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ABSTRACT

Objective: Alzheimer’s disease (AD) is the most common neurodegenerative disorder with one of the most

complex pathogeneses, making effective and clinically actionable decision support difficult. The objective of

this study was to develop a novel multimodal deep learning framework to aid medical professionals in AD diag-

nosis.

Materials and Methods: We present a Multimodal Alzheimer’s Disease Diagnosis framework (MADDi) to accu-

rately detect the presence of AD and mild cognitive impairment (MCI) from imaging, genetic, and clinical data.

MADDi is novel in that we use cross-modal attention, which captures interactions between modalities—a

method not previously explored in this domain. We perform multi-class classification, a challenging task con-

sidering the strong similarities between MCI and AD. We compare with previous state-of-the-art models, evalu-

ate the importance of attention, and examine the contribution of each modality to the model’s performance.

Results: MADDi classifies MCI, AD, and controls with 96.88% accuracy on a held-out test set. When examining

the contribution of different attention schemes, we found that the combination of cross-modal attention with

self-attention performed the best, and no attention layers in the model performed the worst, with a 7.9% differ-

ence in F1-scores.

Discussion: Our experiments underlined the importance of structured clinical data to help machine learning

models contextualize and interpret the remaining modalities. Extensive ablation studies showed that any multi-

modal mixture of input features without access to structured clinical information suffered marked performance

losses.

Conclusion: This study demonstrates the merit of combining multiple input modalities via cross-modal atten-

tion to deliver highly accurate AD diagnostic decision support.

Key words: Alzheimer’s disease, clinical decision support, artificial intelligence, machine learning, deep learning, multimodal

deep learning

INTRODUCTION

Background and significance
Alzheimer’s disease (AD) is the most common neurodegenerative

disorder affecting approximately 5.5 million people in the United

States and 44 million people worldwide.1 Despite extensive research

and advances in clinical practice, less than 50% of AD patients are

diagnosed accurately for pathology and disease progression based

on clinical symptoms alone.2 The pathology of the disease occurs

several years before the onset of clinical symptoms, making the dis-

ease difficult to detect at an early stage.3 Mild cognitive impairment
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(MCI) is considered an AD prodromal phase, where the gradual

change from MCI to AD can take years to decades.4 As AD cannot

currently be cured, but only delayed in progression, early detection

of MCI before irreversible brain damage occurs is crucial for preven-

tive care.

The urgent need for clinical advancement in AD diagnosis

inspired the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to

collect diverse data such as imaging, biological markers, and clinical

assessment on MCI and AD patients.5 Such distinct data inputs are

often referred to as individual modalities; a research problem is

characterized as multimodal when it considers multiple such modal-

ities and unimodal when it includes just one. Thanks to data collec-

tion efforts such as the one spearheaded by ADNI, it became

possible to create unimodal machine learning models capable of aid-

ing AD diagnosis, most commonly using imaging data,6–10 or clini-

cal records.11,12 Recently, deep learning (DL) has shown

considerable potential for clinical decision support and outper-

formed traditional unimodal machine learning methods in AD

detection.7,13,14 The major strength of DL over traditional machine

learning models is the ability to process large numbers of parameters

and effectively learn meaningful connections between features and

labels. Even with DL’s advantage, single-modality input is often

insufficient to support clinical decision-making.15

AD diagnosis is multimodal in nature—health care providers

examine patient records, neurological exams, genetic history, and vari-

ous imaging scans. Integrating multiple such inputs provides a more

comprehensive view of the disease. Thus, several DL-based multimo-

dal studies16–19 have leveraged the richer information encoded in mul-

timodal data. Despite an overall convincing performance, they all miss

a crucial component of multimodal learning—cross-modal interac-

tions. The existing methods simply concatenate features extracted

from the different modalities to combine their information, limiting

the model’s ability to learn a shared representation.20 In response, we

propose a novel Multimodal Alzheimer’s Disease Diagnosis frame-

work (MADDi), which uses a cross-modal attention scheme21 to inte-

grate imaging (magnetic resonance imaging [MRI]), genetic (single

nucleotide polymorphisms [SNPs]), and structured clinical data to

classify patients into control (CN), MCI, and AD groups.

