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Abstract
Background  Although older adults are at a high risk of severe or critical Covid-19, there are many cases of 
unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three 
Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated.

Results  Despite their advanced age, humoral immune response analysis showed that these individuals displayed 
robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and 
metabolites related to innate immune response and host defense was also observed. None presented autoantibodies 
(auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes 
underlying the known inborn errors of immunity, including particular inborn errors of type I IFN.

Conclusion  These observations suggest that their Covid-19 resilience might be a combination of their genetic 
background and their innate and adaptive immunity.
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Background
The emergence of the Covid-19 pandemic resulted in 
more than six million deaths worldwide, with a higher 
risk for older adults and people with comorbidities to 
develop severe cases of the disease [1–4]. Covid-19 
deaths of individuals over 60 represented over 70% of 
total Covid-19-related deaths in Brazil [5]. In the United 
States, about 80% of Covid-19 deaths have been among 
people older than 65 years [6]. The risk of dying from 
Covid-19 for an individual aged 85 years or more is 340 
higher than for young adults (< 30 years old) [7].

One of the leading hypotheses for the higher Covid-
19 severity in older people is a decrease in the immune 
response that occurs with aging [8]. The immunose-
nescence phenomenon is associated with significant 
changes in cytokine patterns and activation of inflamma-
tory pathways, which result in the dysfunction of innate 
and adaptive immune responses [9, 10]. The immune 
cells’ senescence significantly contributes to immunity 
decline [11]. The thymus degenerates gradually with 
aging, resulting in a significant loss of diversity of the T 
cell repertoire, depletion, and/or diminished function of 
mature lymphocytes in secondary lymphoid tissues [12, 
13]. Such a decline in immunity is responsible for higher 
susceptibility to infectious diseases and a decrease in the 
effectiveness of vaccinations in elderly cohorts [14, 15].

The chronic physiological stimulation of the immune 
system during life can establish the inflammaging phe-
nomenon, characterized by a progressive and continu-
ous increase of circulating levels of pro-inflammatory 
mediators [16, 17]. This pro-inflammatory basal state in 
the elderly may enhance the release of a large amount of 
pro-inflammatory cytokines as a response to the SARS-
CoV-2 infection, which is directly correlated with lung 
tissue injury, multi-organ failure, and increased risk of 
dying from Covid-19 – the cytokine storm phenomenon 
[10, 18–20]. Also, comorbidities in older individuals, as 
a consequence of the multiple phenomena associated 
with organic aging [8], are strongly associated with an 
increased risk of Covid-19 complications, including sep-
sis and multiple organ dysfunction [21, 22].

In addition, recent studies reported the presence of 
pre-existing autoantibodies (auto-Abs) neutralizing type 
I IFNs in patients with life-threatening Covid-19 pneu-
monia, which block the antiviral activity of correspon-
dent type I IFNs against SARS-CoV-2 [23]. As these 
auto-Abs skyrocket after age 65, they may represent an 
additional risk factor for critical Covid-19, especially in 
the elderly [24].

Despite that, worldwide reports of unvaccinated cente-
narians and supercentenarians (105 years or older) recov-
ered from Covid-19 with mild or moderate symptoms 
called our attention [25–29]. Understanding why some 
individuals overcome the disease despite aging, such as 

the nun Ms. Randon, the oldest person already reported 
to survive Covid-19 at age 116 [30] is of great interest.

Host genotype influences how an individual responds 
to viral infections. For example, natural resistance to 
HIV-1 infection has been associated with a specific 
mutation in the CCR5 gene [31]. In contrast, AIDS pro-
gression and many other infectious diseases are associ-
ated with specific alleles from the MHC, particularly 
HLA-B [32, 33]. In the context of Covid-19, the resistance 
to infection is still being investigated [34]. On the other 
hand, it has been reported that some genetic variants 
account for the variability in individuals’ susceptibility to 
Covid-19 and the severity of the disease. In this sense, a 
set of genes might explain how supercentenarians (some 
with comorbidities) overcome the disease without major 
complications.

Here, we present three cases of Brazilian supercente-
narians who recovered from Covid-19 before the vac-
cination onset, including a 114 years old woman, the 
second oldest person in the world in this condition. 
Covid-19 in these three volunteers occurred in 2020 
before new SARS-CoV-2 variants were reported in Brazil 
(especially Gamma variant - P.1). Aiming to enhance our 
comprehension of the underlying factors contributing to 
their resistance to the disease, we performed a compre-
hensive immunogenetic assessment and whole-exome 
sequencing.

