consuming, expensive, and often
unsuccessful6,7. Consequently, identification of molecular signa-
tures that can be precisely targeted by potent and specific drugs
with a high likelihood of clinical success is paramount to make
drug development a worthwhile investment8,9.
The ultimate goal of anti-cancer drug development is the

discovery of chemicals that can eliminate cancer cells without
harming the patient’s normal cells10. To this end, pharmaceutical
companies and research laboratories alike are investing major
resources in identifying actionable synthetic lethal interactions11.
Synthetic lethality occurs when simultaneous mutations in two
genes causes cell death, but a single mutation in either gene is
viable12,13. Due to the nature of these interactions, inhibiting the
products of genes that have a synthetic lethal relationship with
prevalent genetic mutations in cancer cells should specifically kill
cancer cells, while sparing normal cells14. Exploiting the selective
vulnerabilities of cancer cells bearing specific mutations and/or
pathway dysfunctions, through inhibition of their synthetic lethal
partners has produced various levels of success in the clinic15–17.
The most established and successful of these endeavours, thus far,
is the development of Poly (ADP-ribose) polymerase (PARP)
inhibitors to selectively target BRCA1/2 mutated cancers and other
cancers with underlying defects in DNA repair by homologous

recombination18–21. Such developments have fuelled focused
studies and large-scale projects to systematically map cancer-
specific dependencies22.

MISMATCH REPAIR DEFICIENCY LEADS TO MICROSATELLITE
INSTABILITY
DNA mismatch repair (MMR) is a conserved mechanism that
contributes to maintenance of genome stability by removing
errors generated during DNA replication, long-tract DNA repair
synthesis, and recombination23. Germline or somatic mutations
and epigenetic alterations in the genes of MMR components
lead to a hypermutator phenotype characterized by cancer
predisposition and high genomic instability, particularly at
repetitive regions of the genome known as microsatellites24.
Microsatellites, or short-tandem repeats, are short (1–6 base pair)
repetitive DNA sequences distributed along coding and non-
coding regions that constitute approximately 3% of the human
genome25. Due to their repetitive nature, microsatellites are
prone to DNA polymerase slippage events, producing INDELs
(insertions and deletions) that are mainly recognized and
repaired by MMR26. Consequently, MMR deficiencies lead to a
phenotype termed microsatellite instability (MSI), characterized
by the accumulation of repeat-length alterations at microsatellite
regions27. Detection of MSI is clinically relevant, since patients
with MSI cancers have a better overall prognosis and reduced
metastatic potential compared to patients with microsatellite
stable (MSS) cancers28. This seems, in part, to reflect the high
mutational burden of MSI tumours causing production of
neoantigens that increase immunogenicity and sensitivity to
immune checkpoint inhibitors29–32. Nevertheless, a significant
proportion of MSI tumours do not respond, or evolve resistance,
to immunotherapy and chemotherapy, highlighting the need for
more and improved targeted and combinatorial treatments33–35.
Key aspects in the relationship between MMR deficiency and
cancer are outlined in Box 1 and current MSI detection methods
are shown in Table 1.
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WRN INACTIVATION IS SYNTHETIC LETHAL WITH MSI
In 2019, a set of high-impact publications independently unveiled
a therapeutically promising synthetic lethal relationship between
the RecQ-like family helicase protein, WRN, and MSI tumours36–39.
WRN is a multifunctional enzyme with helicase and exonuclease
activities and plays roles in various cellular processes crucial for
the maintenance of genome stability, including DNA replication,
transcription, DNA repair, and telomere maintenance40–43.
Through CRISPR-Cas9 and RNAi screens, WRN was identified as
the top hit for preferential dependency in MSI but not MSS cancer
cell lines36,37,39. Further analysis revealed that WRN depletion
causes cell cycle arrest, DNA damage, mitotic defects, chromo-
some shattering, and apoptosis specifically in MSI cells36–39.
Moreover, WRN depletion reduced xenograft growth and tumour
formation in mice transplanted with MSI cells39. Strikingly, acute
depletion of various MMR components did not induce WRN
dependency in MSS cells; conversely, genetic rescue experiments
in MSI cells re-introducing the missing MMR component failed to
rescue the synthetic lethal relationship36. These experiments
suggested that the WRN synthetic lethal relationship develops via
ensuing mutational consequences of MMR dysfunction rather
than through MMR deficiency per se. Additionally, dissection of
the various enzymatic activities of WRN using loss-of-function
mutations within the helicase domain, exonuclease domain, or
both, demonstrated that WRN dependency in MSI cells is linked
only to its helicase function37.