Many successful studies were conducted using the ADNI data-

set.5 Only a small subset of them used multimodal data, and an even

smaller subset attempted 3-class classification. In this work, we pro-

pose to use attention as a vehicle for cross-modality interactions. We

show state-of-the-art performance on the challenging multimodal 3-

class classification task, achieving 96.88% average test accuracy

across 5 random model initializations. Next, we investigated the

contribution of each modality to the overall model. While for unim-

odal models, images produced the most robust results (92.28%

accuracy), when we combined all 3 data inputs, we found that the

clinical modality complements learning the best. Finally, since our

method utilizes 2 different types of neural network attention, we

investigated the contribution of each type and found significant per-

formance improvements when using attention layers over no atten-

tion. Through our experiments, we were able to highlight the

importance of capturing interactions between modalities.

MATERIALS AND METHODS

Data description
The data used in this study were obtained from the ADNI database

(https://adni.loni.usc.edu/), which provides imaging, clinical, and

genetic data for over 2220 patients spanning 4 studies (ADNI1,

ADNI2, ADNI GO, and ADNI3). The primary goal of ADNI has

been to test whether combining such data can help measure the pro-

gression of MCI and AD. Our study follows the common practice of

using patient information from only ADNI1, 2, and GO, since

ADNI3 is still an ongoing study expected to conclude in 2022. To

capture a diverse range of modalities, we focused on patients with

imaging, genetic, and clinical data available. We trained unimodal

models on the full number of participants per modality. For our

multimodal architecture, we only used those patients who had all 3

modalities recorded (referred to as the overlap dataset). The number

of participants in each group is detailed in Table 1.

Ground truth labels

Since ADNI’s launch in 2003, more participants have been added to

each phase of the study, and the disease progression of initial partici-

pants is continuously followed. Over time, some patients who were

initially labeled as CN and MCI had a change in diagnosis as their

disease progressed. While some patients had as many as 16 MRI

scans since the start of the study, clinical evaluations were collected

much less frequently, and genetic testing was only performed once

per patient. Thus, combining 3 modalities per patient was a unique

challenge as, at times, there were contradictory diagnoses, making

the ground truth diagnosis unclear. For our overlap dataset, we used

the latest MRI and clinical evaluation for each patient and the most

recent diagnosis. Several studies focused on using time-series data to

track the progression of the disease.16,17,22–24 However, we aimed

to accurately classify patients into groups at the most recent state of

evaluation so our method can be generalized to patients who are not

part of long-term observational studies.

Clinical data preprocessing

For clinical data, we used 2384 patients’ data from the neurological

exams (eg, balance test), cognitive assessments (eg, memory tests),

and patient demographics (eg, age). The clinical data are quantita-

tive, categorical, or binary, totaling 29 features. We removed any

feature that could encode direct indication of AD (eg, medication

that a patient takes to manage extant AD). A full list of features can

be found in Supplementary Material S2. Categorical data were con-

verted to features using one-hot encoding, and continuous-valued

features were normalized.

Genetic data preprocessing

The genetic data consist of the whole genome sequencing data from

805 ADNI participants by Illumina’s non-Clinical Laboratory

Improvement Amendments. The resulting variant call files (VCFs)

were generated by ADNI using Burrows–Wheeler Aligner and

Genome Analysis Toolkit in 2014. Each subject has about 3 million

SNPs in the raw VCF file generated. However, not all detected SNPs

are informative in predicting AD. We followed the established pre-

processing steps detailed in Venugopalan et al19 to reduce the num-

ber of SNPs and keep only the relevant genetic components. After

such filtering (detailed further in Supplementary Material S1), we

had 547 863 SNPs per patient. As we only have 805 patients with

genetic data, we were left with a highly sparse matrix. We used a

Random Forest classifier as a supervised feature selection method to

determine which are the most important features, reducing our fea-

ture space to roughly 15 000 SNPs. Note that data points used for

model testing were not seen by the classifier. While the result was

still sparse, we found that this level was a reasonable stopping point
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as determined by the experiment detailed in Supplementary Material

S1. The final data were grouped into 3 categories: no alleles, any 1

allele, or both alleles present.

