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Use of synthetic images for training 
a deep learning model for weed 
detection and biomass estimation 
in cotton
Bishwa B. Sapkota1, Sorin Popescu2, Nithya Rajan1, Ramon G. Leon3, Chris Reberg‑Horton3, 
Steven Mirsky4 & Muthukumar V. Bagavathiannan1*

Site-specific treatment of weeds in agricultural landscapes has been gaining importance in recent 
years due to economic savings and minimal impact on the environment. Different detection methods 
have been developed and tested for precision weed management systems, but recent developments 
in neural networks have offered great prospects. However, a major limitation with the neural network 
models is the requirement of high volumes of data for training. The current study aims at exploring 
an alternative approach to the use of real images to address this issue. In this study, synthetic images 
were generated with various strategies using plant instances clipped from UAV-borne real images. 
In addition, the Generative Adversarial Networks (GAN) technique was used to generate fake plant 
instances which were used in generating synthetic images. These images were used to train a powerful 
convolutional neural network (CNN) known as "Mask R-CNN" for weed detection and segmentation 
in a transfer learning mode. The study was conducted on morningglories (MG) and grass weeds 
(Grass) infested in cotton. The biomass for individual weeds was also collected in the field for biomass 
modeling using detection and segmentation results derived from model inference. Results showed 
a comparable performance between the real plant-based synthetic image (mean average precision 
for mask-mAPm: 0.60; mean average precision for bounding box-mAPb: 0.64) and real image datasets 
(mAPm: 0.80; mAPb: 0.81). However, the mixed dataset (real image  + real plant instance-based 
synthetic image dataset) resulted in no performance gain for segmentation mask whereas a very small 
performance gain for bounding box (mAPm: 0.80; mAPb: 0.83). Around 40–50 plant instances were 
sufficient for generating synthetic images that resulted in optimal performance. Row orientation of 
cotton in the synthetic images was beneficial compared to random-orientation. Synthetic images 
generated with automatically-clipped plant instances performed similarly to the ones generated with 
manually-clipped instances. Generative Adversarial Networks-derived fake plant instances-based 
synthetic images did not perform as effectively as real plant instance-based synthetic images. The 
canopy mask area predicted weed biomass better than bounding box area with R2 values of 0.66 
and 0.46 for MG and Grass, respectively. The findings of this study offer valuable insights for guiding 
future endeavors oriented towards using synthetic images for weed detection and segmentation, and 
biomass estimation in row crops.

Weeds cause severe crop yield loss, and therefore timely and effective management is key to increasing agricul-
tural productivity. Conventional approaches relying on complete coverage of the field may provide effective weed 
control but are often inefficient and expensive. Precision weed management can improve resource use efficiency 
and economics by reducing input use to only those areas where they are needed. This approach, however, can be 
complex as it comprises several components, including weed detection and actuation systems. The weed detec-
tion system is important since it guides the actuation systems. Several detection models have been designed and 
tested so far1,2, but the convolutional neural network (CNN)-based models have revolutionized this domain3.
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CNN is a class of artificial neural networks that creates numerous feature maps from input images to learn 
the semantic pattern of the object4. Their ability to self-optimize the parameters to improve the pattern recog-
nition process allows for complex object detection. CNNs are increasingly used for weed detection, owing to 
their high accuracy and less human supervision requirements. Due to its promising nature, researchers have 
come up with various frameworks designed for their detection needs. For example, Khoshboresh-Masouleh and 
Akhoondzadeh5 developed a lightweight, end-to-end trainable guided feature-based deep learning method, called 
DeepMultiFuse for weed segmentation in sugar beet (Beta vulagris L.) using multispectral images. The existing 
CNN efforts for weed detection highlight great scope of deep learning frameworks.

CNNs usually require a large number of training samples to obtain high detection accuracy. Manual data 
annotations for large training sample sets can be tedious and laborious. Additionally, it is at times difficult to 
obtain large image datasets specific to the needs. Various weed datasets have been made public to date such as 
“WeedMap”6, “DeepWeeds”7, “The Crop/Weed Field Image”8, etc. These datasets can be very useful in supple-
menting training data for model development given the similarity in weed species, image resolution and qual-
ity between the datasets and training data. However, benefits of these datasets compromise when the targeted 
environment deviates greatly, and therefore an uniquely customized weed detection model should be developed. 
One way to deal with these problems would be to create real-looking artificial images that would fit the user’s 
needs and requirements.

An increasingly common approach to image synthesis is to clip the real plants in the imagery, apply modi-
fications to clipped plants, and finally paste over the background images to create synthetic images9,10. Few 
studies have already embraced this concept for weed detection tasks. For example, Gao et al.11 created 2271 
synthetic images using this approach to train the YOLOv3 and tiny YOLO models in combination with 452 real 
field images. They applied three types of modifications (zoom, flip, and rotation) to the automatically clipped 
individual instances and pasted them at a random position within the image. Hu et al.12 also used the same 
approach to create a synthetic image dataset to train weed detection models. They used manually-clipped instead 
of automatically-clipped plants in the image synthesis procedure. Skovsen et al.13 also implemented the same 
concept to generate large amounts of synthetic images for grass-clover mixtures. While automating the plant 
clipping process can speed up image synthesis, it is unknown whether it can yield the same levels of accuracy 
as manually-clipped plants. It is also unknown whether crop positions in the synthetic images affect the per-
formance of detection and segmentation. In addition, how the image synthesis concept works for training an 
instance segmentation model for weed detection purpose has not been evaluated so far.

