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In the nitrogen-limited subtropical gyres, diazotrophic cyanobacteria, including Crocosphaera, provide an essential ecosystem
service by converting dinitrogen (N2) gas into ammonia to support primary production in these oligotrophic regimes. Natural
gradients of phosphorus (P) and iron (Fe) availability in the low-latitude oceans constrain the biogeography and activity of
diazotrophs with important implications for marine biogeochemical cycling. Much remains unknown regarding Crocosphaera’s
physiological and molecular responses to multiple nutrient limitations. We cultured C. watsonii under Fe, P, and Fe/P (co)-limiting
scenarios to link cellular physiology with diel gene expression and observed unique physiological and transcriptional profiles for
each treatment. Counterintuitively, reduced growth and N2 fixation resource use efficiencies (RUEs) for Fe or P under P limitation
were alleviated under Fe/P co-limitation. Differential gene expression analyses show that Fe/P co-limited cells employ the same
responses as single-nutrient limited cells that reduce cellular nutrient requirements and increase responsiveness to environmental
change including smaller cell size, protein turnover (Fe-limited), and upregulation of environmental sense-and-respond systems
(P-limited). Combined, these mechanisms enhance growth and RUEs in Fe/P co-limited cells. These findings are important to our
understanding of nutrient controls on N2 fixation and the implications for primary productivity and microbial dynamics in a
changing ocean.
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INTRODUCTION
The availability of the biologically essential macronutrients
nitrogen (N) and phosphorus (P), and micronutrients like iron
(Fe), plays a critical role in the productivity and distribution of
phytoplankton communities in the ocean [1, 2]. In the nutrient-
poor or oligotrophic open ocean ecosystems where N scarcity
generally limits phytoplankton growth [1], a group of specialized
cyanobacteria carry out nitrogen fixation (N2 fixation), converting
dinitrogen (N2) gas into a more biologically accessible form of N,
ammonia [3, 4]. This input of “new” N by cyanobacterial N2 fixers
or diazotrophs, including the filamentous, colony-forming Tricho-
desmium and unicellular diazotrophs (e.g., the obligate symbiont
UCYN-A, and free-living Crocosphaera), supports a significant
portion of primary production in the subtropical and tropical
oligotrophic waters [3, 5–7]. While Trichodesmium has been
intensely studied for decades as a primary contributor to marine
N2 fixation [8–12], the ecological and biogeochemical relevance of
unicellular diazotrophs, including Crocosphaera, has only been
recognized more recently [13–18].
Despite our growing recognition of Crocosphaera’s importance

in oligotrophic systems, we still have limited understanding of
how the availability of nutrients, especially P and Fe, constrain
their biogeography and activity [19–21]. P is an essential

component of various cellular molecules including membranes,
ribosomes, nucleic acids, and the energy source, adenosine
triphosphate (ATP) [22]. It is also crucial in two-component
regulatory systems that enable the cell to sense and respond to
environmental changes [23, 24]. Fe is an essential micronutrient
for phytoplankton, serving as a cofactor of numerous metabolic
processes including photosynthesis, chlorophyll biosynthesis, and
respiratory electron transport [25]. In addition, N2 fixers including
Crocosphaera have a much higher cellular Fe demand than non-
diazotrophic phytoplankton because the nitrogenase metalloen-
zyme that facilitates N2 fixation is an Fe-rich enzyme complex
[26, 27]. Thus, in oligotrophic ecosystems, the availability of P and
Fe may impact core diazotrophic cellular processes and metabo-
lisms that play a key role in marine biogeochemical cycling.
Previous studies have suggested that the distributions of

N2 fixers and N2 fixation rates in the subtropical and tropical
open oceans are shaped and constrained by the relative
availability of P and Fe across different oceanic basins [3, 4, 28].
For example, the North Atlantic Subtropical Gyre, which receives
Fe via episodic inputs of eolian dust from the Sahara Desert, is
relatively more P-limited than the North Pacific Subtropical Gyre,
where a lack of aeolian Fe input yields a more Fe-limited system
[1, 4, 29].
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Under low P or Fe conditions, N2 fixers have evolved various
strategies to acquire and conserve these elements efficiently.
These nutrient acquisition systems have been applied as Fe and/or
P limitation indicators. Under P limitation, these strategies include
a mechanism for high-affinity phosphate transport via the
upregulation of the phosphate-binding gene, pstS [10, 30, 31].
Another mitigating response is the use of dissolved organic
phosphorus (e.g., phosphomonoesters), indicated by upregulation
of the alkaline phosphatase (phoA/B, phoX) genes [10, 30, 32, 33].
When Fe-limited, cells downregulate gene expression of Fe-rich