Imaging data preprocessing

The imaging data in this study consist of cross-sectional MRI data

corresponding to the first baseline screenings from ADNI1 (551

patients). The data publisher has standardized the images to elimi-

nate the non-linearities caused by the scanners from different ven-

dors. From each brain volume, we used 3 slices corresponding to the

center of the brain in each dimension. An example input is shown in

Figure 1. Further details on the ADNI preprocessing steps and

experiments justifying the use of 3 images per patient can be found

in Supplementary Material S3.

Finalizing the training dataset

To train our multimodal architecture, we used 239 patients who

had data available from all 3 modalities. The overlap dataset was

chosen out of the original data mentioned above—imaging (551

patients), SNP (805 patients), and clinical (2284 patients) to predict

AD stages. While the SNP data were unique per patient, the clinical

and imaging data appeared multiple times. To ensure a proper

merger, we used the timestamps in the clinical data and matched it

to the closest MRI scan date. Next, we used the most recent evalua-

tion on a patient to avoid repeating patients. The patients’ demo-

graphic information is shown in Table 2.

Multimodal framework
The proposed framework, MADDi, is shown in Figure 2. The model

receives a patient’s preprocessed clinical, genetic, and imaging data

and outputs the corresponding diagnosis (CN, AD, or MCI). Fol-

lowing the input, there are modality-specific neural network archi-

tecture backbones developed in the single modality setting (further

detailed in the Performance of Unimodal Models Section). For clini-

cal and genetic data, this is a 3-layer fully connected network, and

for imaging data, we have a 3-layer convolutional neural network.

The output of those layers then enters a multi-headed self-attention

layer, which allows the inputs to interact with each other and find

what features should be paid most attention to within each modal-

ity. This layer is followed by a cross-modal bi-directional attention

layer,21 which performs a similar calculation to self-attention but

across different pairs of modalities. The purpose of cross-modal

attention is to model an interaction between modalities; for exam-

ple, clinical features may help reinforce what the imaging features

tell the model and thus lead to more robust decision making. Both

attention types are rigorously defined in the Neural Network Atten-

tion Section. The last step concatenates the output of the parallel

attention computations and feeds it into a final dense layer that

makes the prediction.

Experimental design
Neural network attention

As a part of our experimental design, we evaluate the importance of

attention in our model. Previous methods16,17,19 explored the value

that DL brings to automating AD diagnosis. We build on top of pre-

vious multimodal DL frameworks and examine the need for inter-

modal interactions through attention. Thus, we used the same

framework but toggled the presence of attention based on 4 criteria:

self-attention and cross-modal attention, just self-attention, just

cross-modal attention, and no attention. The different types of

attention are introduced in the following.

Generalized attention. Attention is a mechanism that captures

the relationship between 2 states and highlights the features that

contribute most to decision-making. An attention layer takes as

input queries and keys of dimension dk, and values of dimension dv.

A key is the label of a feature used to distinguish it from other fea-

tures, and a query is what checks all available keys and selects the

one that matches best. We compute the dot products of the query

with all keys, divide each by the square root of dk, and apply a Soft-

max function, which converts a vector of numbers into a vector of

probabilities, to obtain the weights on the values:

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi

dk

p
 !

V (1)

Following the success of the Transformer,25 we use the multi-head

attention module, which allows the model to jointly attend to infor-

mation from different representation subspaces at different posi-

tions.

Self-attention. For self-attention mechanisms, queries, keys, and

values are equal. The self-attention mechanism allows us to learn

the interactions among the different parts of an input (“self”) and

determine which parts of the input are relevant for making predic-

tions (“attention”). In our case, the prior neural network layers pro-

duce in parallel 3 latent feature matrices for each modality that act

as the keys, queries, and values: imaging matrix I, genetic matrix G,

and clinical matrix C. Self-attention, in our terms, refers to attention

computation done within the same modality. Thus the self-attention

module performs the following operations:

self � attentionðI! IÞ (2)

self � attentionðG! GÞ (3)

self � attentionðC! CÞ (4)

Cross-modal attention. In each bi-directional cross-modal atten-

tion layer,21 there are 2 unidirectional cross-modal attention sub-

layers: one from modality 1 to modality 2 and one from modality 2

to modality 1.

