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Early tumor diagnosis is crucial for its treatment and reduction of death, with

effective tumor biomarkers being important tools. Extracellular vesicles (EVs)

are small vesicles secreted by cells with various biomolecules, including

proteins, nucleic acids, and lipids. They harbor a double membrane

structure. Previous studies on EVs in cancer diagnosis and therapy focused

on miRNAs. Nonetheless, EVs contain proteins that represent physiological and

pathological state of their parental cells. EVs proteins can reflect the

pathological state of some diseases, which provides a basis for diagnosis and

treatment. This study describes the role of EVs in cancer and summarizes the

use of EVs proteins as diagnostic markers in different cancer types. Specifically,

we discuss the potential and shortcomings of EVs as tumor biomarkers.
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Introduction

Cancer is the global leading cause of death. Early diagnosis is critical for its timely

treatment and prognosis. Nevertheless, many cancers lack specific and effective diagnostic

markers, resulting in missed treatment opportunities. Therefore, there is an urgent need

for more effective and less invasive alternative markers for early diagnosis, individualized

treatment strategies, and precise prognostic estimation.

Extracellular vesicles are a variety of membranous vesicles released by cells (Xiao et al.,

2019). EVs secretion is mediated by hematopoietic and non-hematopoietic cells,

including reticulocytes, B lymphocytes, T cells, epithelial cells, astrocytes, etc.

(Laulagnier et al., 2004; Fader et al., 2005; Mignot et al., 2006). Besides, EVs have

been detected in most body fluids, including urine, amniotic fluid, blood, serum, saliva,

ascites, breast milk, cerebrospinal fluid, and nasal secretions (Keller et al., 2007; Li et al.,

2008; Taylor and Gercel-Taylor, 2008). They regulate intercellular communication by

transporting their contents. The EVs contents depict the phenotypic state of parental cells.

EVs-mediated intercellular communication regulates normal physiological and

pathological processes of several diseases, including cancer (Barteneva et al., 2013;

Kucharzewska and Belting, 2013; Meckes, 2015).
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EVs are found in most body fluids, highly stable with their

contents similar to parental cells; therefore, they harbor

significant potential as liquid biopsy specimens for various

diseases (Rak, 2013; Hornick et al., 2015; Li et al., 2017a).

Specifically, cancer-derived EVs may serve as biomarkers for

early cancer detection since they carry biomolecules that

indicate genetic or signaling alterations in the originating

cancer cells (Li et al., 2015; Melo et al., 2015; Tang and

Wong, 2015). Studies on the mechanisms by which EVs

proteins regulate tumor progression and a summary of their

feasibility as tumor markers have reached maturity.

Nonetheless, studies on how to achieve the clinical use of

EVs proteins in tumor diagnosis as well as prognostic

assessment remain largely unexplored. Therefore, this review

focuses on the use of EVs proteins in the diagnosis of various

cancer types.

Biogenesis and characterization
of EVs

Extracellular vesicles are a collective term for tiny vesicles

with membrane structures that are actively secreted by cells.

EVs were classified into exosomes, microvesicles and apoptotic

vesicles depending on the formation process and size.

Exosomes are formed by the fusion of multivesicular bodies

with cell membranes and are 40–200 nm in diameter;

microvesicles are formed by the outgrowth of cell

membranes and are 200–2000 nm in diameter; apoptotic

vesicles are formed by the atrophy and fragmentation of

cells and are 500–2000 nm in diameter (Raposo and

Stoorvogel, 2013). EVs are produced inside the cell through

the endosomal pathway before being released into the

extracellular space (Latifkar et al., 2019; Kalluri and LeBleu,

2020) (Figure 1A). First, the plasma membrane of the donor cell

invaginates, forming early endonucleosomes. Thereafter, early

endosomes mature into late endonucleosomes. During

maturation, their membranes invaginate to form

intraluminal vesicles (ILVs). Notably, endonucleosomes with

ILVs are usually referred to as multivesicular bodies (MVBs).