Photosystem I (PSI) protein complexes while upregulating the
expression of an Fe stress-induced chlorophyll-binding gene, isiA
[34, 35]. IsiA proteins form Fe-free light-harvesting antennae that
shield the photosynthetic apparatus from oxidative damage
[15, 36]. In addition, cyanobacterial diazotrophs can substitute
the Fe-containing electron transfer protein ferredoxin with the Fe-
free flavodoxin, IsiB [37, 38]. Unlike Trichodesmium, which
simultaneously photosynthesize and fix N2 during the day,
Crocosphaera temporally separates these two processes and fixes
N2 at night [39]. This unicellular diazotroph has evolved the ability
to shuttle cellular Fe between Fe-containing proteins in the
photosynthetic apparatus and those in the nitrogenase complex
through diel synthesis and degradation of these core metalloen-
zymes [40]. This Fe conservation strategy substantially reduces
Crocosphaera’s cellular Fe requirements that may better enable
Crocosphaera to inhabit Fe-depleted waters compared to Tricho-
desmium [40].
Recent lab and field studies have found that N2 fixers may be

well-adapted to environments that are low in both P and Fe, or Fe/
P co-limited [41–43]. Fe/P co-limitation can produce unexpected
physiological responses, including enhanced growth and N2

fixation rates, and cell size reductions compared to either P or
Fe single-nutrient limitation responses [21, 42–44]. Most of these
studies focus on the molecular mechanisms underlying the Fe/P
co-limited response in Trichodesmium, which include a shift in
protein abundance patterns unique to the Fe/P co-limited
response in various metabolic pathways linked to cell size
reduction and increased growth rates [44].
To our knowledge, only one study has been conducted on the

Fe/P co-limited physiological response in Crocosphaera, while the
molecular response mechanisms involved remain uncharacterized
[21]. To study the molecular response, we grew one Crocosphaera
watsonii isolate under Fe, P, and Fe/P (co)-limiting conditions and
conducted differential gene expression analyses to link physiology
with the underlying mechanisms of nutrient-limited responses
and their implications for marine nitrogen biogeochemistry.

METHODS
Culturing methods
Triplicate cultures of C. watsonii strain WH0005 were grown at 28 °C in
microwave-sterilized Aquil medium made with 0.2 µm-filtered artificial
seawater (ASW) [45]. The seawater base was amended with Fe buffered
with 25 μM EDTA, P, vitamins, and trace metals [46]. In an approach
modified from Walworth et al., cultures were maintained semi-
continuously under Fe/P co-limitation for ~3 months and single-nutrient
and replete treatments were generated by adding back Fe (P-limited), P
(Fe-limited), and Fe + P (Replete) followed by an additional 1.5 months of
growth before sampling [44]. Culture maintenance followed previously
described trace metal-clean methods [46]. Prior to sampling, cultures were
grown for two weeks (~3–7 generations) in ASW passed through an
activated Chelex 100 resin column (BioRad Laboratories, Hercules, CA, USA)
to remove contaminating Fe followed by nutrient amendments described
above. The entire media recipe with nutrient amendments is detailed in
the Supplementary Methods.

Physiological measurements
Previously published methods were used for physiological measurements
[46–48] and are detailed further in the Supplementary Methods. Briefly, cell

counts were used to calculate specific growth rates (μ) using the equation
μ= (ln N1 – ln N0)/t, where N refers to cell densities and t is time in days.
Cell size was determined by measuring cell diameters of 65 cells per
sample at 400× magnification using the CaptaVision Imaging Software
(Commack, NY, USA).
Net primary productivity or carbon fixation (C fixation) was assessed

using the radiocarbon labeled bicarbonate (H14CO3) method. Sub-cultures
(10mL) were incubated for 6 hours with H14CO3, filtered onto glass
microfiber filters (Whatman, Grade GF/F), stored in the dark overnight, and
subsequently analyzed on a Beckman LS 6000 liquid scintillation counter
(Beckman Coulter Inc., Fullerton, CA, USA). N2 fixation was measured using
the acetylene reduction assay. Sub-cultures (40mL) from each replicate
were injected with 6mL of acetylene (~17% of headspace) at the start of
the dark period. All-night (~12 h) accumulation of ethylene was measured
on a GC-8A gas chromatograph (Shimadzu Scientific Instruments,
Columbia, Maryland) and converted to fixed N2 using a ratio of 3:1 and
a Bunsen coefficient of 0.086. Measured C fixation and N2 fixation rates
were then normalized to daytime and nighttime cell counts, respectively.
Resource Use Efficiencies (RUEs) were calculated by normalizing

measured C fixation and N2 fixation rates to cellular P (C-PUEs, N-PUEs,
mol C or N fixed h−1 mol cellular P−1) or to cellular Fe content (C-IUEs, and
N-IUEs, mol C or N fixed h−1 mol cellular Fe−1) [46, 49]. Cellular C, N, P, and
Fe samples to calculate RUEs and elemental ratios were obtained following
previously published methods [46, 48, 50] (see Supplementary Methods).