In our case, the cross-modal attention layer takes the output of

each self-attention computation: image self-attention output Is,

genetic self-attention output Gs, and clinical self-attention output

Table 1. Number of participants in each modality and their diagnosis

Total participants Control Mild cognitive impairment Alzheimer’s disease

Clinical 2384 942 796 646

Imaging 551 278 123 150

Genetic 805 241 318 246

Overlap 239 165 39 35

Note: This table shows the number of participants in each modality and further separates the participants into their diagnoses. The overlap section refers to

patients who had all 3 modalities recorded.
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Cs. Thus the cross-modal attention module performs the following

operations:

concatenationðcross�modal attentionðIs

! CsÞ; cross�modal attentionðCs ! IsÞÞ (5)

concatenationðcross�modal attentionðCs

! GsÞ; cross�modal attentionðGs ! CsÞÞ (6)

concatenationðcross�modal attentionðGs

! IsÞ; cross�modal attentionðIs ! GsÞÞ (7)

Finally, we created a model with no attention module at all, where,

following the neural network layers, we directly proceed to concate-

nate and produce output through the final dense layer. This setting

represents the previous state-of-the-art methods used for integrating

multimodal datasets for our task.

Unified hyperparameter tuning scheme
The modality-specific neural network part of MADDi was predeter-

mined based on the hyperparameter tuning done on each unimodal

model (Supplementary Material S4). We did not use the overlapping

test set during hyperparameter tuning was done. To fairly evaluate the

need for attention, we tuned using the same hyperparameter grid for

each of the other experimental models. Meaning, that each model

(self-attention only, the cross-modal attention only, and the model

with no attention) gets its own set of best hyperparameters. We first

randomly split our 239 patients into a training set (90%) and a held-

out testing set (10%). We chose a 90–10 split for consistency with all

the papers we compared against (shown in Table 3). We designed a 3-

fold cross-validation scheme and took the parameters that gave the

best average cross-validation accuracy. Next, we used 5 random seeds

to give the model multiple attempts at initialization. The best initiali-

zation was determined based on the best training performance on the

full train and validations set (ie, validation was added into training).

This pipeline was repeated to find until we found the best parameters

for each baseline.

Evaluation metrics
The following metrics were calculated for each model: accuracy,

precision (positive predictive value), recall (sensitivity), and F1-score

(harmonic mean of recall and precision). F1-score was the primary

performance metric for evaluating our baselines. Accuracy was used

to evaluate our best model against previous papers, as that was the

metric most commonly reported on this task. The metric calcula-

tions are detailed in Supplementary Material S5.

RESULTS

Performance of unimodal models
To demonstrate the success of our multimodal framework, MADDi,

we first examined the performance of a single-modality model. Our

evaluation pipeline was consistent across all modalities in that we

used a neural network and then tuned hyperparameters to find the

best model. We split each modality into training (90%) and testing

(10%) data, where the testing set was not seen until after the best

Figure 1. Imaging input example. The imaging model took as input 3 slices from the center of the MRI brain volume, which were uniformly shaped to 72 � 72

pixels.

Table 2. Participants’ demographic information

Group Participants

(n)

Female

sex (%)

Mean age

(years)

Control 165 53.9 77.8

Mild cognitive impairment 39 34.2 76.6

Alzheimer’s disease 35 31.4 78.1

Note: This table shows the number of participants in each diagnosis group

along with the percent of females and the average age of each group.
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parameters were chosen using the average accuracy across 3-fold