It can at times be difficult to obtain real plant images and therefore, fake plants can be great alternatives to 
real plant instances for generating synthetic images. One of the promising techniques for creating fake images of 
objects of interest available today is Generative Adversarial Networks (GANs). GANs have been successfully used 
for various image processing and computer vision tasks ranging from fashion design to video games. Recently, 
GANs have been utilized for various predictive tasks in the agricultural domain, including weed detection/clas-
sification in digital images14–16. Espejo-Garcia et al.14 tested several architectures and configurations of GANs 
for creating artificial images of tomatoes and black nightshade. The models trained with these images were able 
to distinguish between these two plant species with very high accuracy. For example, Wang et al.17 used Was-
serstein GANs for enhancing RGB images to train semantic segmentation models that could perform pixel-wise 
segmentation. Very few studies have utilized GANs for weed detection and segmentation and therefore, more 
investigations are required to assess the full prospects and potential.

In addition to weed localization, biomass information can also be useful for precision weed control systems. 
With this information, herbicide spray systems can be configured to deliver spray output optimized for plant 
biomass, thus saving resources. Studies have used various techniques for estimating plant biomass using digital 
technologies. For example, Harkel et al.18 used LiDAR-derived 3D point clouds to estimate biomass for winter 
wheat, potato, and sugar beet. Using the depth and RGB image-based volume reconstruction method, Andújar 
et al.19 calculated 3D mesh volume for weeds to estimate weed biomass. Although these 3D techniques are proven 
to result in more accurate biomass estimation, they are computationally more expensive and often inefficient20. 
A simple 2D approach that utilizes plant coverage information has been studied by Skovsen et al.13. However, 
these studies have investigated biomass estimation in a unit area, rather than that of individual plants, which is 
critical for precision management. The current study explores the feasibility of a simple 2D approach coupled 
with instance segmentation for estimating biomass at the individual plant level.

In this study, the main goal was to investigate various methods of generating synthetic images for training a 
Mask R-CNN model for weed detection and segmentation. The objectives of the study were:

1.	 Explore the potential of synthetic images for training and building a Mask R-CNN-based weed detection 
and segmentation model.

a.	 Evaluate the effect of crop row arrangement, instance diversity, and clipping method on synthetic image 
quality and training performance.

b.	 Compare the training performance of real plant-based vs fake plant-based synthetic images.
c.	 Evaluate performance gain with the mixed dataset (real + synthetic images).

2.	 Assess the potential of a Mask R-CNN model-based segmentation results in estimating the above-ground 
biomass of weeds.
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Methods
Study area and experimental setup.  The study was conducted in the summers of 2020 and 2021 at the 
Texas A&M AgriLife Research farm (30° 32′ 15″ N, 96° 25′ 35″ W; elevation: 70 m). The location is character-
ized by a sub-tropical climate, with an average monthly maximum and minimum temperature during the study 
period (May–June) of 32.3 °C and 21.3 °C, respectively. Cotton was chosen as the model row crop for this study. 
Glyphosate-resistant (Roundup Ready®) cotton was planted at the seeding rate of 100,000 per hectare on May 1, 
2020 and April 20, 2021, respectively, using a 4-row seed drill (row spacing: 1 m). Cotton was grown following 
the recommended production practices for the region. The dominant weed species in the study area were a mix 
of morningglories (Ipomoea spp.) that comprised of tall morningglory [Ipomoea purpurea (L.) Roth.] and ivyleaf 
morningglory (Ipomoea hederacea Jacq.), Texas millet [Urochloa texana (Buckley) R.D. Webster], and johnson-
grass [Sorghum halepense (L.) Pers.]. Some other weed species occurred at low frequencies, including Palmer 
amaranth (Amaranthus palmeri S. Watson), prostrate spurge (Euphorbia humistrata Engelm.), and browntop 
panicum (Panicum fasiculatum Sw.). At the time of image collection, weed species occurred at different growth 
stages, from cotyledon to about five true leaves (Table 1). Experimental research and field studies on plants com-
plied with institutional, national, and international guidelines.

Table 1.   Crop-weed conditions during real image dataset acquisition in 2020 and 2021 using a Fujifilm 
camera. MG morningglories, JG johnsongrass, TM Texas millet.