Statistical analyses
Statistical significance for physiological measurements and RUEs were
calculated for all four nutrient treatments and for nutrient-limited
treatments by one-way ANOVA with Tukey’s HSD post-hoc analysis
(p value < 0.05) using R v4.1.1. Welch’s t test was conducted for pairwise
comparisons of two treatments (p value < 0.05). The cellular Fe value of
one Fe-limited replicate was removed from analyses due to likely
contamination during sample collection, and IUEs and elemental ratios
were calculated with the mean cellular Fe value of the remaining two
replicates (see Supplementary Methods).

RNA extractions and sequencing
Sub-cultures (400mL, ~7-8 × 107 cells) were collected 5-6 h into the light
period and 5-6 h after dark (24 samples total) via centrifugation
(Supplementary Methods). The pellets were transferred to cryogenic vials,
flash frozen, and stored in liquid N2 until extraction.
RNA was extracted using guanidium thiocyanate-phenol-chloroform (TRI

Reagent, Sigma Aldrich) and Zymo’s Direct-zol RNA Miniprep kit (Zymo
Research, Irvine, CA) with a DNase treatment following kit instructions. RNA
purity was checked using a Nanodrop spectrophotometer (Thermo
Scientific) and sent to UC Davis’ DNA Technologies Core for library
preparation, and 150-bp paired-end sequencing on a NovaSeq S4 (Illumina).
Raw paired-end reads were quality checked using FastQC [51] and

trimmed using Trimmomatic v0.39 in paired-end mode with the following
settings to remove adapters: TRAILING:10 SLIDINGWINDOW:5:20 MIN-
LEN:36 [52]. Trimmed sequences were mapped onto a new low-contig
Crocosphaera WH0005 genome annotated with KofamScan [53] using end-
to-end alignment mode in Bowtie2 v2.4.2 [54]. Alignments were converted
to BAM files, sorted by read name, and filtered by mapping quality score
(MAPQ) of 10 or higher using SAMtools v1.11 [55]. Sequences were
tabulated using featureCounts from the Subread package v2.0.1 in
stranded mode [56].

Transcriptomic analysis and visualizations
Gene counts were assigned Kyoto Encyclopedia of Genes and Genomes
database (KEGG) Orthology identifiers (KO) from the KofamScan-annotated
genome [57]. The isiA gene was identified by a nucleotide BLAST querying
known isiA sequences from a previous Crocosphaera WH0005 genome [15]
and the reference genome. The isiA and isiB (flavodoxin) genes are often
polycistronic [15, 58] and as expected, both were on the same contig in our
reference genome. KO-annotated and isiA read counts were summed to
remove duplicate gene identifiers. Then, genes with low counts were removed
if the mean for all treatments was less than five, yielding 3770 “unique genes”.
All transcriptomic analyses and visualizations were performed in R v4.1.1.

Differential gene expression (DGE) was conducted with DESeq2 v1.32.0,
which uses a negative binomial generalized linear model to assess DGE for
a design formula [43, 59]. Pairwise comparisons for day and night samples
for each nutrient treatment (diel genes) and for nutrient-limited treatments
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relative to the replete treatment were assessed by the default Wald test in
DESeq2 with Benjamin-Hochberg (BH) adjusted p value < 0.05).
Over-representation analysis of differentially expressed genes (DEGs) was

conducted using enrichKEGG (KEGG) and enricher (Gene Ontology, GO)
functions from clusterProfiler v4.0.5, which calculates overrepresented or
“enriched” biological pathways and functions using a hypergeometric test
with a BH-adjusted p value < 0.05 [60]. For GO enrichment, the genome was
annotated following published methods using DIAMOND (blastx mode,
more-sensitive) against the NCBI nr database downloaded on August 31,
2021 (median E-value= 2.66 × 10−75, median bitscore= 235), adding an
additional 110 annotations to the 4502 KEGG-annotated reads (Supple-
mentary Table S1). The DIAMOND output was then used for GO annotation
by Blast2GO, InterProScan, and UniProt [61–64].
Gene counts were “regularized log” transformed using the rlog function

(DESeq2) for redundancy analysis (RDA) using the rda function from the
vegan v2.5-7 package [65]. Gene counts normalized using the median of
ratios method (DESeq2) were used for boxplot and heatmap visualizations.
Venn diagrams and heatmaps were generated using VennDiagram v1.6.20
and ComplexHeatmap v2.8.0 packages, respectively. Heatmap Z-scores
were calculated for each gene by subtracting the gene expression from the
row mean and then divided by the row standard deviation. All other
graphs were generated using ggplot2 v3.3.5.