During the formation of MVB, bioactive molecules (e.g.

proteins, mRNA, miRNA, lncRNA, and CircRNA) are

packaged into the ILV by the endosomal sorting complex

necessary for the transport (ESCRT)-dependent and ESCRT

non-dependent pathways (Hessvik and Llorente, 2018).

Eventually, ILVs are released into the extracellular space

(EVs) when MVBs fuse with the plasma membrane.

However, the mechanisms that drive EVs formation and

secretion remain largely unknown due to different cell types

and their states.

EVs carry various molecular contents hinged on their source

and state (Duijvesz et al., 2011) (Figure 1B). For instance, EVs

contain proteins associated with their biogenesis, including CD9,

CD63, CD81, and TSG101, Alix, and Rab family proteins. All

these molecules are routinely used as EVs marker proteins.

Moreover, EVs harbor numerous nucleic acids, including

mRNA, DNA, microRNA (miRNA), long non-coding RNA

(LncRNA), etc. (Jeppesen et al., 2019). Also, lipids including

cholesterol, phospholipids, glycerophospholipids, and

sphingolipids are vital components of EVs. They form a

FIGURE 1
Biogenesis, release, and structure of EVs. (A) EVs are formed via the endosomal pathway and released upon fusion of MVBs with the plasma
membrane; (B) EVs have a phospholipid bilayer membrane structure, the surface of the membrane contains many proteins, whereas the interior
contains nucleic acids, proteins, and various enzymes.
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bilayer structure and preserve their steady state (Skotland et al.,

2017). At the same time, tumor cells may release more EVs into

the microenvironment than normal cells, resulting in high levels

of circulating EVs.

The role of EVs in cancer

In cancer development, EVs-mediated intercellular

communication is crucial in remodeling the tumor

microenvironment and the formation of pre-metastatic

ecological niches. Since tumor cells can establish strong

communication with neighboring and distant cells, the tumor

microenvironment (TME) modulates their growth and

metastasis. The TME contains different components, including

extracellular matrix (ECM), endothelial cells, cancer-associated

fibroblasts (CAF), immune cells, and mesenchymal stem cells

(Luga et al., 2012; Zhao et al., 2016; Mao et al., 2017; Morad and

Moses, 2019; Thakur et al., 2020). Primary tumor cell-derived

EVs induce the conversion of fibroblasts into metalloproteinase

(MMP)-secreting myofibroblasts, in turn degrading

ECM((Janowska-Wieczorek et al., 2005)). Additionally, these

EVs stimulate neointima formation by activating macrophages

in TME, hence generating an ecological niche for inflammation

(Sanchez et al., 2016). Also, EVs induce epithelial-mesenchymal

transition (EMT), during which epithelial cells lose their

intercellular adhesion and separate from the tumor (Welton

et al., 2010). This promotes the spread of cancer cells, i.e., one

of the hallmarks of metastasis (An et al., 2015; Becker et al., 2016;

Kim et al., 2020).

EVs regulate cancer progression, metastasis, and treatment

outcomes. Besides, they promote cancer initiation, growth,

progression, and resistance. EVs transfer oncogenic proteins

and nucleic acids as well as interact with the tumor

microenvironment (Zhang et al., 2015; Kosaka, 2016)

(Figure 2). First, EVs promote angiogenesis and metastasis

(Figure 2A). EVs uptake upregulates angiogenesis-related

genes, resulting in enhanced endothelial cell proliferation,

migration, and sprouting (Fraser et al., 2016). Cancer EVs are

responsible for matrix activation, causing an angiogenic switch

and increasing vascular permeability. Also, EVs promote

metastasis by targeting epithelial-mesenchymal transition and

forming a pre-metastatic ecological niche (Sceneay et al., 2013;

Khalyfa et al., 2016). Secondly, EVs promote the formation of

cancer-associated fibroblasts (Gu et al., 2012) (Figure 2B). With

continuous supply, EVs from breast cancer cells MDA-MB

231 and glioblastoma cells U87 induce the transformation of

recipient fibroblasts (Antonyak et al., 2011).