Image dataset name Acquisition date Cotton growth stage Weed composition/growth stage Weed density (plants m−2)

Cotton1 May 06, 2020 4–5 leaves
MG: cotyledon-4 leaves
JG: 2–3 leaves
TM: 2–3 leaves

18

Cotton2 June 13, 2021 2–4 leaves MG: cotyledon-6 leaves
TM: 2–4 leaves 21

Figure 1.   Workflow diagram for the methodology implemented in this study. The pale green and blue sections 
show the schematic for objectives 1 and 2, respectively. Objective 1 aimed at testing several models with 
different-source input images, whereas the objective 2 determined the predictability of model results to estimate 
above-ground biomass of weeds.
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Data collection.  High‑resolution digital images.  A 100-megapixel FUJIFILM GFX100 medium format 
mirrorless RGB imaging camera was integrated with a multi-copter drone, Hylio AG-110 (Hylio Inc., TX, USA) 
to capture high-resolution aerial images of the cotton in summer of 2020 and 2021, hereafter referred as Cotton 1 
and Cotton 2 dataset, respectively. The images were captured by the drone operating at 4.9 m above ground level 
and at a speed of 0.61 m/s. The FUJIFILM GF 32–64 mm f/4 R LM WR lens was set at a focal length of 64 mm, 
shutter speed at 1/4000 s, ISO at 1250, and f-stop at 8, which resulted in high-quality images with a spatial resolu-
tion of 0.0274 mm/pixel at the flying height specified above. All the images were stored in standard PNG format 
at 16-bit depth. Cotton 1 was the main dataset and comprised 560 images, out of which 460 were reserved for 
the training and validation dataset, and the remaining 100 as hold-out test dataset. Whereas, Cotton 2 had 100 
images for test purposes.

Above‑ground weed biomass collection.  A total of 15 quadrats (1 m2) were randomly placed in a cotton field 
(0.12 ha) for weed biomass collection in 2020 and 2021. Each plant in the quadrat was clipped at the ground 
level and stored in separate paper bags. The location of each weed in the quadrat was physically mapped on a 
paper for later use during image analysis to identify and reference each individual. In total, 60 morningglories 
(MG) and 60 grass (Grass) weed instances were clipped in 2020, and 39 and 44, respectively in 2021. The clipped 
plants were dried in an oven at 60 °C for 48 h for dry biomass measurement. The plants were clipped from the 
experimental area complying all the Texas A&M AgriLife protocols.

Methodology for objective 1.  The general workflow for this experiment is shown in Fig. 1. The workflow 
shows the progression of major methodological steps undertaken for both objectives.

Synthetic image generation pipeline.  The synthetic image generation pipeline (SIGP) consisted of three main com-
ponents (Fig. 1). The first component included the instance pool (IP), which consisted of individual plants clipped 
either from real images or individual fake plants generated and stored in a 4-band (RBGA) PNG format. The second 
component included a random modifier (RM) algorithm that randomly obtained instances from the IP and applied 
several modifications to these instances. The modifications were made in three ways: (a) rotating instances by a random 
angle between 0 and180°, (b) transforming instances with a random size factor ranging between 0.6 and 1.2, and (c) 
changing digital values for hue and saturation of instances by 0–10%. The third component included a paste operator 
(PO) algorithm that pasted modified instances at user-defined or random locations in the soil background images to 
create synthetic images. Five representative soil background images of 2048 × 2048 pixels were clipped from real images 
acquired using the Fujifilm camera. The PO recorded information on the locations where instances were pasted as well 
as several other metadata such as instance id, instance category, image id, etc. to create an annotation dictionary for 
each image. The PO finally merged the annotation directories for all the images to create an annotation file in the .json 
file format. The pipeline was programmed in such a way that each image would have 4 instances for each of the three 
categories: (a) cotton, (b) MG, and (c) Grass. The algorithm logic used in SIGP is provided in Algorithm 1.

Algorithm 1: Row-oriented synthetic image generation pipeline 

Input: Instance pool , background image templates = { 1, 2, . . . , | = 1…5}, plant 

species = 4, plant count per each species in instance pool , target image width , target 

image height ℎ, 

Output: Synthetic images I

1 F i in k do:

2 j in d do:

3 Randomly select a background template from T

4 Randomly select  ℎ plant instance from corresponding to ℎ

5 Randomly rotate a plant instance with a rotation angle within 

(0, 2 )

6 Randomly change color by magnitude in % ranging between (0, 10%)

7 Randomly scale the plant instance by factor between (0. 7, 1.3)

8 if j == cotton do:

9 Paste at location q where =
3

8
, ℎ ∈ {0,

ℎ

4
,
ℎ

2
,
3ℎ

4
}

10 else:

11 Randomly paste  at (x, y) location where ∈ [0, ] ∈

[0, ℎ]
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Effect of crop row arrangement.  The aim was to evaluate if the row arrangement of crops was important for row 
crops such as cotton in the synthetic images for better training results. To test this, two sets of synthetic images 
were generated: (a) images with cotton lined-up in a row (row-oriented), and (b) images with cotton pasted 
in random locations (randomly-pasted) (Fig. 2a). First, real plants for cotton, MG, and Grass were clipped to 
canopy boundary from the real images to create an IP. Fifty instances were clipped for each class. Second, the 
SIGP was implemented with a slight change in the PO, which was programmed to paste the cotton instances 
coming from RM in two ways: (a) following user-defined locations to line up in a row for row-oriented images, 
and (b) following machine-generated random locations for random-oriented images. The synthetic image sets 
were then used for training the model separately. In order to evaluate how the results change with image resolu-
tion, another set of synthetic images with reduced image resolution (512 × 512 pixels) for both arrangements was 
generated. Assessments were made to compare the performance of the models.