RESULTS AND DISCUSSION
Crocosphaera physiology and function under different
nutrient conditions
We measured physiological parameters for Crocosphaera grown
under different Fe and P limitation scenarios to compare and

contrast their response to single-nutrient (Fe or P) and dual-
nutrient (Fe/P) (co)-limitation (hereafter, co-limited or co-limita-
tion). We define co-limitation as Crocosphaera’s growth response
to simultaneous low Fe and P concentrations, either of which
would be growth-limiting alone. In our study, the limiting
concentrations of Fe and P for the co-limiting treatment were
the same as those used in the single Fe- or P-limited conditions.
All three nutrient-limited conditions were compared to the replete
condition for a baseline comparison. As expected, all nutrient-
limited Crocosphaera growth rates were less than replete rates
(Fig. 1A). Co-limited Crocosphaera had the fastest growth rates of
the nutrient-limited treatments, growing 14% faster than Fe-
limited cells (p= 0.050) and ~44% faster than P-limited cells
(p < 0.001). P-limited cells had the slowest growth.
On average, nutrient-limited cells were also smaller than replete

cells, with mean cell diameters <5 µm for limited cells and >5 µm
for the replete cells (Fig. 1B, p < 0.001). Co-limited and P-limited
cells were similar in size with mean cell diameters of 4.05 µm and
4.1 µm, respectively. Fe-limited cells had a mean diameter of
4.7 µm. A smaller cell size increases the surface area-to-volume
ratio and enables better access to nutrients than larger cells while
also reducing the cellular requirements for limiting nutrients like
Fe and P [21, 66]. Previous studies showed similar size changes
under co-limited and Fe-limited conditions [20, 21] but did not
report a decrease in size for P-limited cells [21]. Both Garcia et al.
[20] and our study used a large-cell Crocosphaera phenotype
(WH0005 and WH0003, respectively) with similar genomic capacity
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for Fe and P-scavenging [15]. However, our study used a relatively
low P concentration and had higher biomass than Garcia et al.,
which may have increased the severity of P limitation in our study
and produced smaller cells that were not previously observed.
Cell-normalized C fixation and N2 fixation rates showed similar

patterns across all nutrient treatments (Fig. 1C, D). Replete cells
had the highest C fixation and N2 fixation rates, and Fe-limited
cells had the highest rates of the three nutrient-limited
treatments. While not statistically significant, co-limited C fixation
rates were slightly lower than P-limited rates (p= 0.085) and co-
limited N2 fixation rates were ~2 fold higher than P-limited rates
(p > 0.1).
RUEs can be used as a physiological proxy of enzyme activity

and resource allocation by integrating metabolic productivity and
resource requirements [27, 46]. Calculated co-limited and
P-limited C-PUEs were the highest of the nutrient-limited cells
(Fig. 2A, B). Co-limited N-PUEs were comparable to Fe-limited N-
PUEs and were more than 2.5-fold higher than P-limited N-PUEs
(p < 0.05). Fe-limited cells had the highest IUEs while P-limited
cells had the lowest (Fig. 2C, D). Co-limited C-IUEs were
intermediate of Fe-limited and P-limited cells (p < 0.01 and
p < 0.05, respectively), and although the nutrient-limited one-
way ANOVA was not statistically significant (p= 0.166), co-limited
N-IUEs were ~10 times higher than P-limited N-IUEs (p < 0.05 using
Welch’s unequal variances t test).

We observed similar growth and N2 fixation rates as Garcia et al.
[21] where co-limited cells grew the fastest and exhibited
intermediate N2 fixation rates compared to cells under single-
nutrient limitation. Our calculated PUEs and IUEs for P-limited and
Fe-limited Crocosphaera, respectively, reflect recently published
RUEs [46, 67] with the exception of P-limited N-PUEs, which were
previously reported to be higher than replete N-PUEs [67] but
were observed in our study to be significantly lower. This
contrasting N-PUE response could stem from our study using
lower P concentrations as well as a large-cell Crocosphaera
phenotype instead of the small-cell isolate WH8501; the two
phenotypes differ in genome size and the number of P acquisition
genes [15], possibly leading to varying N-PUEs. Regardless, our
P-limited C-PUEs were similar to co-limited C-PUEs, but N-PUEs
were lower. Cellular P was comparable between the two
treatments (Supplementary Fig. S1), suggesting that P-limited
cells may be allocating resources differently compared to other
treatments. In particular, high ratios of C fixation to N2 fixation
suggest that P-limited cells favor C fixation compared to cells
grown under Fe-limited and co-limited conditions (Supplementary
Table S2). This observed nutrient-dependent balance between C
and N2 fixation and elemental ratios (Supplementary Table S3)
may have implications for biogeochemical cycling of both major
and trace elements across oligotrophic regimes and warrants
further study.
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Crocosphaera diel transcriptome under Fe, P, and Fe/P (co)-
limitation
To uncover the mechanisms underlying Crocosphaera’s physiolo-
gical response, we conducted a comparative transcriptomic
analysis using DESeq2 on samples collected during peak C
fixation (daytime) and N2 fixation (nighttime). RDA showed
samples clustering by nutrient treatment during the day and
night (Supplementary Fig. S2A, B) and that sampling time
accounts for a large portion of the Crocosphaera transcriptomic
response (Supplementary Fig. S2C).
We evaluated daytime and nighttime gene expression profiles