Results
Humoral response against SARS-CoV-2
Serological assays for SARS-CoV-2 RBD IgA, IgG, and 
IgM were performed through enzyme-linked immuno-
sorbent assay (ELISA) for the Receptor-binding domain 
(RBD) of the Spike protein, and Nucleocapsid (NP) pro-
tein, at least four weeks after Covid-19 initial diagnosis. 
IgG seroconversion was detected for RBD and NP for all 
three individuals (Table  1). We must highlight that we 
performed these immune assays before the volunteers’ 
vaccination against Covid-19. Neutralization capacity 
was evaluated, and the asymptomatic individual pro-
duced low titers compared to the two who presented 
moderate symptoms. However, all of them presented 
titers above 160 (Fig. 1).

We also assessed pre-existing antibodies to RBD of the 
four common seasonal human coronaviruses (HCoV) 
α-CoV 229E, α-CoV NL63, β-CoV OC43, and β-CoV 
HKU1. All supercentenarians displayed IgG antibod-
ies for all four HCoV tested, presenting higher titers for 
NL63 and OC43 (Fig.  1). Interestingly, IgG normalized 
values were generally lower for SARS-CoV-2 compared 
to HCoVs. IgG for SARS-COV-2 RBD did not correlate 
with neutralization titers among them, meaning that the 
one who presented the highest titer of RBD was not the 
one with the highest virus neutralization titer (Fig. 1).
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Finally, autoantibodies (auto-Abs) neutralizing type I 
IFNs assays showed that none of the three supercentenar-
ians had IFN-α, IFN-β, and/or INF-ω auto-Abs, based on 
negative results of luciferase-based immunoprecipitation 
(LIPS) assay. Table 1 summarizes the humoral responses 
assessed, except IgG for RBDs, shown in Fig. 1.

Proteomic and metabolomic plasma analyses
For label-free quantitative proteomics analysis, we com-
pared the 3 supercentenarian’s plasma samples with 3 
healthy subjects older than 95 years-old (non-infected). 
A total of 702 proteins were identified among all the sam-
ples analyzed. We performed a t-test to obtain the dif-
ferentially expressed proteins between these two groups 
(Fig. 2 A). We found 33 altered proteins, 5 of them in low 
abundance (IGKV1-6, IGKV2-24, IGKV2-28, GPLD1, 
IGHV3-49) and 28 were up-regulated. The biologi-
cal annotation enrichment of proteins which were up-
abundant in the 3 supercentenarians showed processes 

associated with glycolytic pathways (P‑Value = 3.27E-
05) and innate immune response like platelet aggre-
gation (P‑Value = 3.75E-05), defense response to 
fungus (P‑Value = 1.81E-07), antimicrobial response 
(P‑Value = 5.21E-04).

The untargeted metabolomics approach detected 474 
metabolites through positive (291 metabolites) and nega-
tive (183 metabolites) ionization modes. The proteomics 
statistical analysis was also applied to metabolomics 
(Fig. 2B). In the supercentenarians, 62 metabolites were 
up-regulated; while 17 metabolites were down-regulated. 
Enrichment analysis was mainly focused on the up-reg-
ulated metabolites, with the lower p-value for the bio-
synthesis of unsaturated fatty acids (P‑Value = 5.96E-4). 
Other metabolic pathways such as linoleic acid, purine, 
and ether lipid metabolisms were also enriched. Down-
regulated metabolites presented an enrichment for the 
primary bile acid biosynthesis pathway. The protein-
metabolite network represents the omics dataset’s inte-
gration (Fig.  2  C), and their convergence in the main 
disrupted biological processes and metabolic pathways: 
glycolysis and the immune system.

Genetic ancestry
The genetic ancestry estimations for these three super-
centenarians are shown in Table  2, which corresponds 
to an average of African ancestry (all volunteers) or 
Native American (ID 1) much higher than observed in 
the admixed Brazilian population from the same city 
[36–38].

Inborn errors of type I IFN immunity (IEI) genes
None of the supercentenarians carry rare variants in 
genes associated with inborn errors of Toll-like recep-
tor 3 (TLR3) and interferon regulatory factor 7 (IRF7) 
dependent type I IFN immunity, which underlease life-
threatening Covid-19 pneumonia [39, 40]. Also, we did 
not detect any copy number variation (CNV) in IEI genes 
for the three supercentenarians.