cross-validation. The reported test accuracies are averaged across 5

random initializations, which remained consistent across all modal-

ities. The results are summarized in Figure 3 (and in Supplementary

Material S6, Table S3). For the clinical unimodal model, we created

a neural network with 3 fully connected layers (other hyperpara-

meters can be found in Supplementary Material S4). The best model

yielded 80.5% average accuracy across 5 random seeds. The model

was trained on 2384 patients. For imaging results, we created a con-

volutional neural network with 3 convolution layers. The best

model yielded 92.28% average accuracy across 5 random seeds. The

model was trained on 551 patients, but we allowed for patient repe-

titions as we found that only using 551 images was not enough to

train a successful model. Thus, we had 3674 MRI scans from 551

patients (some patients repeated up to 16 times). We selected our

testing set such that it has 367 unique MRIs (10% of training), and

we do not allow for any repeating patients in the testing set. We

only allowed repetition during training, and no patient was included

in both training and testing sets. For genetic data, we created a neu-

ral network with 3 fully connected layers. The best model yielded

77.78% average accuracy across 5 random seeds. The model was

trained on 805 unique patients.

Performance of multimodal models
Table 3 contrasts the performance and architecture of MADDi with

state-of-the-art multimodal approaches from the literature. Note

that due to the differences in dataset characteristics and multitask

settings, it was not possible to directly compare performance among

methods that only report binary classification or use a single modal-

ity. Thus, we only report studies that used 2 or more modalities and

did 3-class classification. For our proposed method, we report the

average accuracy across 5 random initializations on a held-out test

set. Therefore, we also use the test (as opposed to cross-validation)

accuracy from other studies. Bucholc et al18 used support vector

machines to classify patients into normal, questionable cognitive

impairment, and mild/moderate AD, comparable to our definitions

of CN, MCI, and AD. They reported 82.9% test accuracy but did

not rely on DL. Fang et al26 used Gaussian discriminative compo-

nent analysis as a method of multi-class classification using 2 differ-

ent imaging modalities, achieving 66.29% accuracy on the test set.

Abuhmed et al and El-Sappagh et al16,17 both used MRI, PET, and

various health record features. The key difference between the 2 is

that El-Sappagh et al considered a 4-class classification of CN, AD,

stable MCI (patients who do not progress to AD), and progressive

MCI. Since they did not report 3-class classification, we could not

Figure 2. Model architecture. (A) Data inputs—clinical data (demographics, memory tests, balance score, etc.), genetic (SNPs), and imaging (MRI scans). (B) The

input sources are combined and fed into a fully connected (FC) neural network architecture for genetic and clinical modalities and a convolutional neural network

(CNN) for imaging data. (C) Using the obtained features from the neural networks, a self-attention layer reinforces any inner-modal connections. (D) Then, each

modality pair is fed to a bi-directional cross-modal attention layer which captures the interactions between modalities. (E) Finally, the outputs are concatenated

and passed into a decision layer for classification into the (F) output Alzheimer’s stages (CN, MCI, and AD).

Table 3. Comparison with related studies

Study Modality Accuracy F1-score Method

Bucholc et al, 201918 MRI, PET, clinical 82.90% Not reported SVM

Fang et al 202026 MRI, PET 66.29% Not reported GDCA

Abuhmed et al, 202117 MRI, PET, clinical 86.08% 87.67% Multivariate BiLSTM

Venugopalan et al, 202119 MRI, SNP, clinical 78% 78% DL þ RF

MADDi MRI, SNP, clinical 96.88% 91.41% DL 1 attention

Note: This table shows the comparison between our study and 5 other previous studies that attempted to solve a similar problem to ours. MADDi performed

with 96.88% average accuracy and 91.41% average F1-score across 5 random initializations on a held-out test set, achieving state-of-the-art performance on the

multimodal 3-class classification task.
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directly compare to their work, but note that they achieved 92.62%

accuracy on the 4-class task. Both methods utilized DL, but they

focused more on disease progression diagnosis with time-series data

rather than static disease diagnosis. Venugopalan et al19 were most

similar to our study in structure, modality choice, and preprocess-

ing. They, too, did not utilize the recent advancement of attention-

based multimodal learning, which is where our architecture stands

out. At 96:88%63:33% average accuracy, MADDi defined state-of-

the-art performance on the multimodal 3-class classification task.