Effect of instance diversity.  The aim was to determine how the IP size influences the performance of the Mask 
R-CNN model. It was hypothesized that the more the number of unique plant instances used in SIGP, the more 
the variance captured by the synthetic images, and thus better the training. Altogether, seven IPs with varying 
sizes were created that contained 1, 5, 10, 20, 30, 40, and 50 instances from each class. Seven different synthetic 

Figure 2.   (a) A representative sample for row-oriented and randomly-oriented images produced with the 
synthetic image generation pipeline, (b) The automated plant clipping pipeline to derive PNG images with alpha 
channel, and (c) Comparison of automatically-clipped and manually-clipped PNG instances for the given real 
plant images.
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image and annotation datasets were created from respective IPs, which were then used to train and build detec-
tion models. Individual assessments were made to compare the performance of each model.

Effect of instance clipping method.  The goal was to compare the performance of the models trained with syn-
thetic images generated using plant instances clipped manually and automatically. The real images captured with 
the Fujifilm camera were subjected to the automated plant clip pipeline (APCP) (Fig. 2b). The algorithm logic 
used in APCP is shown in Algorithm 2. First, the excess greenness index (ExG) was calculated for selected real 
images using Eq. (1). Second, Otsu’s method was employed to mask the bareground. Finally, an alpha channel 
was added to the resultant image to create a 4-band (RBGA) PNG image. The plant instances clipped automati-
cally or manually (Fig. 2c) were fed into SIGP to generate individual sets of synthetic images.

where g , r, and b represent digital values for green, red, and blue channels, respectively.

Algorithm 2: Automated plant clip pipeline

Input: RGB images 

Output: Individual plant instances in RBGA format (PNG)

1 Generate an ExG layer using Equation 1

2 Determine Otsu’s threshold for ExG layer =  ( ( ― )2, where , 

, ,  represent weights (W) and mean values ( ) for the background and 

foreground, respectively

3 Generate a binary image f by applying 

4 Apply a dilation and erosion function to  using 3 ×  3 

=
= 1     
= 0     , where 

 denotes dilution function;  represents the intersecting pixel between the center 

of  and 

=
= 0     
= 1     , where 

 denotes erosion function;  represents the intersecting pixel between the center 

of  and 

5 Add an alpha channel to RGB for converting to RGBA

Performance of real plant instances vs. fake plant instances.  The aim was to compare the performance of fake 
plant-based synthetic images with real plant-based synthetic images. An improved GAN framework called Style-
GAN2 with adaptive discriminator augmentation (StyleGAN-ADA) developed by NVIDIA21 was used in this 
study to generate fake plants. GANs are essentially composed of two main networks, a generator and a discrimi-
nator (Fig. 3a). The generator deterministically generates samples from latent variables, whereas the discrimi-
nator distinguishes samples from the real dataset and the generator. The model was trained with 50 instances 
of each class using the official TensorFlow implementation code provided in (https://​github.​com/​NVlabs/​style​
gan2-​ada). The training samples were subjected to an on-the-fly augmentation process to increase the sample 
size. A pre-trained network model ‘ffhq256’ was used as the base model for transfer learning. After model train-
ing, approximately 50 fake plant instances in 3-band format were generated for each class. The “trunc” and 
“seeds” parameter were set to 1 and 1–500, respectively while generating images. The generated images were then 
passed through the APCP method to create a new IP comprised of 4-band images in PNG format (Fig. 3b). The 
new IP was subjected to SIGP to create a unique set of synthetic images. The sample results obtained at different 
training phases of GAN is shown in Fig. 3c. The algorithm logic for the GAN process is provided in Algorithm 3.

(1)ExG =
2× g − r − b

r + g + b
,

https://github.com/NVlabs/stylegan2-ada
https://github.com/NVlabs/stylegan2-ada
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Algorithm 3: The GAN process for fake plant instance generation

Input: Instance pool for Cotton , MG , Grass  with size ; pretrained styleGAN-ADA 

model ; number of plant instances to be generated 

Output: Individual plant instance for each species in RBGA format

1. Train M with , ,  individually to generate custom trained models , , 

respectively 

=
1

=1

D ( ) +  (1 ― )]

=
1

=1

 (1 ― )

where D ( ) denotes a label predicted by the discriminator for real image , ) denotes a 

label predicted by the discriminator for fake images produced by the generator, and 

denote loss functions for the discriminator and the generator, respectively.