Table 1  Humoral immune-response profile of the presence of binding antibodies and type I autoantibodies of the volunteers.
BINDING ANTIBODIES AGAINST SARS-CoV-2*
Participants ID 01 ID 02 ID 03
Covid-19 episode Symptomatic Asymptomatic Symptomatic

Specific SARS-CoV-2antibodies
(Ratio)

IgA NP - (0.0) - (0.2) - (0.9)

RBD - (0.1)          - (0.5) + (5.4)
IgM NP - (0.3) - (0.0) - (0.1)

RBD - (0.5) + (1.5) - (0.7)

IgG NP + (1.3) + (3.1) + (9.5)
RBD + (4.2) + (3.1) + (7.8)

TYPE I IFN AUTOANTIBODIES

Auto-anti IFNS IFN-α2, IFN-β and/or -ω
(Ratio)

- (0.0) - (0.0) - (0.0)

Fig. 1  Supercentenarians present higher titers of IgG to RBDs of seasonal 
coronaviruses than for SARS-CoV-2 and neutralization titers above 160 (the 
minimum titer initially established by the FDA for convalescent plasma 
donors) [35]. The numbers represent the 3 individuals. The graph on top 
indicates IgG ratios for each RBD and the table above shows VNT for SARS-
COV-2. VNT - Virus Neutralization Titers. Antibody levels expressed in ratios 
are shown for SARS-CoV-2 and the four seasonal coronaviruses. Neutraliza-
tion titers are expressed in dilution. ID 02 was asymptomatic, and IDs 1 and 
3 were symptomatic and recovered from Covid-19
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MHC genes
Due to its central role in the adaptive immune response, 
genes from the MHC, especially those in the Human 

leukocyte antigen (HLA) system, are likely candidates 
to influence infection outcomes. Some HLA alleles were 
previously associated with severe Covid-19. Here we 
described three centenarians that recovered from Covid-
19, which is a rare condition. Therefore, the small sample 
size does not allow an in-depth analysis of associated 
polymorphism. Nevertheless, since these data might be 
important to understand the mechanisms underlying 
HLA associations, and other groups evaluating centenar-
ians might be interested in this data, we report the HLA 
alleles observed for all these centenarians as supplemen-
tary data (Table S1).

Discussion
Despite the higher mortality risk associated with aging, 
analysis of exceptionally resilient supercentenarians may 
help to elucidate possible resistance mechanisms against 
SARS-CoV-2 infection in such extreme age.

The serological results of the three supercentenarians 
showed that they achieved seroconversion of IgG with 
robust levels against NP and RBD viral proteins. Such 
observations support the role of the humoral response 
against SARS-CoV-2. Our data corroborate a study by 
Foley and Colleagues, which reported higher anti-spike 
IgG antibody titers in nonagenarians and centenar-
ians exposed to SARS-CoV-2 in a long-term care home 
(n = 15) than in younger individuals living in the same 
environment [27].

Neutralization analysis revealed that the asymptomatic 
individual produced lower titers than the two symptom-
atic ones. At first glance, this seems contradictory, but 
only a few asymptomatic individuals produce detectable 
neutralization titers [41] even with a low viral load during 
infection. On the other hand, Covid-19 patients admit-
ted to a hospital usually display higher neutralizing anti-
body levels than mild disease or asymptomatic cases [42]. 
All three centenarians presented titers higher than 160, 
which is considered the cutoff for high levels [35].

We also assessed pre-existing antibodies to RBD of the 
four common seasonal HCoVs α-CoV 229E, α-CoV NL63, 
β-CoV OC43, and β-CoV HKU1. All supercentenarians 
displayed IgG antibodies for all four HCoV tested, pre-
senting higher titers for NL63 and OC43. Interestingly, 
normalized values were generally lower for SARS-CoV-2 
compared to HCoV. IgG for SARS-COV-2 RBD did not 
correlate with neutralization titers among them. The one 

Table 2  Supercentenarians’ continental ancestry composition.
ID Age Sex European African Native American East Asian
01 114 Female 0.34 0.43 0.23 0.00

02 111 Male 0.61 0.34 0.05 0.00

03 110 Male 0.00 1.00 0.00 0.00

Brazilian average genetic ancestry(average ± standard error) (36) 0.73 ± 0.26 0.18 ± 0.21 0.07 ± 0.07 0.03 ± 0.16