MECHANISTIC INSIGHTS INTO THE WRN DEPENDENCY OF MSI
TUMOURS
Microsatellites can adopt non-B form DNA secondary structures
in a sequence- and length-dependent manner44. Interestingly,
one of the initial publications unveiling the synthetic lethality
between WRN and MSI hypothesized that the potential
mechanism driving this dependency was an increase in
noncanonical secondary DNA structures that require WRN for
their resolution38. Indeed, a seminal publication by van
Wietmarschen et al. in Nature later demonstrated that TA-
dinucleotide repeats are highly unstable in MMR deficient cells
and undergo large-scale expansions in this setting, ultimately
forming non-B form DNA secondary structures45. In Escherichia
coli and yeast, expanded (TA)n repeats can form cruciform
structures when their length exceeds roughly 20 repeat
units46,47. Furthermore, long (TA)n tracts cause replication fork
stalling and chromosome fragility at common fragile sites
(CFSs)48,49. Importantly, WRN can resolve various non-B DNA
substrates, including forks, flaps, bubbles, Holliday junctions,
displacement loops (D-loops), and G-quadruplexes50,51. Accord-
ingly, WRN depletion was found to induce replication fork
collapse and DNA double-strand break formation precisely at
expanded (TA)n repeats in MSI cells45. Mechanistically,
expanded (TA)n microsatellites likely form cruciform structures
that cause replication fork stalling, activating the apical ATR
kinase, and causing the recruitment of WRN to resolve these
structures via its helicase activity45. However, in the absence of
WRN, expanded (TA)n repeats are unresolved and cleaved by
the structure-specific endonucleases MUS81-EME1 and SLX4,
leading to extensive chromosome shattering and ensuing cell
death45. These findings suggest that WRN is uniquely able to
resolve non-B form DNA secondary cruciform structures that
form from (TA)n expansions in MSI cells and provide a
mechanistic explanation for the synthetic lethal relationship
between WRN and MSI.

CLINICAL POTENTIAL OF WRN INHIBITORS – LOST IN
TRANSLATION?
The synthetic lethal relationship between WRN and MSI has
nurtured interest by academic groups and companies to develop
WRN inhibitors to selectively target MSI cancers, with some drug
development programmes already underway11,52. Importantly,
WRN dependence appears to be conserved within heterogenous
MSI tumour models, albeit only when MSI is derived from MLH1 or
MSH2 deficiencies53. Of note, the small number of MSI models
that can tolerate WRN loss appear to lack the MSI genomic (TA)n
repeat expansion characteristics that invoke WRN dependence,
supporting the likely clinical relevance of this relationship53. These
findings suggest WRN dependency is influenced by the under-
lying MMR gene altered and the degree of MMR deficiency
conferred. Collectively, mounting evidence supports the potential
of future WRN inhibitors to selectively treat a subset of MSI
tumours. Nevertheless, the data gathered so far might not be
painting the full picture.