2. For :

Generate fake plant instances for Cotton , MG , and Grass  using respective 

trained models

3. Apply algorithm 2 with inputs as , , 

Figure 3.   (a) Schematic showing the general workflow for a simple generative adversarial network (GAN) 
model, (b) Additional post-processing step for generating new fake plant PNGs using the custom trained 
styleGAN model, and (c) sample results obtained with the custom styleGAN model at various stages of the 
training process. The faces shown in first sub-figure are fake and do not exist, and are provided by styleGAN-ada 
repository. The styleGAN-ada script used this fake face template for training initation during the model training 
process.
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Performance gain with mixed dataset.  The idea was to compare the performance of a mixed dataset (real 
images + synthetic images) with just a synthetic image-derived dataset. For this, a total of 460 real images 
acquired using the Fujifilm camera sensor were manually annotated for Cotton, MG, and Grass individuals. 
The polygon annotations were drawn for each plant in all the images. The synthetic image dataset was combined 
with a real image dataset to create the mixed dataset. The synthetic dataset that yielded the highest accuracy in 
the earlier analysis was chosen for inclusion in the mixed dataset. The mixed dataset comprised a total of 1230 
images and 18,352 annotations that were used to train the Mask R-CNN model.

Model training and accuracy assessment.  Mask R-CNN, an instance segmentation model22, was used for weed 
detection and segmentation in this study. Mask R-CNN is similar to its predecessor “Faster R-CNN” framework, 
except that it has an additional mask branch that results in an object mask in addition to the bounding box. Both 
Faster R-CNN and Mask R-CNN are two-stage object detectors composed of two modules. The first one is a 
Region Proposal Network (RPN) that proposes several object candidate regions in the image using anchors. The 
second module is a detector that works in two steps. First, it extracts features from dense feature maps for the 
regions selected during RPN and in the second step, it calculates the confidence score for each region that con-
tains the object of interest22. Detectron2-a PyTorch-based modular object detection library23 written in Python 
language (https://​github.​com/​faceb​ookre​search/​detec​tron2), was used to implement Mask R-CNN in this study. 
A pre-trained model provided by the repository was used for transfer learning. Mask R-CNN was trained, vali-
dated, and tested with different sets of images generated/acquired in real-world settings to evaluate the effects 
as discussed earlier in the manuscript (Table 2). The configurations set for the model are provided in Table 3.

The training process took 5–6 h, depending on model objectives and structure. Since the input image size 
to the model was 2048 × 2048, the IMGS PER GPU parameter was set to 1 because setting value more than 1 
resulted in “CUDA OUT OF MEMORY” error. Resizing an image to lower the dimension before feeding into 
the model was also not an option since doing so would decrease the ability to visualize very small grass in the 
images. Due to longer training time, it was not possible to tune all the parameters. Therefore only few parameters 

Table 2.   Details on training, validation, and test datasets used in this study.

Image dataset # of images # of annotations Annotation composition

Real_training_image_dataset 460 9115
Cotton: 7.65%
MG: 17.8%
Grass: 75.01%

Synthetic_training_image_dataset 770 9237
Cotton: 33.34%
MG: 33.32%
Grass: 33.34%

Real_validation_image dataset 100 995 
Cotton: 7.65%
MG: 17.8%
Grass: 75.01%

Real_test_image_dataset (Cotton1) 100 848
Cotton: 12.66%
MG: 45.31%
Grass: 42.01%

Real_test_image_dataset (Cotton2) 50 976
Cotton: 10.04%
MG: 7.4%
Grass: 82.01%

Table 3.   Major hyperparameters and values used with Mask R-CNN training. Hyperparameters with * 
were used with custom values. Hyperparameters with a were tuned by testing a set of values before selecting 
the best value. The rest of the hyperparameters were used with the default values. The description of the 
hyperparameters can be found at https://​detec​tron2.​readt​hedocs.​io/​en/​latest/​modul​es/​index.​html.

Major hyperparameters Values

BACKBONE ResNet101

EPOCH* 50,000

BASE_LEARNING_RATEa 0.001

LEARNING_RATE_SCHEDULER_NAME WarmupMultiStepLR

MOMENTUM 0.9

WEIGHT DECAY​ 0.0001

RPN_BATCH_SIZE_PER_IMAGEa 256

RPN_NMS_THRESHOLDa 0.7

ANCHOR_SIZES [32, 64, 128, 256, 512]

NUMBER OF CLASSES* 3

CHECKPOINT_PERIOD* 5000

TEST_EVAL_PERIOD* 1000

https://github.com/facebookresearch/detectron2
https://detectron2.readthedocs.io/en/latest/modules/index.html
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were selected based on prior experience and literature and were tuned by testing a set of values. It should be 
noted that the annotation proportion of the real image training dataset was imbalanced between the species. 
To minimize the bias associated with an imbalanced dataset in training, a data sampler known as “RepeatFac-
torTrainingSampler” was used instead of a regular data sampler while training the model. This sampler first 
computes per-image repeat factors based on category frequency for the rarest category for the given image and 
creates a list of image indices that need to be repeated while feeding into the model in each epoch (https://​detec​
tron2.​readt​hedocs.​io/​en/​lates​t/_​modul​es/​detec​tron2/​data/​sampl​ers/​distr​ibuted_​sampl​er.​html). The training and 
validation loss across the iterations during the training of the most accurate model using real, synthetic, and 
mixed datasets is given in Fig. 4.