of commonly used Fe limitation (isiA, isiB) and P limitation (phoA/B,
pstS) biomarkers to assess cellular nutrient status and found
expected gene expression patterns for nutrient-limited cells
relative to replete cells (Fig. 3). P limitation genes (phoA/B and
pstS) were upregulated for P-limited and Fe/P co-limited cells,
while Fe limitation genes (isiA and isiB) were upregulated for Fe-
limited and co-limited cells. These nutrient biomarkers also
exhibited diel trends whereby isiA was significantly upregulated
during the day for co-limited, Fe-limited, and replete treatments
while isiB was significantly upregulated at night for P-limited and
replete treatments (p < 0.05). Nighttime isiB expression for Fe-
limited and Fe/P co-limited was higher than daytime gene
expression, but the difference was not statistically significant
(p= 0.08 and p > 0.1, respectively).
Given the ecological significance of Crocosphaera in oligo-

trophic systems, many studies have sought to identify biomarkers
of nutrient limitation that can be used to survey and assess

microbial communities in situ [31, 33, 68–70]. Our analyses show
that frequently used Fe and P biomarkers can be used to indicate
co-limitation in Crocosphaera. In addition, previous studies
observed diel cycling of pstS [32] and isiB [14] gene biomarkers
in Crocosphaera. While our experiment only sampled two-time
points, all four biomarkers used in our study showed diel
regulation (Fig. 3), affirming that the time of day for sampling
and analysis are important considerations when using biomarkers
to link nutrient availability, cellular physiology, and ocean
biogeochemistry.
Diel regulation of Crocosphaera’s transcriptome, especially the

temporal separation of photosynthesis and N2 fixation has been
well documented [40, 71–73], with one field study suggesting that
nearly half of the transcriptome exhibits a diel pattern [14].
Similarly, our pairwise analysis of day and night gene expression
(p < 0.05) showed that diel genes accounted for half (51.2%) of
Crocosphaera’s total transcriptome under replete conditions and
demonstrated that nutrient limitation affects diel gene regulation
by increasing or decreasing the number of diel genes (Fig. 4A). Fe-
limited Crocosphaera had the largest diel transcriptome with 58.0
% of genes exhibiting a diel pattern (n= 2188) while P-limited
Crocosphaera had the smallest with 45.8% (n= 1725). Co-limited
cells fell in between at 55.8% (n= 2102).
Genes can be further categorized as “core” genes that are diel

across all treatments, “shared” genes upregulated by at least two
treatments, and “unique” genes that are diel for only one
treatment (Supplementary Fig. S3). A total of 1,018 upregulated
core genes (day= 522, night = 496) were identified, comprising
more than half of the P-limited (59.0%) and replete (52.7%) diel
transcriptomes, but less than half of the co-limited (48.4%) and Fe-
limited (46.5%) diel transcriptomes. Co-limited cells had the
highest percentage of diel-regulated shared genes and lowest
percentage of unique genes which contrasted with P-limited cells.
Overrepresentation analysis identified enriched GO terms and

KEGG pathways across core, shared, and unique diel genes
(Supplementary Table S4). Core diel genes were enriched in
photosynthesis and translation genes for daytime and nighttime,
respectively (Fig. 4B). Heatmap visualizations of core GO
Biological Process (BP) photosynthesis and translation terms
showed that P-limited Crocosphaera downregulate both pro-
cesses compared to other nutrient treatments (Fig. 4C, D,
Supplementary Figs. S4, S5A). Hierarchical clustering indicated a
similar photosynthesis response for co-limited and Fe-limited
cells, while the co-limited translation response resembled
P-limited Crocosphaera, although P-limited cells have lower
gene expression for most of the core genes. While N2 fixation
was not identified through over-representation analysis, the iron
protein gene (nifH) and molybdenum-iron alpha and beta chain
(nifDK) nitrogenase genes are core night genes that were
significantly upregulated for P-limited cells compared to other
nutrient-limited treatments (Supplementary Fig. S6).
Cell division, regulation of cell shape, and peptidoglycan