Fig. 2  Plasma proteomics and metabolomics analyses of the supercen-
tenarians infected with SARS-CoV-2 compared to healthy elderly sub-
jects (> 95 years-old / non-infected). Volcano plots showing differentially 
expressed proteins (A) and metabolites (B). Red and blue dots represent 
the up- and down-regulated proteins/metabolites, respectively. Protein-
metabolite interaction network was built with the statistically significant 
proteins with OmicsAnalyst platform (C). Red and blue nodes denote the 
up- and down-regulated proteins/metabolites, respectively. Circle and 
diamond node shapes represent metabolites and proteins, respectively
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who presented the highest titer of RBD was not the one 
with the highest virus neutralization titer.

The literature on the influence of pre-existing humoral 
immunity to HCoVs in SARS-CoV-2 infection is still con-
troversial. Some studies have pointed out that immu-
nity to the HCoVs has a protective effect on Covid-19 
[43]. In contrast, others have described that pre-existing 
HCoV antibodies may hinder effective immunity against 
SARS-CoV-2 [44]. In our cohort, the supercentenar-
ians displayed seroreactivity against all four HCoVs, as 
expected for the elderly, with normalized values show-
ing high titers for all four HCoV. Previous results from 
a cohort of almost 400 Covid-19-infected individu-
als showed that HCoV immunity might impact disease 
severity, and patients with high HCoV reactivity are less 
likely to require hospitalization [45]. People infected with 
HCoV viruses during their life (and thus imprinted with 
that set of antigens/epitopes) would be protected later in 
life against infections with a related virus, as shown for 
Influenza [46]. Therefore, these high titers for seasonal 
coronaviruses might have positively impacted specific 
responses for SARS-CoV-2.

It is very likely that supercentenarians have been 
exposed to various pathogens in their life even when chil-
dren and acquired active immunity making them more 
prone to defeat SARS-CoV-2. In this sense, it is tempting 
to speculate that the 1918 H1N1 influenza virus immu-
nity could confer some protection against SARS-CoV-2 
infection [47]. The hypothesis is that elderly born before 
1918 could have developed immune memory cells able 
to recognize epitopes antigenically related to the H1N1 
virus that would persist even one century later [48]. 
Interestingly, plasma samples of elderly who survived the 
Spanish flu pandemic revealed that neutralizing antibod-
ies to the strain 1918 H1N1 influenza derived from iso-
lated B cells have lasted a lifetime [49]. Our volunteers 
were born before 1918 and there is a report in Brazilian 
local media that ID03, who has lived his whole life in a 
region that was the most affected by the 1918 influenza 
virus, was infected by the virus as a child. It is possible 
that IDs 01 and 02 might have also been exposed to the 
Spanish flu in their early life, since both lived in regions 
affected by the virus but official data are lacking [50, 51].

Besides, a specific and unique subset of CD4 T cells has 
cytotoxic features in supercentenarians. These cells were 
accumulated during life exposition to pathogens. They 
might be considered an adaptation to aging since the 
immune system needs extra support to eliminate abnor-
mal and infected cells. Such observation corroborates the 
hypothesis that the original antigenic sin phenomenon 
[52] could play a significant role in the recovery of the 
three supercentenarians through a mechanism of immu-
nological memory [53].

It has been reported that circulating auto-Abs neu-
tralizing type I IFNs (IFN-α and/or -ω) were distinctly 
found in elderly patients with severe Covid-19 and rarely 
detected in asymptomatic, benign infectious, or healthy 
individuals. They account for about 20% of critical Covid-
19 cases in people over the 80s and total fatal Covid-19 
cases [23, 24]. Interestingly, none of the three supercente-
narians had neutralized auto-Abs against the type I IFNs, 
suggesting that they were not at a greater risk for compli-
cations in Covid-19 despite their advanced age.

Regarding the plasma proteomic and metabolomic 
analyses, we were able to compare these 3 supercentenar-
ians with a control group of 3 individuals with compa-
rable age, albeit no older than 110-years, whose serology 
was negative for Covid-19. Proteomics analysis showed 
that glycolytic proteins were more abundant in the super-
centenarians compared to the control group, which is 
associated with the infection phisiopatology [54–57]. 
Krishnan and colleagues used targeted proteomics as well 
as untargeted metabolomics approaches in plasma sam-
ples and cell-line models and discovered that glycolysis 
and glutaminolysis are essential for virus replication [58]. 
In addition, during Covid-19 and other viral infections 
[59–61], there is a reprogramming of the glucose metab-
olism that overexpress glycolitic enzymes as glyceralde-
hyde 3-phosphate dehydrogenase - GAPDH (enriched in 
Fig. 2 C) in non-immune and immune cells, specially the 
ones involved in innate immunity - which are activated 
[54, 62]. In parallel, we observed that some processes 
related to innate immunity were found up-regulated in 
the plasma of these supercentenarians, demonstrating 
that they also displayed a first-line of defense capable of 
effectively neutralizing the infection in addition to their 
robust adaptive immune responses.