Cotton1 and Cotton2 test datasets were used to assess all the models trained in this study. The standard per-
formance metric called Mean Average Precision (mAP) was calculated to assess the performance of the Mask 
R-CNN model. mAP was calculated separately for both model results, bounding box (bbox) and mask. mAP 
for these results is hereafter referred as mAPb and mAPm, respectively. In recent years, these metrics have been 
frequently used to assess the accuracy of object detection and segmentation tasks11,12. mAP is a mean of AP 
calculated for each class to be detected/predicted by the model. AP for each class is calculated as the area under 
a precision-recall curve. The area is determined in two stages. First, the recall values are evenly segmented to 11 
parts starting from 0 to 1. Second, the maximum precision value is measured at each level of recall and averaged 
to determine AP (Eq. 2).

where pmax represents maximum precision measured at respective recall ( r) level.
Precision and recall values are in turn calculated using Eqs. (3) and (4), respectively.

(2)AP =
1

11

∑

r∈{0,0.1,0.2...1}

pmax(r),

Figure 4.   Graph showing a total loss for training and validation across iterations for various models, including 
the model trained with (a) real plant instance-based synthetic images, (b) GAN-derived plant instance-based 
synthetic images, (c) real images, and (d) a mixed dataset of real and synthetic images.

https://detectron2.readthedocs.io/en/latest/_modules/detectron2/data/samplers/distributed_sampler.html
https://detectron2.readthedocs.io/en/latest/_modules/detectron2/data/samplers/distributed_sampler.html
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where TP , FP , and FN denote true positive, false positive, and false-negative samples, respectively.
True positives, false positives, and false negatives are identified using the Intersection over Union (IoU) 

ratio criterion. This ratio is calculated by comparing the ground truth box/mask with the model predicted box/
mask. The predicted box/mask is labeled as TP if the ratio is above the user-defined threshold. In this study, the 

(3)Precision =
TP

TP + FP
,

(4)Recall =
TP

TP + FN
,

Figure 5.   Results obtained from models trained with row-oriented and randomly-oriented synthetic images: 
(a) Detection and segmentation results obtained for both test datasets (Cotton1 and Cotton2) with the original 
(2048 × 2048) and reduced image size (512 × 512), and (b) mAP values (mask and bbox) obtained for Cotton1 
and Cotton2. Here, green, red, and yellow detected masks represent cotton, morningglories, and grass, 
respectively.
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threshold for IoU was set to 0.5. The mAP value ranges between 0 and 1, with 0 indicating null accuracy and 1 
representing perfect accuracy.

Methodology for objective 2.  The second objective of the study was aimed at assessing the potential 
of detection results (i.e. weed canopy masks and bounding boxes) in estimating above-ground weed biomass. 
The best model evaluated among all the models developed earlier was chosen for this purpose. The model was 
applied to the test images that contained the weeds sampled for biomass measurements. Both the detected 
bounding box and segmented canopy mask area of respective weeds were calculated and regressed separately 
with above-ground biomass collected for each species. The coefficient of determination was calculated to assess 
the biomass predictability of model outputs.

Results and discussion
Effect of crop row arrangement.  Two different sets of synthetic images were produced (row-oriented 
and randomly-oriented) to test the importance of crop row orientation in the images for model performance. 
The row-oriented dataset resulted in higher mAPb and mAPm for both cotton datasets compared to the ran-
domly-oriented dataset. This was true when training the model at both the original size (2048 × 2048 pixels) and 

Figure 6.   Results obtained from models trained with synthetic images generated using various instance pool 
(IP) sizes: (a) Detection and segmentation results obtained for Cotton1 with IP = 1, IP = 20, and IP = 50, and 
(b) Mean average precision (mAP) values compared for bounding box (bbox) and mask results for Cotton1 
and Cotton2, obtained for IP sizes ranging from 1 to 50. Here, green, red, and yellow detected masks represent 
cotton, morningglories, and grass, respectively.
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at a reduced resolution (512 × 512 pixels) (Fig. 5). The accuracy was greater when training was performed on the 
original size images. The detection and segmentation results using both sets of images are shown in Fig. 5. The 
discrepancy in performance was more obvious for Cotton2 than for Cotton1. The Mask R-CNN framework used 
the ResNet101 backbone for feature extraction. This backbone has 101 layers that can learn many patterns and 
complex features at various scales24. It is likely that the row-arrangement of cotton was well-recognized by the 
edge detector filters at the shallow layers of ResNet, which may have contributed to efficient learning at higher 
levels. The higher-level feature map may have highlighted cotton row as a prominent feature as these maps are 
derived from a series of convolution operations from lower-level feature maps.