biosynthetic process were also identified as core day GO BP
terms with replete and P-limited treatments clustering together
and co-limited and Fe-limited clustering together (Supplementary
Fig. S5B–D). Fe-limited and co-limited upregulation of cell division,
cell shape, and peptidoglycan biosynthesis process correlate with
higher growth rates (increased cell division) under Fe limitation
and co-limitation compared to P limitation. Upregulation of
peptidoglycan biosynthesis may increase the cell’s ability to adapt
to changing environmental conditions through rearrangement
and restructuring of the cell wall [74–77]. Moreover, co-limited and
Fe-limited cells shared diel genes for membrane proteins that
were constitutively expressed in other treatments (Supplementary
Table S4). These results suggest cell wall and membrane flexibility
that could benefit Fe-limited and co-limited cells and warrants
further study.
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Fig. 3 Gene expression trends of commonly used Fe- and P
limitation biomarkers. Statistical significance of biomarkers was
calculated from DESeq2 pairwise comparisons of triplicate samples
of Co-lim (Fe/P co-limited, green), Fe-lim (Fe-limited, dark blue), P-lim
(P-limited, light blue) treatments compared to the Replete (Fe/P
replete, peach) treatment. Day and night gene expression signifi-
cance was calculated from DESeq2 analysis of day and night
samples for each nutrient treatment. Shaded-in plots indicate
significant upregulation of biomarker genes for both day and night
compared to the replete treatment (p < 0.05). For the co-limited
treatment, only daytime isiB gene expression was significantly
upregulated compared to the replete treatment at p < 0.001 (***).
Arrows indicate the directionality of statistically significant trends
between day and night gene expression within a treatment
(p < 0.05).
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Proteolysis genes exhibited a different clustering pattern where
the co-limited response clustered more with Fe-limited and
replete treatments than with the P-limited treatment (Supple-
mentary Fig. S5E). P-limited cells downregulated a suite of
proteolysis genes that were upregulated for Fe-limited and co-

limited cells. This includes the ftsH gene encoding the FtsH
protease responsible for membrane and photosystem protein
degradation [78, 79], which hints at a possible disruption of
Crocosphaera’s diel protein cycling and may explain the differ-
ences in diel transcriptomes across the nutrient-limited conditions.

Fig. 4 Diel transcriptomes and core functional enrichment analysis of differentially expressed genes. A Venn Diagram of diel genes for
each treatment. The percentages represent the proportion of the overall transcriptome that exhibits a significant diel pattern. The numbers
represent the count of genes upregulated during the day (white) and at night (black). B Dot plot analysis of enriched GO Biological Process
(BP) and Molecular Function (MF) terms and KEGG Pathways (KO) containing diel-regulated genes with p value < 0.05. The size of the dot
reflects the number of genes for each term or pathway and the grayscale colorbar reflects the p value. C Heatmap analysis showing the
DESeq2-normalized gene expression scaled as the number of standard deviations from the row mean (Z-score: red = upregulated, blue =
downregulated) for all genes under the Photosynthesis GO term and D Heatmap analysis showing the top 25 genes (based on row mean) for
the Translation GO term. Due to space constraints, the full Translation heatmap is displayed in the Supplementary Materials (Supplementary
Fig. S4). Column dendrograms show similarity based on Euclidean distance and hierarchical clustering and gene clusters were determined by
k-means clustering using Euclidean distance. Nutrient treatments are Co-lim (Fe/P co-limited, green), Fe-lim (Fe-limited, dark blue), P-lim (P-
limited, light blue), and Replete (Fe/P replete, peach). Time points are Day (goldenrod yellow) and Night (deep purple). The heatmap color
gradient shows low gene expression (blue) and high gene expression (red). KEGG annotations were assigned from the genome annotation
while non-KEGG annotations were assigned using DIAMOND blastx described in Methods.
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Transcriptomic response of nutrient-limited versus nutrient
replete Crocosphaera
Pairwise analyses of nutrient-limited treatments (Fe-limited, P-
limited, or co-limited) and the replete treatment for day and night
(Supplementary Fig. S7A, B) also identified core, shared, and
unique DEGs. During the day, the P-limited transcriptome has the
most unique DEGs (77.2%) compared to the replete transcriptome.
Fe-limited cells had the least with 41.0% as unique genes
(Supplementary Fig. S8). At night, P-limited cells also have the
largest portion of unique DEGs (68.8%), but co-limited cells have
the lowest (29.9%). For both time points, co-limited cells have the
largest portion of shared genes, overlapping with both P-limited
(36.5%, 30.9%) and Fe-limited (17.0%, 30.8%) treatments for day
and night, respectively. Core DEGs comprised a small fraction (i.e.,
~2-12%) of the nutrient-limited transcriptomes.
Overrepresentation analysis of unique, upregulated genes