Furthermore, EVs mediate immune escape and

production of an immunosuppressive environment, which

FIGURE 2
Role of EVs in sustaining cancer resistance networks. (A) EVs-released factors can promote EMT cell morphology, causing stemness and
promoting angiogenesis;(B) Promote fibroblast-like cell formation that causes a desmoplastic reaction (stromal reaction); (C) Promote immune
escape mechanisms; (D) EVs mediated resistance to treatment.
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is crucial in cancer pathogenesis (Figure 2C). EVs have been

shown to induce apoptosis in cytotoxic T cells,

regulatory T cell expansion, M2 polarization in

macrophages, and suppression of cytotoxicity in natural

killer cells (Condamine and Gabrilovich, 2011; Yang et al.,

2012). Lastly, EVs shield cancer cells from the cytotoxic

effects of chemotherapeutic agents and transfer

chemoresistant properties to nearby cells (Wang et al.,

2014) (Figure 2D). Stromal cell-derived EVs mediate the

therapeutic resistance pathway in breast cancer cells by

activating the pattern recognition receptor RIG-1 (Boelens

et al., 2014).

EVs proteins for diagnostic
applications in cancer

EVs have attracted research interest due to their role in

shuttling specific tumor markers in solid tumors. Unlike tumor-

free individuals, cancer patients have higher concentrations of

EVs proteins. Moreover, tumor EVs have robust information on

cancer biology (Peinado et al., 2012). With the advent of

proteomics techniques and means of EVs protein analysis,

studies on EVs proteins have rapidly increased. Table 1

summarizes various body fluid-derived EVs proteins

diagnosed in cancer.

Respiratory cancers

Lung cancer
Lung cancer is one of the most prevalent human

malignancies. At the time of diagnosis, nearly 70% of lung

cancer patients present locally advanced or metastatic disease.

Many studies have shown that EVs proteins are potential

diagnostic markers for lung cancer. Jakobsen et al. developed

an EV Array that coupled 37 antibodies targeting lung cancer-

associated proteins and a panel of CD9, CD63, and

CD81 antibodies to explore circulating EVs from healthy

subjects and lung cancer patients. The authors used a

combined 30-marker model EV Array, which can successfully

distinguish the two groups with 75.3% accuracy. (Jakobsen et al.,

2015). Li et al. identified human leucine-rich alpha-2-

glycoprotein 1 (LRG1) in urinary EVs as a potential

biomarker for NSCLC diagnosis. Based on proteomic mass

spectrometry, LRG1 accumulated in urinary EVs and was

more highly expressed in NSCLC patients than in healthy

individuals (Li et al., 2011). Elsewhere, Sandfeld et al. used

49 antibodies to detect EVs proteins obtained from 431 lung

cancer patients and 150 healthy individuals (Sandfeld-Paulsen

et al., 2016). Consequently, they noted that CD151 and tetra-

transmembrane protein 8 (TSPAN8) were more highly expressed

in patients than in healthy individuals. Of note, CD151 is also an

independent biomarker in patients diagnosed with squamous cell

TABLE 1 EVs secreted in different body fluids and their potential cancer markers.

Cancer type Protein Source Sensitivity Specificity AUC References

Lung cancer CD9,CD63,CD81 Plasma 0.75 0.76 0.753 Jakobsen et al. (2015)

LRG1 Urinary - - - Li et al. (2011)

CD151 Plasma - - 0.68 Sandfeld-Paulsen et al. (2016)

TSPAN8 Plasma - - 0.60 Sandfeld-Paulsen et al. (2016)

Tim-3, Galectin-9 Plasma - - - Gao et al. (2018)

Nasopharyngeal carcinoma LMP1, BARF1 Serum - - - Houali et al. (2007)

Lmp1, LMP2A Plasma - - 0.826 Hu et al. (2022)

Colorectal cancer GPC1 Tissue,Plasma - - - Li et al. (2017b)