Effect of instance diversity.  Seven different sets of synthetic images were generated with different IP sizes. 
The main goal was to evaluate the effect of IP size on the synthetic image quality and performance. As expected, 
the performance differed across different IP sizes (Fig. 6a). In general, the mAPb and mAPm showed an increas-
ing trend with increases in IP from 1 to 50 for both the cotton datasets (Fig. 6b). It is notable that an IP size of 
1 resulted in a satisfactory average mAPb and mAPm value of 0.49 and 0.47, respectively. The rate of increase 
flattened towards an IP size of 40, indicating that any further increase in IP size may not necessarily improve the 
performance significantly. Hu et al.12 also observed no significant improvements beyond an IP size of 68 when 
training a Faster R-CNN model with synthetic images. Overall, results indicate that quality synthetic images 
can be generated even with low IP sizes, given that the samples are truly representative of the objects of interest.

Effect of clipping methods.  Models were trained using two different sets of synthetic images generated 
with the IP that comprised of manually-clipped and automatically-clipped plants. The overall results for Cotton1 
and Cotton2 showed that automatically-clipped plants can perform comparably to the manual-clipping method 
(Fig. 7). In particular, mAPb and mAPm were similar between the two clipping methods for both cotton datasets. 
In total, it took approximately 170 min to manually clip 150 plant instances, whereas the same instances were 
clipped and sorted automatically just in 5 min, at a 34-fold faster rate. Gao et al.11 also successfully used auto-

Figure 7.   Results obtained with models trained with synthetic images generated using manual clip and 
automatic clip method: (a) Detection and segmentation results obtained for both test datasets (Cotton1 and 
Cotton2), and (b) Mean average precision (mAP) values for bounding box (bbox) and mask results obtained for 
Cotton1 and Cotton2. Here, green, red, and yellow detected masks represent cotton, morningglories, and grass, 
respectively.
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matically clipped plant instances to generate synthetic images for training a weed detection model. The present 
study evaluates these two common methods by testing for a multi-class detection and mask generation problem.

Performance of GAN‑derived fake plants.  The performance of GAN-derived fake plant-based syn-
thetic images and real plant-based synthetic images was evaluated to independently train the Mask R-CNN 
model. Both the real images (Fig. 8) and real plant-derived synthetic images (Fig. 9) resulted in a greater accu-
racy compared to GAN-derived fake plant-based synthetic images. In general, MG was misclassified as cotton 
and vice-versa, whereas such errors were less common with Grass. High similarity in leaf appearance between 
cotton and MG could be attributed to misclassification between them. It is likely that the training sample size 
employed for styleGAN in our case (~ 50 plants per class) was not sufficient for generating high-quality fake 
plants. However, our results show that the GAN approach can be a promising technique for training the weed 
detection and segmentation model. The potential of this technique may increase with an increase in training 
data size. Fawakherji et al.15 utilized a conditional GAN to generate realistic multispectral synthetic images and 
used them in combination with the original images in the training process. They observed improvements in the 
segmentation performance by the model.

Performance of the mixed dataset vs. real dataset.  The mixed dataset did not result in a significant 
performance gain in this study. For both cotton datasets, the performance of the mixed dataset was generally 
comparable to the real dataset (Fig. 10). This finding doesn’t conform to previous reports (e.g. Ref.11) that found 
considerable improvements in accuracy with the addition of synthetic images to real image dataset for training. 
The lack of improvement in accuracy in our study could be attributed to the fact that the real images utilized 
here contained sufficient variance for different objects of interest. Additional synthetic images didn’t add much 
variance to the training samples. In the future, different proportions of real and synthetic images can be tested 
to identify the critical minimum number of real images required to observe synthetic image synergistic effect.

Figure 8.   Results obtained from models trained with synthetic images generated using real plant instances and 
generative adversarial network (GAN)-derived fake plants: (a) Detection and segmentation results obtained for 
the test datasets Cotton1 and Cotton2, and (b) Mean average precision (mAP) values for bounding box (bbox) 
and mask results obtained for Cotton1 and Cotton2. Here, green, red, and yellow detected masks represent 
cotton, morningglories, and grass, respectively.



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19580  | https://doi.org/10.1038/s41598-022-23399-z

www.nature.com/scientificreports/

Performance analysis in relation to past studies.  Several studies in the past have looked into utiliz-
ing CNN frameworks to detect weeds in crops. Liu and Bruch25 used the You Only Look Once (YOLOv2), 
a lightweight CNN framework, to detect weeds in romaine lettuce in digital RGB images and achieved the 
highest mean average precision (mAP) value of 0.91. Salazar-Gomez et al.26 achieved an mAP value of 0.875 
with YOLOv5 in detecting weeds in sugarbeet. Yu et al.27 detected dandelion (Taraxacum officinale F.H. Wigg.), 
ground ivy (Glechoma hederacea L.), and spotted spurge (Euphorbia maculata L.) in perennial ryegrass (Lolium 
perenne L.) using DetectNet frameworks with an F-score > 0.92. Lottes et al.28 employed CNN with an encoder-
decoder structure to detect weeds in sugar beet and achieved an average F-score of 0.92. Our study stands 
comparable to these studies in terms of detection accuracy. In addition, our study evaluated models for mask 
segmentation as well not only using real images but also synthetic images.

