Skip to main content
. 2022 Nov 2;14:1005731. doi: 10.3389/fnagi.2022.1005731

Table 2.

Performance metrics for visual reading and the three machine learning classifiers.

A Entire dataset
AD DLB FTD NC Overall acc.
N 63 79 23 41
F1 Sp Pr Se F1 Sp Pr Se F1 Sp Pr Se F1 Sp Pr Se
Visual read 0.83 94 86 79 0.79 97 93 68 0.82 100 100 70 0.98 99 95 100 78
Pattern-based classifier
95 ROIs-based classifier 0.83 92 82 84 0.86 94 89 82 0.91 99 95 87 0.89 95 83 95 86
171 ROIs-based classifier 0.81 92 81 82 0.86 93 88 85 0.91 99 95 87 0.89 96 84 93 86
B Reduced dataset
AD DLB FTD NC Overall acc.
N 43 59 13 12
F1 Sp Pr Se F1 Sp Pr Se F1 Sp Pr Se F1 Sp Pr Se
Visual read 0.78 92 82 74 0.78 94 91 68 0.63 100 100 46 0.92 98 86 100 71
Pattern-based classifier 0.74 87 74 74 0.81 87 84 78 0.87 100 100 77 0.71 93 58 82 78
95 ROIs-based classifier 0.78 88 77 79 0.81 90 86 77 0.83 99 91 77 0.75 93 60 100 80
171 ROIs-based classifier 0.78 89 79 81 0.84 91 89 80 0.92 99 92 92 0.77 84 63 100 83

Performance metrics are calculated on (A) the entire dataset and on (B) the reduced dataset, where we excluded patients used for pattern identification from the testing set. Specificity, precision, sensitivity, and overall accuracy are presented as %. AD, dementia due to Alzheimer’s disease; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; NC, normal control; ROI, a region of interest; Sp, specificity; Pr, precision; Se, sensitivity; Acc, accuracy.