indicated that co-limited cells prioritized cell division and
regulation of cell shape (GO) and peptidoglycan biosynthesis
(KEGG) processes during the day, while P-limited cells upregulated
transmembrane transport (GO) and ATP-binding cassette (ABC)-
type transporters (KEGG, GO) (Supplementary Fig. S7C). Fe-limited
cells were enriched in genes for DNA repair (GO) at night.
P-limited cells downregulated genes involved in photosynthesis,
transcription, and translation relative to replete cells that were not
downregulated by Fe-limited or co-limited cells (Supplementary
Fig. S9).
Co- and P-limited cells upregulated shared genes involved in

transmembrane transport and downregulated translation (Sup-
plementary Table S5). At night, these cells also upregulated
mechanisms that enable their detection and response to
environmental stimuli including two-component systems. Simul-
taneously, co-limited and Fe-limited cells downregulate shared
genes predicted to be involved in metal ion binding and iron-
sulfur cluster binding.

Linking nutrient-limited diel gene expression to Fe and
P-limited physiology
Physiologically, Fe-limited Crocosphaera efficiently uses Fe and P
for both C and N2 fixation while P-limited cells are only P-efficient
for C fixation and have the lowest RUEs for N2 fixation. In
Crocosphaera, low-Fe availability triggers a unique response that
moderates P limitation, producing co-limited cells that are more
Fe-efficient and highly P-efficient for both C and N2 fixation,
relative to P-limited cells. Core diel genes represent critical cellular
functions that maintain a diel pattern regardless of Fe and P
availability and constitute a major portion of the diel transcrip-
tome. Thus, differences in gene expression profiles between
treatments may contribute to Crocosphaera’s observed physiolo-
gical response to nutrient limitation. Specific nutrient-limited
responses can be assessed by looking at the unique and shared
DEGs relative to the replete treatment.
Of the nutrient-limited treatments, Fe-limited cells had the

highest C and N2 fixation rates and IUEs likely driven by Fe
conservation strategies including recycling Fe between photo-
synthesis and N2 fixation pathways [40], replacing ferredoxin with
flavodoxin [37], and downregulating PSI genes (Fig. 4C, top
cluster) [25]. Of the core diel processes, Fe-limited and replete cells
have similar expression profiles for translation genes, suggesting
that Fe limitation does not limit ribosomal biogenesis or directly
reduce protein synthesis (Fig. 4D, Supplementary Fig. S4).
Furthermore, Fe-limited cells (relative to replete cells) uniquely
upregulate DNA repair (GO) genes, including recF, which is
involved in DNA replication and repair (Supplementary Fig. S7C,
Supplementary Table S5). Under Fe-limiting conditions, nighttime
DNA repair could help offset DNA damage that occurs during
photosynthesis-induced cellular oxidative stress [26, 80].
In our study, P-limited cultures were more affected by nutrient

limitation than Fe-limited and co-limited cultures, with lower

growth and metabolic rates, and RUEs correlating with substantial
downregulation of core diel photosynthesis and ribosomal genes
that could lead to decreases in cellular function. Crocosphaera
degrades nitrogenase enzymes during the day and re-synthesizes
them de novo at night [14, 40], such that downregulating
translation limits their ability to produce nitrogenase proteins and
reduces N2 fixation rates. Accordingly, P-limited Crocosphaera had
the lowest N2 fixation rates. Surprisingly though, low rates which
suggest low nitrogenase protein abundance corresponded with
the highest nighttime nifHDK gene counts (Supplementary Fig. S6).
Some previous studies have observed that nitrogenase gene
expression correlated well with measured N2 fixation rates [81, 82]
while others did not [83, 84]. Regulatory control of N2 fixation
involves transcriptional and post-translational mechanisms that
may have decoupled in P-limited cultures [85, 86]. In addition,
contrasting P-limited C fixation rates and C-PUEs with N2 fixation
rates and N-PUEs suggest that cells may be allocating more P (e.g.,
in the form of P-rich ribosomes and ATP) to C fixation. Moreover,
functional enrichment suggests that P-limited cells are shifting
cellular resources towards building ABC transporters to import
nutrients and other growth substrates [87].
Collectively, these responses indicate that P-limited cells may be

N/P co-limited, which was evident through additional analyses of
N-metabolism biomarkers, cyanophycinase (cphB) and the global
nitrogen regulator (ntcA) (Supplementary Fig. S10). Cyanophyci-
nase (cphB) breaks down cyanophycin granules used for N storage
and P-limited upregulation of cphB during the day and night
suggests a need to free up N stores [71, 88, 89]. Additionally, the
global nitrogen regulatory gene ntcA in cyanobacteria is linked to
low N availability and controls the transcription of proteins
involved in N assimilation and uptake [68, 90, 91]. In our study,
P-limited cells were the only nutrient-limited treatment to
significantly upregulate ntcA relative to replete cells, suggesting
N-limitation stemming from an inability to synthesize nitrogenase
proteins at night.