On the other hand, the metabolomics approach 
showed some up-regulated metabolites in the supercen-
tenarians’ plasma related to fatty acid metabolism, espe-
cially the biosynthesis of unsaturated fatty acids. These 
molecules have a central role in modulating the immune 
pathways and inflammatory responses [63]. Some stud-
ies have described the importance of highly unsaturated 
fatty acids controlling both inflammation and thrombosis 
caused by Covid-19 [64–66]. The unsaturated fatty acid 
also mediates protein complex formation in lipid rafts 
and thus modulates SARS-CoV-2 entry gateways [67].

The genetic analysis indicated that all these three super-
centenarians do not present variants associated with 
inborn errors of type I IFN immunity (IEI) genes, which 
is not surprising considering their advanced age without 
associated diagnosis. Because of the small sample size, 
conducting an in-depth analysis of polymorphisms asso-
ciated with their Covid-19 resistance phenotype is not 
feasible. Nevertheless, their DNA WES data is available 
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to the community for joint efforts to detect variants 
related to Covid-19 resistance.

Furthermore, the HLA alleles that each of these cente-
narians carry were described, being likely candidates to 
influence infection outcomes [68–70] and longevity [71]. 
Many studies have reported potential HLA alleles impli-
cated in response to SARS-CoV-2 infection [72], whether 
they were identified in a specific geographic region or 
globally. This influence is suggestively related to differen-
tial antigen presentation and interaction with the T cell 
receptor [73].

Conclusion
In the present study, we investigated three Covid-19 
recovered supercentenarians (older than 110-years-old) 
who displayed robust IgG levels and neutralization titers 
against SARS-CoV-2. An enrichment of plasma proteins 
and metabolites related to innate immune response and 
host defense was observed. Despite their advanced age, 
none of them had neutralized auto-Abs against the type 
I IFNs. Also, they do not carry variants associated with 

inborn errors of type I IFN immunity (IEI) genes. They 
belong to a selected group of individuals with a long life-
time of pathogens’ expositions, immunity training, and 
genetic factors that lead them to develop mild symptoms 
not only against Covid-19 but also for several other dis-
eases. Understanding the underlying mechanisms may be 
important to protect us from future pandemics.

Methods
Participants’ recruitment and Sample Collection
Three Brazilian unvaccinated supercentenarians who 
recovered from Covid-19 were contacted by our Human 
Genome and Stem Cell Research Center (HUG-CELL) 
research group following their report in national media: 
a 114-years-old woman (ID 01) and two men aged 111 
(ID 02) and 110 (ID 03) years-old, respectively, at blood 
collection time. To our knowledge, these were the lon-
gest-lived people who recovered from Covid-19 in South 
America before the vaccination started and new SARS-
CoV-2 variants emerged. RT-PCR tests confirmed the 
previous diagnosis of Covid-19, and all relevant clinical 
data related to the disease episode and comorbidities 
were collected from clinical reports and interviews. Base-
line characteristics of the three supercentenarians are 
shown in Table 3.

We collected peripheral blood samples of the vol-
unteers from 30 to 120 days after the reported viral 
infections. For DNA extraction, samples were taken in 
vacutainer tubes with ethylenediaminetetraacetic acid - 
EDTA (BD Biosciences, USA, Catalog #. 360,057). Plasma 
and Serum were obtained by centrifugation for 10 min at 
2000 x g at room temperature within 30 min after veni-
puncture. Then, the supernatant was transferred in ali-
quots of 1.5 mL into cryovials (Corning®, USA, Catalog 
#. 430,487). Samples were transferred to a -80 °C freezer 
until the moment of use.