CEA Serum 0.875 0.975 0.884 Yokoyama et al. (2017)

Gastric cancer ARG1,CD3,PD-L1,PD-L2 Plasma - - - Zhang et al. (2022)

Pancreatic cancer GPC1 Serum 0.821 0.691 0.781 Melo et al. (2015)

CA19-9 Serum - - - Sancho-Albero et al. (2020)

Cholangiocarcinoma CD26, CD81, S1C3A1, CD10 Urinary - - - He and Zeng, (2016)

Prostate Cancer PSA Plasma - - - Logozzi et al. (2017)

β-catenin, prostate cancer gene-3 Urinary - - - Nilsson et al. (2009)

Bladder cancer TACSTD2 Urinary - - - Chen et al. (2012)

Ovarian cancer CD24 Tissue - - - Runz et al. (2007)

Claudin-4 Plasma 0.51 0.98 - Li et al. (2009)

Spongioblastoma EGFRV III Serum - - - Skog et al. (2008)

Breast cancer Survivin-2B Serum - - - Khan et al. (2014)

Melanoma CD63, Caveolin-1 Plasma 0.69 0.96 - Logozzi et al. (2009)
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carcinoma and small cell lung cancer. Gao et al. (Gao et al., 2018)

showed that plasma EVs total protein, Tim-3, and Galectin-9

significantly increased in NSCLC, and are positively associated

with larger tumor size, advanced TNM stage, and distant

metastases. Therefore, EVs and their related components

provide a theoretical foundation for research on molecular

biomarkers for early lung cancer diagnosis.

Nasopharyngeal carcinoma

Keryer et al. first detected latent membrane protein 1 (LMP1)

in EVs of nasopharyngeal cell lines infected with Epstein Barr

virus (EBV) (Keryer-Bibens et al., 2006). As a result, they

discovered that nasopharyngeal carcinoma cells release EVs

with galactose lectin 9 and LMP1, which inhibit T-cell

viability. Houali et al. (Houali et al., 2007) analyzed

LMP1 and Bam HI-A rightward frame 1(BARF1) proteins in

the serum and saliva of young patients and adult nasopharyngeal

carcinoma patients from North Africa and China. The results

showed that both Both LMP1 and BARF1 were present in the

serum and saliva from North African and Chinese patients with

nasopharyngeal carcinomas (NPC). All young North African

patients secreted both proteins, whereas 62% and 100% of adult

patients secreted LMP1 and BARF1, respectively. They indicated

that Both proteins will be a good diagnostic marker for NPC

whereas BARF1 is a particularly promising marker for all ages of

patients with NPC. For early diagnosis of nasopharyngeal

carcinoma, Hu et al. recently combined EVs expressing the

EBV-encoded membrane proteins LMP1 and LMP2A with

EVs expressing other tumor marker proteins as liquid biopsy

markers and significantly outperformed the traditional VCA-IgA

assay in distinguishing patients with NPC from healthy donors

and patients with nasopharyngitis, with accuracies of 96.3% and

83.1%. (Hu et al., 2022).

Digestive system cancer

Colorectal cancer
Glypican-1+ (GPC1+) EVs were successfully isolated from

tissues and plasma of Colorectal cancer (CRC). The percentage of

GPC1+ EVs and the GPC1 protein expression in EVs from

tumour tissues and plasma of CRC patients before surgical

treatment was significantly elevated compared to that in the

peritumoural tissues and the plasma of healthy controls. In

conclusion, the increased plasma GPC1+ EVs expression is

specific markers for the diagnosis of CRC (Li et al., 2017b). In

contrast with serum carcinoembryonic antigen (CEA), serum

EVs CEA predicts metastatic CRC with greater sensitivity and

precision (Yokoyama et al., 2017). Silva et al. quantified plasma

EVs in 91 patients diagnosed with colorectal cancer and found

that EVs are significantly higher than that in controls; besides,

these plasma EVs significantly correlate with CEA (56). As such,

plasma EVs in patients with colorectal cancer act as tumor

markers of disease progression and poor prognosis.