Model robustness
To definitively conclude that both self-attention and cross-modal

attention are necessary additions to the model, we ablated the atten-

tion schemes in 3 conditions (self-attention only, cross-modal atten-

tion only, and the model with no attention) on the held-out test set

using the best parameters for each respective model. To demonstrate

that our success was not dependent on initialization, we used 100

different random seeds and recorded the distribution of F1-scores on

the testing set. For more information on our test sample selection,

refer to Supplementary Material. Figure 4 (and Supplementary

Table S4 in Supplementary Material S7) shows that self-attention

and cross-modal attention layers together have the narrowest distri-

bution, with the highest median F1-score. The next best distribution

is the cross-modal attention layer alone, which has a slightly wider

distribution but still the second-highest median F1-score. The suc-

cess of the 2 methods involving cross-modal attention becomes

apparent and provides strong evidence that capturing interactions

between modalities positively influences the model’s decision-

making. All 3 models that utilize attention achieved 100% F1-score

for at least one initialization, while the model with no attention

layers only reached at most 92.8% F1-score. Furthermore, the per-

formance of our final model was 7.9% average F1-score higher than

a model with no attention, and was significant (P < .0001, 2-sample

Z-test)—providing further evidence that attention was beneficial for

multimodal data integration.

Using the self-attention and cross-attention model (MADDi), we

investigated the performance of the model with respect to the indi-

vidual classes as seen in Table 4. We report metrics averaged across

5 random initializations. We find that, regardless of the initializa-

tion, the model is extremely accurate at identifying AD patients.

However, for some cases, it tends to mistake MCI patients for CNs.

We hypothesize that, since our data does not include different stages

of MCI, it may have MCI patients with mild symptoms that could

be mistaken for CNs by the model. These observations can be seen

in detail through 5 confusion matrices from the 5 initializations in

the Supplementary Material S8, Figure S4.

Modality importance
Finally, we investigated the importance of each modality to bring

more transparency into the model’s decision-making and motivate

future data collection efforts. Knowing how valuable each modality

is to disease classification and what happens when it is excluded

from the experiment can shed light on where to focus scientific

resources. While every study participant had at least some clinical

data available, only a few hundred patients had MRI scans. To fairly

compare each modality’s importance to the model, we performed

our analyses on the same exact patients. Thus, we evaluated the con-

tribution of the modalities on the overlap patient set (detailed in Fig-

ure 5). For single modalities, we only used self-attention. For a pair

of modalities, we used both self-attention and cross-modal atten-

tion. We performed hyperparameter tuning for each model to ensure

fair evaluation, with all the parameters provided in Supplementary

Material S4, Table S1. As seen in Figure 5, combining the 3 modal-

ities performs the best across all evaluation metrics. A full table with

the numeric results can be found in Supplementary Material S10,

Table S6. The interesting discovery here was the clinical modality

contribution to this performance. While the use of 2 modalities was

better than one in most cases, when clinical data were withheld, we

saw a significant drop in performance; clinical data alone achieved

82.29% accuracy and 78.30% F1-score, whereas genetic and imag-

ing together achieved 78.33% accuracy and dropped to 50.07% F1-

score. These results suggest that the clinical dataset is an important

catalyst modality for AD prediction. We hypothesize that this empir-

ical merit stems from the fact that clinical features offer the neces-

sary patient context that grounds the additional modalities such as

vision or omics information and helps the model in their effective

representation and interpretation.

To further investigate the clinical data, we used a Random Forest

classifier (which fits the clinical training data to the diagnosis labels

in a supervised manner) to find the most dominant features from the

clinical modality: memory score, executive function score, and lan-

guage score. A full list of features in order of importance can be

found in Supplementary Material S2, Figure S1.

Figure 3. Metric evaluation of unimodal models. The graph shows all 4 evaluation metrics for the best neural network model for each modality—imaging, clinical,

and genetic. The imaging model gives the best performance overall, whereas the genetic modality gives the lowest performance with highest variation.
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DISCUSSION

Clinical importance and implications
Detecting AD accurately is clinically important as it is the sixth lead-

ing cause of death in the United States and is the most common

cause of dementia.1 Without treatment or other changes to the tra-

jectory, aggregate care costs for people with AD are projected to

increase from $203 billion in 2013 to $1.2 trillion in 2050.2 Despite

studies such as ADNI collecting various imaging, genetic, and clini-

cal data to improve our understanding of the underlying disease

processes, most computational techniques still focus on using just a

single modality to aid disease diagnosis. Our state-of-the-art model

allows for an effective integration scheme of 3 modalities and can be

expanded as more data sources become available.