Box 1 DNA mismatch repair deficiency and cancer

Lynch syndrome
Heterozygous germline alterations in certain DNA mismatch repair genes (MLH1,
MSH2, MSH6, and PMS2) give rise to Lynch syndrome, also known as hereditary
nonpolyposis colorectal cancer (HNPCC)70. Lynch syndrome is an autosomal
dominant disorder that accounts for 3–5% of colorectal cancer cases and
approximately 2.5% of endometrial cancer cases71,72. Diagnosing Lynch
syndrome patients is clinically relevant since these patients have an 80% lifetime
risk of developing colorectal cancer, and an increased risk of developing
endometrial, ovarian, urinary tract, and gastric cancers among others73. It is
estimated that Lynch syndrome affects 1/300 to 1/500 individuals in the general
population, making it one of the most common genetic predispositions to
cancer74.
Constitutional mismatch repair deficiency syndrome
Constitutional mismatch repair deficiency (CMMRD) arises from homozygous
alterations in DNA mismatch repair genes and is characterized by a drastic
predisposition to cancer75. In contrast to the relatively low prevalence of tumours
in Lynch syndrome patients in the early stages of life, almost all individuals with
CMMRD develop cancer in childhood and early adolescence, with a generally
poor prognosis76,77. The most common cancers developed by CMMRD patients
are colorectal, brain, and blood cancers, and CMMRD patients have a high
likelihood of developing multiple cancers throughout their lives78.
Microsatellite instability in cancer
Microsatellite instability (MSI) is present in at least 27 different tumour types, with
the prevalence of MSI ranging from ~31% in endometrial carcinoma to 0.25% in
glioblastoma multiforme79. Moreover, MSI is detected in ~15% of colorectal
cancers; approximately 3% of these are associated with Lynch syndrome and the
other 12% are caused by somatic alterations in MMR, most often promoter
hypermethylation of the MLH1 gene80,81. Importantly, MSI is present in most
tumours associated with Lynch syndrome55,56. Cancers with MSI show aggressive
histological features, but paradoxically favourable prognosis82.

Table 1. MSI detection methods.

Method Accuracy Property tested

Fluorescent multiplexed PCR and capillary electrophoresis66 ~100% (standard) Instability in 5 distinct microsatellites

Next-generation sequencing67 ~92–94% Instability in ~100 distinct microsatellites

Single-molecule molecular inversion probes68 ~90–95% Instability in 111 distinct microsatellites

Immunohistochemistry69 ~95% (standard) Presence of MMR proteins
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All reported work studying WRN dependence in MSI tumours,
has been done in cellular models that fail to capture the full
extent of the intratumour heterogeneity observed in patients.
Understanding clonal diversity within MMR deficient cancers
throughout their evolution is crucial to be able to accurately
stratify patients, develop robust chemotherapeutic strategies, and
attempt to avoid resistance to therapy54. A key issue to note is
that, while MMR deficiency nurtures MSI, (TA)n repeat expansions,
and tumourigenic mutations in tumour suppressors and onco-
genes, these outcomes are largely stochastic and independent of
one another. Indeed, MMR deficiency does not invariably, at the
cellular level, lead to MSI or cancer development, as evidenced by
experimental studies showing that acute MMR dysfunction does
not cause MSI or WRN dependence, the subset of Lynch
syndrome patients that do not develop cancer in their lifetimes,
and the presence of MMR deficient cancers that are not MSI55–58.
Consequently, the spatiotemporal development of MSI with (TA)n
repeat expansions and cancer in MMR deficient clones in a tissue
context is still poorly understood and is an elusive, but
fundamental, issue to explore.
The likely impact of future WRN inhibitors will ultimately be

in MSI cells that carry the molecular signature of (TA)n repeat
expansions. Consequently, the prevalence of this molecular
signature within MSI tumours and normal tissues is important
to investigate and define. In this regard, it is critical to discuss
the potential scenarios of MSI and cancer development in cells
with somatically acquired or germline MMR deficiency (Fig. 1).
Cells that have acquired MMR deficiency can gather tumouri-
genic mutations and become cancerous before developing MSI
(Fig. 1, top branch), or develop MSI before becoming cancerous
(Fig. 1, bottom branch). On one hand, if cancerous cells arise
first followed by MSI development, the overall population of
cells in the ensuing tumour would have various degrees of
microsatellite instability ranging from MSS to MSI (Fig. 1, top
branch). Since WRN inhibition would be effective only on the
MSI cells that have developed (TA)n repeat expansions, a
considerable proportion of the cells in such a tumour could be
unaffected, likely causing failure to respond or relapse.
Nevertheless, combinatorial therapies with immune check-
point inhibitors or other chemotherapies might still enable