Fe limitation moderates P limitation in a unique Fe/P co-
limited phenotype
The combination of Fe limitation and P limitation responses
produces a unique Fe/P co-limited Crocosphaera phenotype that
displays a suite of physiological and molecular characteristics
observed in Fe-limited and P-limited cells. A smaller cell size is an
important response under nutrient limitation that can reduce
nutrient quotas while increasing nutrient uptake. Both co-limited
and P-limited cells were comparably small, suggesting
P-availability affects cell size.
Previous proteomic analyses of Trichodesmium found that while

only co-limited cells decreased in size, proteins involved in cell
division and size were also abundant for Fe-limited cells,
demonstrating that low Fe availability may also exert regulatory
control over division and size [44]. In our study, diel transcriptional
patterns showed that co-limited and Fe-limited cells similarly
upregulated genes for cell division, cell shape, and peptidoglycan
biosynthesis, which contribute to cell size [92, 93]. While it is unclear
the exact factors regulating Crocosphaera cell size flexibility, these
results suggest that both Fe and P play an important role.
Altogether, our results suggest that Crocosphaera employ two

major strategies to manage nutrient limitation: reduction of
cellular nutrient requirements and increased responsiveness to
environmental change (Fig. 5). Fe limitation in Crocosphaera
appears to be a strong transcriptional modulator that offsets
deleterious effects of P limitation by reducing nutrient require-
ments through substitution and conservation pathways that were
not observed in P-limited cells. P-limited cells primarily increase
cellular responsiveness to environmental change (e.g., upregulate
two-component regulatory systems) to acquire more P, both
inorganic and organic. Fe-limited cells however, prioritize nutrient
reduction by substituting out Fe-rich proteins with Fe-free
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alternatives, and conserving nutrients, especially N, through diel
protein turnover. These single-nutrient limitation mechanisms
along with a small cell size manifest simultaneously under Fe/P co-
limitation and likely underlie their faster growth rates.

CONCLUSIONS
Our study is among the first to link the physiological and
molecular responses of the globally important diazotroph Croco-
sphaera to Fe, P, and Fe/P (co)-limitation, and interpret these
relationships in the context of diel gene regulation. The low
latitude oceans where N2 fixers are found are often characterized
as being either putatively P-limited or Fe-limited [27, 28]. Our
research expands a growing body of work that suggests the reality
is more complex than a single nutrient-limited state. The relative
availability of nutrients, for example a “balanced” limitation where
the normal condition is that both Fe and P are scarce, versus an
episodic “imbalanced” state where one nutrient is transitorily
available in excess seems to be an important determinant of
cellular physiology [43]. We observed a broad metabolic
restructuring in Crocosphaera in response to P limitation that
reduced N2 fixation and induced cellular N deficiency. In co-
limited cells, N deficiency was potentially minimized by the
combination of mechanisms upregulated under both P and Fe
limitation to produce a unique, comparatively fast-growing and
resource-efficient phenotype (Fig. 5). Recent transcriptomic
analyses showed that in N-scarce waters, temporal partitioning of
N uptake and assimilation enables different microbial groups to
coexist [94], suggesting an important regulatory role for N on diel
transcription and microbial community structure. In Crocosphaera,
our analyses showed that Fe and P also exert a regulatory role on
diel gene expression. Varying Fe and P availability alter diel gene
expression patterns that trigger Crocosphaera to dynamically

reallocate resources between core cellular processes (e.g., nutrient
acquisition, translation, or metabolic rates). These molecular
responses underlie unique nutrient-limited physiological responses
with implications for the input of new N in oligotrophic systems.
This intersection of N, Fe, and P biogeochemistry reinforces the

need to consider differing diazotrophic responses to multiple
nutrient limitations. Climate change may alter the existing Fe and
P gradient in the ocean. N2 fixation is projected to shift more
towards being P-limited, as intensified stratification reduces
advective supplies of P while at the same time, Fe availability
increases due to rising anthropogenic aeolian inputs [95, 96]. A
better understanding of the nutrient-limited mechanisms and
controls of marine N2 fixation using tools that can capture
complex microbial community dynamics (e.g., metatranscrip-
tomics and metaproteomics) will improve our ability to project
changes to biogeochemical cycling and primary productivity in a
changing ocean.

DATA AVAILABILITY
The physiological data collected from this study are available from BCO-DMO online
(http://bcodmo.org). Raw RNAseq reads for differential gene expression analyses are
deposited at NCBI’s SRA under BioProject PRJNA807802. All scripts to recreate the
differential gene expression analyses, statistical analyses, and visualizations are
available at https://github.com/yang-nina/CrocosphaeraFePColimitation.
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