Table 2.
Performance metrics for visual reading and the three machine learning classifiers.
| A | Entire dataset | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AD | DLB | FTD | NC | Overall acc. | |||||||||||||
| N | 63 | 79 | 23 | 41 | |||||||||||||
| F1 | Sp | Pr | Se | F1 | Sp | Pr | Se | F1 | Sp | Pr | Se | F1 | Sp | Pr | Se | ||
| Visual read | 0.83 | 94 | 86 | 79 | 0.79 | 97 | 93 | 68 | 0.82 | 100 | 100 | 70 | 0.98 | 99 | 95 | 100 | 78 |
| Pattern-based classifier | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
| 95 ROIs-based classifier | 0.83 | 92 | 82 | 84 | 0.86 | 94 | 89 | 82 | 0.91 | 99 | 95 | 87 | 0.89 | 95 | 83 | 95 | 86 |
| 171 ROIs-based classifier | 0.81 | 92 | 81 | 82 | 0.86 | 93 | 88 | 85 | 0.91 | 99 | 95 | 87 | 0.89 | 96 | 84 | 93 | 86 |
| B | Reduced dataset | ||||||||||||||||
| AD | DLB | FTD | NC | Overall acc. | |||||||||||||
| N | 43 | 59 | 13 | 12 | |||||||||||||
| F1 | Sp | Pr | Se | F1 | Sp | Pr | Se | F1 | Sp | Pr | Se | F1 | Sp | Pr | Se | ||
| Visual read | 0.78 | 92 | 82 | 74 | 0.78 | 94 | 91 | 68 | 0.63 | 100 | 100 | 46 | 0.92 | 98 | 86 | 100 | 71 |
| Pattern-based classifier | 0.74 | 87 | 74 | 74 | 0.81 | 87 | 84 | 78 | 0.87 | 100 | 100 | 77 | 0.71 | 93 | 58 | 82 | 78 |
| 95 ROIs-based classifier | 0.78 | 88 | 77 | 79 | 0.81 | 90 | 86 | 77 | 0.83 | 99 | 91 | 77 | 0.75 | 93 | 60 | 100 | 80 |
| 171 ROIs-based classifier | 0.78 | 89 | 79 | 81 | 0.84 | 91 | 89 | 80 | 0.92 | 99 | 92 | 92 | 0.77 | 84 | 63 | 100 | 83 |
Performance metrics are calculated on (A) the entire dataset and on (B) the reduced dataset, where we excluded patients used for pattern identification from the testing set. Specificity, precision, sensitivity, and overall accuracy are presented as %. AD, dementia due to Alzheimer’s disease; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; NC, normal control; ROI, a region of interest; Sp, specificity; Pr, precision; Se, sensitivity; Acc, accuracy.