Gastric cancer
Gastric cancer (GC) is the fourth most common cancer and

the second leading cause of cancer-related deaths across the globe

(Silva et al., 2012). EVs fromGC cells activate theNF-ƙB pathway

in macrophages, thereby promoting cancer progression (Wu

et al., 2016). Baran et al. discovered that the number of EVs is

significantly higher in GC patients than that in normal controls

(Baran et al., 2010). By exploring the expressional spectrum of

plasma EV panel proteins in immune checkpoint inhibitor (ICI)-

treated GC, Zhang et al. identified EV-derived ARG1/CD3/PD-

L1/PD-L2 as biomarkers of ICI. Further, they combined them as

an EV-score that robustly predicts and dynamically monitors

immunotherapeutic outcomes (Zhang et al., 2022).

Pancreatic cancer
Recent studies have shown that specific proteins are only

detected in EVs derived from malignant cells. For instance,

GPC1, a cell surface proteoglycan is overexpressed in breast

and pancreatic cancers and only detected in EVs derived from

these malignant cells. GPC1-positive EVs are diagnostic

indicators of early pancreatic cancer (Melo et al., 2015).

Circulating EVs with GPC1 (GPC1+Exos) have been isolated

from the blood of 250 pancreatic cancer patients, which

distinguished patients with chronic pancreatitis from those

with pancreatic cancer (early and advanced stages). In

addition, GPC1+Exos can act as a preoperative and

postoperative prognostic indicator. It is a significantly better

prognostic marker for pancreatic cancer than CA19-9. Thus,

GPC1+Exos can be utilized to diagnose early and advanced

pancreatic cancer with high precision and sensitivity, as well

as evaluate treatment. Albero et al. recently investigated the

development of direct capture of CA19-9 positive EVs from

whole blood patients with high sensitivity for detecting CA19-

9 in EVs compared to serum samples (Sancho-Albero et al.,

2020).

Cholangiocarcinoma

Several oncogenic proteins are present in

cholangiocarcinoma (CCA) human cell lines and the serum of

patients with CCA, providing a basis for diagnosing

cholangiocarcinoma. Additionally, EGFR, Mucin-1 (MUC1),

and integrin beta-4 (ITGB4), which promote tumor growth

and metastasis, are poor prognostic factors for this tumor

(Arbelaiz et al., 2017). EVs concentration is also a useful

biomarker in bile that discriminates malignant common bile

duct (CBD) strictures from control or non-malignant CBD

strictures with 100% accuracy (Severino et al., 2017).
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Furthermore, urinary EVs proteomics of mouse liver injury

model identified 28 novel EVs closely related to disease,

among which CD26, CD81, S1C3A1, and CD10 are

biomarkers of liver injury (He and Zeng, 2016).

Genitourinary cancers

Prostate cancer
Plasma Prostate-specific antigen (PSA) is an extensively used

biomarker for the detection and monitoring of prostate cancer

(PCa). Nevertheless, PSA testing cannot distinguish between

benign prostatic hypertrophy (BPH) and tumors (Hoffman,

2011). The acidity of the tumor microenvironment increases

the EVs release and influences PSA in prostate cancer cells. PSA+

EVs in the plasma of PCa patients are four times higher than that

of tumor-free controls (Logozzi et al., 2017). Additionally, γ-
glutamyltransferase 1 (GGT1) is a cell surface enzyme s present in

human serum EVs along with CD9 (Kawakami et al., 2017).

Nilsson et al. discovered that urinary EVs from prostate cancer

patients express β-catenin, prostate cancer gene-3, a

transmembrane serine protease, among other prostate cancer-

related markers; this demonstrates the potential for diagnosis and

monitoring of cancer patients (Nilsson et al., 2009).