Future extensions
The proposed model architecture can be used in other multimodal

clinical applications, such as cancer detection.27,28 As the efforts to

make health care data more broadly available continue to increase,

we believe that our model will help aid the diagnostic process. The

framework we propose does not rely on modality-specific processing

within the model itself. Thus, our future work will include other

data (PET scans, clinical notes, biomarkers, etc.). While it is

Figure 4. F1-score distribution for different attention-based and attention-free baselines. Box plots showing the F1-score distribution across 100 random seeds to

demonstrate the value of attention in a deep learning model. The F1-scores were calculated from a held-out test set. The horizontal line represents the median

F1-score, and the boxes represent the first and third quartiles. The whiskers represent quartile 1 – (1.5 � interquartile range) and quartile 3 þ (1.5 � interquartile

range). The dots represent the individual F1-scores for each model. ****P � .0001. The figure demonstrates that the combination of self-attention with cross-

modal attention performs the best with the most narrow variation.

Figure 5. Evaluation of modality importance. This figure evaluates the possible combinations of modalities. The metrics were calculated as an average of 5 ran-

dom initializations on a held-out test set. The combination of the 3 modalities performs the best across all evaluation metrics. Excluding the clinical modality

causes a drop in performance, demonstrating the value of clinical information.
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straightforward to simply interchange the current modalities with

new ones and only use 3 modalities at a time, we plan on expanding

our work beyond this current level as there is no rigid constraint on

the number of modalities used with the given codebase. Further-

more, similar to the task El-Sappagh et al16 explored, we will extend

our task to more than 3-class classification and use our work to

detect different types of MCI (stable MCI and progressive MCI).

This will help better understand AD progression and delay the

change from MCI to AD.

Limitations
When creating our unimodal performance baselines, we often

struggled with finding the ground truth labels for the genetic data.

While every patient had a diagnosis attached to an MRI scan, and

most of the clinical exams also had a diagnosis listed, genetic data

did not. Out of the 808 patients with genetic data, we used 805

patients where diagnosis on their most recent MRI scan agreed with

their clinical diagnosis. Thus, we proceeded with 805 patients to

eliminate any error in the ground truth labeling. This gap is natural,

as a patient may have had a more recent MRI that changed the diag-

nosis, leaving the recent clinical evaluation outdated (and vice

versa).

During preprocessing of the MRI images, we chose to use the

middle slice of the brain rather than the full brain volume. This

could mean that our model did not see certain areas of the brain.

When running unimodal experiments on the MRI data, the perform-

ance remained the same (within 1%) when using just the middle

slice of the brain compared to the full brain volume, shown in the

Supplementary Material S3. Since processing thousands of slices per

patient is much more computationally expensive, we proceeded with

this simplification. While on our task, there was no significant dif-

ference in performance; in other applications, integrating the full

brain volumes into the model could further increase performance.

CONCLUSIONS

In this work, we presented a MADDi, which uses attention-based

DL to detect AD. The performance of MADDi was superior to that

of existing multimodal machine learning methods and was shown to

be consistently high regardless of chance initialization. We offer 3

distinct contributions: integrating multimodal inputs, multi-task

classification, and cross-modal attention for capturing interactions.

Many existing multimodal DL models simply concatenate each

modality’s features despite substantial differences in feature spaces.

We employed attention modules to address this problem; self-

attention reinforces the most important features extracted from the

neural network backbones, and cross-modality attention21 reinfor-

ces relationships between modalities. Combining the 2 attention

modules resulted in a 96.88% accuracy and defined state-of-the-art

on this task. Overall, we believe that our approach demonstrates the

potential for an automated and accurate DL method for disease

diagnosis. We hope that in the future, our work can be used to inte-

grate multiple modalities in clinical settings and introduce the highly

effective attention-based models to the medical community.
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