favourable outcomes. On the other hand, if MSI development
occurs first followed by cancer evolution from an MSI clone, the
entire cancer cell population would be MSI and, thereby, WRN
dependent (Fig. 1, bottom branch). Although WRN inhibition in
this context might effectively eliminate the cancer cells, full
cancer eradication would only ensue if the MSI cells had
accumulated sufficient (TA)n repeat expansions to render them
WRN dependent before becoming transformed. The extent to
which such a scenario exists clinically, however, remains to be
established. Crucially, even a small number of MSI cancer cells
with low levels of (TA)n repeat expansions could lead to
tumour relapse. In this regard, it would be interesting to
investigate whether MSI cancer cells with (TA)n repeat
expansions have the potential to evolve resistance to WRN
inhibition, by altering the length and/or sequences of the (TA)n
repeat expansions, by inactivating MUS81-EME1 and/or SLX4
which may alleviate the DSB formation and chromosomal
shattering, or by up-regulating genome stability processes,
perhaps involving promiscuous DNA helicases that might
compensate for WRN inhibition in this context. Importantly,
reversion mutations of the underlying MMR defect would not
confer resistance to WRN inhibition since the MSI phenotype
would already be established59.

PAVING THE WAY – TOWARDS A ROADMAP FOR CLINICAL
SUCCESS
The scenarios of MSI tumour development outlined above pose
real challenges in the clinic that could seriously limit the
prospects for effective use of WRN inhibitors in treating a
subset of MSI cancers. Furthermore, the initial hurdle of
developing a suitable compound for clinical exploitation which
is specific, potent, and bioavailable must not be understated60.
Moreover, the lack of clarity and specificity when diagnosing a
complex phenotype like MSI with (TA)n repeat expansions, gives
rise to various issues that need to be addressed before fully
grasping WRN dependence in this context. Mapping of
intratumour heterogeneity and normal tissue heterogeneity
regarding MSI and (TA)n repeat status, will invariably provide
clarity and enable better patient stratification for the future use

Fig. 1 Temporal differences in MSI and cancer development might lead to contrasting clinical outcomes upon WRN inhibition. Schematic
outlining the possible paths towards developing MSI tumours with (TA)n repeat expansions that can be targeted with WRN inhibitors.
Acquiring MMR deficiency, through germline and/or somatic alterations in MMR genes, is a necessary first step towards MSI and tumour
development. MMR deficient cells can become cancerous before developing MSI and (TA)n repeat expansions (top branch) or develop MSI
and (TA)n repeat expansions before becoming cancerous (bottom branch) potentially leading to different clinical outcomes. The therapeutic
window of WRN inhibitors ultimately depends on MSI status and the degree of (TA)n repeat expansions. Microsatellite stable (MSS) and MSI
cells with (TA)n repeat expansions are highlighted in yellow and red respectively. Figure was created with BioRender.com.
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of WRN inhibitors. Recent advances in tumour mapping and
identification using liquid biopsies, deep sequencing, and
bioinformatic modelling of cancer evolution will be useful tools
towards predicting patient outcomes61–65. In sum, the roadmap
towards clinical applications of WRN inhibitors is paved by
roadblocks in drug development, tumour profiling, and patient
stratification. Surmounting these will be a highly sought and
worthy goal for the researchers, drug developers, and clinicians,
whose collective efforts will be necessary to successfully deliver
WRN inhibitors to the patients who would derive the most
benefit (Fig. 2).
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