Bladder cancer
Chen et al. conducted a comparative proteomic analysis of

urinary EVs between nine hernia and nine bladder cancer (BCa)

participants. Consequently, 107 proteins demonstrated

differential expression between the two sample groups (Chen

et al., 2012). In total, 24 proteins were significantly differentially

expressed in 28 BCa and 12 hernia patients, with the area under

the curve (AUC) of individual regions ranging between 0.702 and

0.896 and an AUC of 0.72 for tumor-associated calcium signal

transducer 2 (TACSTD2). Elsewhere, Lee et al. performed

proteomic identification of 1,222 proteins in urinary EVs

between 10 healthy controls and 10 age-matched BCa

patients; consequently, 56 proteins were significantly expressed

in urinary EVs of BCa patients (Lee et al., 2018). This suggests

that urinary EVs potentially provide an enrichment source for

BCa protein biomarkers.

Ovarian cancer
Ovarian cancer is one of the fatal cancers, targeting women,

with an estimated 70% of diagnoses happening at an advanced

stage (Khalyfa et al., 2016). As such, the use of EVs contents for

early diagnosis can potentially save many patients facing death

due to late diagnosed ovarian cancer. The recent identification of

epithelial cell adhesion molecules and CD24 in ovarian cancer-

derived EVs has emerged as a promising alternative for the early

detection of ovarian cancer (Runz et al., 2007). Li et al. discovered

that serum-derived EVs Claudin 4 progressively increased with

cancer progression in ovarian cancer patients (Li et al., 2009).

Szajnik et al. found that L1CAM, CD24, ADAM10, EMMPRIN,

TGFβ1, MAGE3/6, and Claudin-4 in peripheral blood EVs can

potentially be used for early diagnosis of ovarian cancer (Szajnik

et al., 2013). EVs proteomics studies indicate that EVs in ovarian

cancer are rich in integrin, EGF receptor, Wnt signaling, PI3

kinase, Fgf receptor, Ras, p53, and angiogenic pathways among

other proteins related to cancer genesis and development (Liang

et al., 2013; Sinha et al., 2014). Comprehensive studies on the

interactions between these molecules and their functions in

signal transduction pathways may unravel the molecular

mechanisms underlying malignant tumorigenesis and

progression.

Neurological diseases

Spongioblastoma

Detecting serum EVs from 25 spongioblastoma patients

reveals the presence of spongioblastoma-specific epidermal

growth factor receptor variant type III (EGFRV III). As such,

detecting EVs in cancer blood might provide diagnostic

information and adjunctive therapy for cancer patients (Skog

et al., 2008). Additionally, microfluidic microarrays are used to

analyze the types of EVs proteins in the circulation of

spongioblastoma patients. EVs with EGFR-VII, EGFR, PDPN,

and IDH1 secreted by spongioblastoma have been isolated,

confirming that detection of circulating EVs predicts the

clinical drug efficacy and cancer mutations (Shao et al., 2012).

Other cancers

EVs proteins have been fronted as new diagnostic and

prognostic indicators for various cancers. They may serve as

biomarkers for breast cancer and melanoma. A significant

increase in survivin levels has been reported in serum EVs

from 40 breast cancer patients, and survivin-2B potentially

acts as a diagnostic or prognostic marker for breast cancer

(Khan et al., 2014). Melanoma-derived EVs promote

metastasis by stimulating bone marrow-derived progenitor

cells to prepare metastatic ecotopes. Wolfers et al. discovered

that EVs secreted by melanoma harbor intact cancer antigens

that activate CD8+ T cells and exhibit anticancer activity when

absorbed by dendritic cells (Wolfers et al., 2001). Additionally,

Logozzi et al. suggested that CD63 and caveolin-1 in plasma EVs

can act as a protein marker for melanoma (Logozzi et al., 2009).