Humoral immune response assessment
The humoral immune response was analyzed by ELISA 
for IgA, IgM, and IgG-binding antibodies against the 
receptor-binding domain of Spike protein and NP pro-
tein of SARS-CoV-2. Besides, RBDs from human sea-
sonal coronaviruses (HCoV) HKU-1, OC43, NL63, and 
229E were also tested. RBDs from HCoVs were expressed 
in HEK293T cells, which plasmids are described in [76]. 
ELISA was performed using 96-well high-binding half-
area polystyrene plates coated overnight at 4oC with 
4  µg/mL of SARS-CoV-2 RBD, 0.8  µg/mL of the RBD 
of HCoVs, and 2  µg/mL NP (Kindly provided by Dr. 
Ricardo Gazzinelli, UFMG). Volunteers’ plasma samples 
were incubated at 56 °C for 30 min, diluted at 1:100, and 
run-in triplicates in ELISA. Results were given as the 
ratio of participant sample/average of a set of 20 control 

Table 3  Demographic and clinical data of the participants
GENERAL INFORMATION
ID 01 02 03

Sex F M M

Age 114 111 110

Year of birth 1906 1910 1911

Life status Death on Feb 
2021, as a 
consequence 
of urinary tract 
infection

Death in Nov 
2021 from natural 
causes

Still alive

Comorbidities* Dementia Diabetes mellitus Hypertension

Covid-19-RELATED EVENTS
SARS-CoV-2 
exposure/ 
beginning of 
symptoms

August 2020 June 2020 May 2020

Disease 
severity**

Moderate Asymptomatic Moderate

Hospital 
admission and 
discharge

Hospital admis-
sion on Aug 31, 
2020
ICU admission 
necessary

Not applicable Hospital 
admission in 
June 2020
ICU 
admission 
necessary
Hospital dis-
charge after 
18 days

Positive SARS-
CoV-2 serology

Sep 2020
MAGLUMI 2019 
nCoV IgM and 
IgM reagents

Jan 2021
ELISA IgM and IgG 
anti-Spike and 
anti-NP
(Table 1)

Jun 2021
ELISA IgM 
and IgG anti-
Spike and 
anti-NP
(Table 1)

*Medical conditions associated with a higher risk for severe Covid-19 [74]

**According to the WHO classification of Covid-19 [75]
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pre-pandemic samples. An antibody ratio of ≥ 1.2 was 
considered positive.

The detection of auto-Abs neutralizing type I IFNS 
(IFN-α2, IFN-β, and/or -ω) in plasma samples of the 
supercentenarians was assessed by LIPS assay, as 
described in [23]. Briefly, HEK293 cells transfected with 
type I IFNS fused to firefly luciferase were lysate (with 
doses from 0.1 pg/mL to 10 ng/mL of IFN-α2, -β, and/or 
-ω) and incubated with 10% diluted plasma of the volun-
teers. The resulting complexes were conjugated with aga-
rose beads to capture the immune complexes. Then, the 
luciferase substrate furimazine was added to the reaction 
and the luminescence intensity (LU) was proportional to 
the presence of anti-Abs.

Neutralization titers were measured in a pseudovirus 
assay adapted from [77], only changing transfection to 
use lipofectamine 2000 (Thermo).

Proteomics and metabolomics analyses
Plasma proteomics and metabolomics analyses from the 
supercentenarians were performed using tandem mass 
spectrometry. Detailed protocols concerning both analy-
ses and data processing are available in Supplementary 
Methods. Three individuals older than 95 years-old who 
were not infected by SARS-CoV-2 and displayed a nega-
tive COVID-19 serology were included as the control 
group.

Genomic assays
Whole-exome sequencing (WES) was performed in 
peripheral blood DNA with the Illumina NovaSeq plat-
form at HUG-CELL facilities. Sequencing data were 
analyzed following bwa-mem and GATK Best Practices 
workflow, quality control, and annotation were per-
formed as previously described [36]. HLA genes were 
realigned and called using hla-mapper [78], and the pipe-
line was described elsewhere [79].

Genetic ancestry inference
The inference of genetic ancestry was performed in 
ADMIXTURE v1.36 [80], in supervised analysis (k = 4), 
after filtering the markers for linkage disequilibrium 
(r2 = 0.1) using a 50Kb sliding window with 10 kb steps, 
totaling 53,987 SNPs. Samples from both the 1000 
Genomes Project [81] and the HGDP-CEPH [82] with 
over 95% inferred ancestry in a given group were used as 
parent populations, totaling 602 Africans, 624 Europe-
ans, 630 East Asians, and 118 Native Americans.
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