Assessing the biomass predictability of model outputs.  The area of the bounding boxes and canopy 
masks resulting from Mask R-CNN were regressed independently with the biomass of respective weeds to deter-
mine the biomass predictability of model outputs. The regression was performed separately for MG and Grass. 
For both groups, the canopy mask area was found to be a better estimator compared to the bounding box area. 
Further, biomass was estimated more accurately for MG (R2 = 66) than for Grass (R2 = 0.48) with canopy mask 
area (Fig. 11). The bounding boxes overestimate the leaf surface area, which is not systematic owing to the vary-
ing canopy structure of plants. This problem is pronounced in the case of Grass due to the random orientation 
of Grass leaves, resulting in the increased bounding box area. This could be the prime reason why the canopy 
mask area was more effective in estimating biomass than the bounding box area. The reason for better predic-
tion of MG biomass compared to that of Grass using mask area could be that Grass had extremely low biomass 
and such biomass measurements were prone to errors. Albert et al.29 effectively used canopy coverage area to 
estimate weed dry biomass in a grass-clover mixture. Skovsen et al.13 also found a linear association between 
model-predicted visual weed fraction in pixels and fractional weed biomass in kg. Both of these studies investi-
gated weed biomass estimation in a unit area that included multiple plants. However, the current study explored 
the feasibility of biomass prediction at an individual plant level, which is crucial for site-specific weed manage-

Figure 9.   Results obtained from models trained with synthetic images generated using real plant instances and 
generative adversarial network (GAN)-derived fake plants: (a) Detection and segmentation results obtained for 
the test datasets Cotton1 and Cotton2, and (b) Mean average precision (mAP) values for bounding box (bbox) 
and mask results obtained for Cotton1 and Cotton2. Here, green, red, and yellow detected masks represent 
cotton, morningglories, and grass, respectively.
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Figure 10.   Results obtained from models trained with real image dataset and mixed dataset (original real 
images + real plant-based synthetic images): (a) Detection and segmentation results obtained for the test 
datasets Cotton1 and Cotton2, and (b) Mean average precision (mAP) values for bounding box (bbox) and 
mask results obtained for Cotton1 and Cotton2. Here, green, red, and yellow detected masks represent cotton, 
morningglories, and grass, respectively.

ment. Overall, the results indicate that the canopy mask area can be a reliable estimator of biomass, especially 
for broadleaved weeds.

Conclusions
This study explored various strategies for generating synthetic images in training a Mask R-CNN model for weed 
detection and segmentation. The feasibility of biomass estimation with the Mask R-CNN model outputs was also 
assessed. The important take-aways from this study are:

•	 Synthetic images can be a great alternative to real images. In this study, real plant instance-based synthetic 
images provided ~ 80% of the accuracy that was achieved with original real images.

•	 Row-orientation of cotton in the synthetic images proved to be beneficial compared to random orientation. 
This calls for a careful selection of crop positions in the images while generating synthetic images.

•	 About 40–50 real plant instances were sufficient for generating synthetic images for optimal performance. 
This implies that the quality (i.e., variability) of plant instances can be prioritized over the number of plant 
instances.

•	 Synthetic images generated with automatically-clipped plant instances performed comparably to the ones 
generated with manual clipping. This suggests that time and other resources could be saved by clipping plant 
instances automatically.

•	 The GAN-derived fake plant instance-based synthetic images did not provide comparable accuracy to real 
plant instance-based synthetic images. However, it should be noted that a small training sample size was used 
in this study for training the GAN model, which may have resulted in low-quality synthesis.

•	 Weed segmentation output (i.e., canopy mask area) can be a good estimator for biomass, especially for 
broadleaved weeds.
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The findings presented here do not apply to every situation, and they have some practical limitations. For 
example, automatic clipping may be challenging under complex crop-weed background scenes, including occlu-
sions. Further, the optimal IP size reported in this study may not be sufficient for other row crops and weed 
species depending on the level of variability in the population. This study in general advances our understand-
ing of how synthetic images can be exploited to train weed detection models for precision weed management. 
The scope of this work is more justified in light of the time-demands associated with the model training and 
precision weed management effort. While this study focused on the use of the models over the static images, the 
findings can be extrapolated to on-premise real-time weed detection. Future research should investigate how 
this approach performs with different weed densities and growth stages. More training samples should be used 
in training GAN to fully harness its potential and improve accuracy.

Data availability
That dataset used and/or analyzed during the current study are available from the corresponding author on 
reasonable request. Authors confirm that the plants were not purchased/gifted from any source.
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