Discussion

Accumulating studies provide strong evidence for the use of

these EVs-based protein markers for early cancer detection and
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even predict clinical outcomes. EVs proteins are directly derived

from their secreting cells. EVs proteins obtained from cancer cells

are emerging as novel biomarkers for cancer surveillance and

efficacy evaluation according to the following characteristics

(Xiao et al., 2019) Cancer-related lipids, proteins, RNA, and

DNA in EVs can be used for cancer detection (Penfornis et al.,

2016). (Mignot et al., 2006) EVs are small in size, can easily pass

through the body tissue barrier, and are widely present in various

body fluids, thereby easily detectable in clinical settings

(Boukouris and Mathivanan, 2015). (Fader et al., 2005) The

lipid bilayer membrane structure of EVs shields their contents

from enzymatic degradation in blood circulation (Laulagnier

et al., 2004). Blood composition is complex, and specific

proteins secreted by cancer cells are diluted in the blood,

therefore cancer proteins are not easily detectable at an early

stage or low levels (He and Zeng, 2016). Of note, more than

109 EVs are present in each milliliter of human blood. Based on

these characteristics, the detection of EVs proteins has significant

potential as a biomarker for cancer diagnosis and prognostic

evaluation (Kugeratski et al., 2021). Rab GTPases, a large family

of small GTPases that control membrane identity and EVs

budding, uncoating, motility and fusion through the

recruitment of effector proteins, such as sorting adaptors,

tethering factors, kinases, phosphatases and motors (Stenmark,

2009). In addition, EVs proteins are used in cancer diagnosis as

well as in a number of other diseases. Fraser et al. explored

leucine-rich repeat kinase 2 (LRRK2) as a biomarker in urinary

EVs obtained from patients with Parkinson’s disease and

discovered that ser-1292 LRRK2 is closely associated with PD

(Fraser et al., 2016). Wang et al. (Wang et al., 2019) conducted a

proteomic analysis of urine-derived EVs in PD patients vs. HC.

Among all proteins discovered in urine- EVs, only two (SNAP23

and calbindin), were highly expressed in PD patients vs. HC.

Therefore, the expression of these two proteins potentially

represents a valuable non-invasive biomarker for PD.

Nonetheless, obtaining pure and homogeneous EVs for

comprehensive analysis remains a challenge, thereby limiting the

clinical use of EVs proteins. Themost difficult aspect of EVs research

is their isolation and acquisition. At present, EVs are primarily

obtained via ultracentrifugation (Coumans et al., 2017),

precipitation (Mateescu et al., 2017), and immunocapture

methods (Yamamoto et al., 2018); the former is unspecific

enough for clinical use, whereas the latter may introduce bias

and contamination of serum/plasma proteins. The development

of reproducible isolation and extremely sensitive identification

technologies effectively integrate data from various laboratories

and improve their viability for clinical applications. ISEV

recommends that each preparation of EVs be (Xiao et al., 2019)

defined by quantitative measures of the source of EVs (e.g., number

of secreting cells, volume of biofluid, mass of tissue); (Mignot et al.,

2006) characterized to the extent possible to determine abundance of

EVs (total particle number and/or protein or lipid content); (Fader

et al., 2005) tested for presence of components associated with EV

subtypes or EVs generically, depending on the specificity one wishes

to achieve; (Laulagnier et al., 2004) tested for the presence of non-

vesicular, co-isolated components (Thery et al., 2018). Excitingly, a

method has been developed to capture EVs directly from plasma,

serum or urine using a variety of EVs proteins. Thismethod requires

simple sample preparation without the need to isolate vesicles (Cho

et al., 2019). Therefore, the future research strategies of EVs proteins

may be divided into two types (Xiao et al., 2019) Isolation and

purification of EVs for further study of EVs proteins. This method is

limited by the difficulty of obtaining high purity sEVs with current

technology (Mignot et al., 2006). Direct capture of EVs in body fluids

by immunocapture method and use for protein analysis. However,

this method requires antibodies specific for membrane proteins, and

the sensitivity of the antibodies used and possible inhibitors of the

reaction can affect the accuracy of the results. It is something to look

forward to whether EVs in body fluids can be classified according to

their proteins like blood cells. As such, the future use of EVs as early

cancer detection and prognostic biomarkers of cancer will be a novel

intervention to defeat cancer.
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