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Spatial navigation is essential for everyday life and relies on complex network-level interactions. Recent evidence suggests that
transcranial direct current stimulation (tDCS) can influence the activity of large-scale functional brain networks. We characterized
brain-wide changes in functional network segregation (i.e. the balance of within vs. between-network connectivity strength) induced
by high-definition (HD) tDCS in older adults with mild cognitive impairment (MCI) during virtual spatial navigation. Twenty patients
with MCI and 22 cognitively intact older adults (healthy controls—HC) underwent functional magnetic resonance imaging following
two counterbalanced HD-tDCS sessions (one active, one sham) that targeted the right parietal cortex (center anode at P2) and
delivered 2 mA for 20 min. Compared to HC, MCI patients showed lower brain-wide network segregation following sham HD-tDCS.
However, following active HD-tDCS, MCI patients’ network segregation increased to levels similar to those in HC, suggesting functional
normalization. Follow-up analyses indicated that the increase in network segregation for MCI patients was driven by HD-tDCS effects
on the “high-level”/association brain networks, in particular the dorsal-attention and default-mode networks. HD-tDCS over the right
parietal cortex may normalize the segregation/integration balance of association networks during spatial navigation in MCI patients,
highlighting its potential to restore brain activity in Alzheimer’s disease.
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Introduction
Spatial navigation is essential for everyday life and
involves both allocentric and egocentric strategies.
Whereas allocentric navigation uses external references
(i.e. landmarks) and relies mainly on medial temporal
and parietal brain regions, egocentric navigation uses an
internal reference system, and engages the striatum,
especially the caudate nucleus (Boccia et al. 2014).
Although specific neural mechanisms may be prefer-
entially recruited for implementing individual spatial
functions, navigation, like all complex behaviors, is a
brain-wide network phenomenon (Brunyé 2017; Ekstrom
et al. 2017; Cona and Scarpazza 2019).

Among the multiple brain regions supporting navi-
gation, a core frontoparietal network—comprising the
superior parietal lobule (extending into the intrapari-
etal sulcus laterally and precuneus medially), dorsal
premotor regions, and frontal eye fields (junction of
the superior frontal sulcus and precentral sulcus)—
is generally identified across spatial navigation tasks

(Cona and Scarpazza 2019). This dorsal-attention net-
work plays a key role in visuospatial attention and is
thought to implement higher order representation (or
“prioritization”) of behaviorally relevant spatial locations
(Corbetta and Shulman 2002; Petersen and Posner 2012;
Jerde and Curtis 2013).

In addition, two other large-scale networks are often
discussed in relation to the dorsal-attention network and
its function. First, the default-mode network, anchored
in the medial prefrontal and posterior cingulate cortices,
has been implicated in self-referential processing,
mentalizing, and episodic memory (Raichle et al. 2001;
Greicius et al. 2003; Buckner et al. 2008), which are all
relevant for learning and recalling knowledge of the
environment one is to navigate (Smallwood et al. 2021).
While the dorsal-attention and default-mode networks
are often thought to implement competing modes
of processing—due to their preferential orientation
toward external and internal environments, respectively
(Fox et al. 2005; Dixon et al. 2017)—they are both vital
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to successful navigation, since attending to external
cues interacts with internally based knowledge of the
environment. Second, the frontoparietal control network,
anchored in the dorsolateral prefrontal and lateral pari-
etal cortices, plays a central role in moment-to-moment
cognitive control (Dosenbach et al. 2007; Duncan 2010;
Power and Petersen 2013). The frontoparietal control
network is extensively interconnected with both the
dorsal-attention and default-mode networks, and is
thought to dynamically modulate the activity of those
networks as a function of task goals and demands
(Spreng et al. 2013; Dixon et al. 2018).

Cognitive performance critically depends on the
brain’s ability to recruit neural circuits specialized
for the execution of the task at hand (Dehaene et al.
1998). This ability is supported by the brain’s functional
organization into distinguishable networks that show
greater within- than between-network connectivity, that
is are segregated from each-other (Crossley et al. 2013).
Network segregation typically decreases with “normal”
aging and is further impacted by neurodegenerative
diseases like Alzheimer’s disease (AD) (Brier et al.
2014; Damoiseaux 2017) and its clinical precursor, mild
cognitive impairment (MCI) (Petersen 2001; Petersen
et al. 2009). One explanation for such declines is neural
dedifferentiation, a process by which neural networks
lose their distinctiveness, leading to (over)recruitment of
network ensembles instead of individual components
responsible for specialized operations (Park et al.
2004; Grady 2012). Furthermore, “associative” brain
networks that mediate higher-level functions (such
as the dorsal-attention, frontoparietal, and default-
mode networks) are disproportionately affected by both
“normal” aging and further in those with MCI, compared
to preserved “sensory-motor” networks (such as the
somato-sensorimotor and visual networks) (Chan et al.
2014; Geerligs et al. 2015; Iordan et al. 2018).

Transcranial direct current stimulation (tDCS) is a
promising noninvasive, nonpharmacological interven-
tion for AD and related dementias (Meinzer et al.
2015). Accumulating evidence shows that local tDCS
can influence brain-network activity both during task
performance and at rest, suggesting that stimulation
acts at the level of functional networks rather than
isolated brain regions (Keeser et al. 2011; Polanía et al.
2011; Peña-Gómez et al. 2012; Sehm et al. 2013; Li
et al. 2019); see also (Sale et al. 2015; To et al. 2018)
for recent reviews. However, few investigations have
evaluated the effects of tDCS on spatial navigation. We
are aware of only one previous study that examined
the effects of tDCS over the parietal cortex, which was
performed in healthy younger adults and identified
modulation of a network comprising prefrontal, parietal,
and subcortical (i.e. caudate) regions, during both virtual
navigation (Hampstead et al. 2014) and the resting-
state (Krishnamurthy et al. 2015). Thus, it is currently
unknown if and how tDCS influences large-scale network

function in older adults with and without cognitive
impairments.

Here, we report the results of a double blind, crossover,
randomized controlled trial that examined the effects of
tDCS over the right superior parietal cortex on allocen-
tric and egocentric navigation in cognitively intact older
adults and in individuals with MCI due to presumed AD.
We employed high-definition (HD) tDCS, which provides
more focal stimulation than conventional tDCS (Cano
et al. 2013) and has not been previously employed in
navigation studies. In addition, we targeted the right pari-
etal cortex in an attempt to enhance the spatial aspects
of cognitive processing (Cona and Scarpazza 2019). As
an extension of our previous work (Hampstead et al.
2014; Krishnamurthy et al. 2015), we employed a vali-
dated virtual navigation task in conjunction with task-
related and resting-state functional magnetic resonance
imaging (fMRI) recordings, which were collected follow-
ing both active and sham HD-tDCS. Our main outcome
measure was network segregation, a recently proposed
index of functional network specificity or distinctiveness.

Based on previous evidence (e.g. Brier et al. 2014), we
expected that sham HD-tDCS would be more reflective
of an actual baseline where those with MCI show lower
network segregation compared to HC. We also expected
that HD-tDCS over the right superior parietal cortex
would increase engagement of that brain region and
result in increased network segregation. That is, if HD-
tDCS normalizes network recruitment, then it would
enhance the engagement of task-relevant networks, thus
strengthening their segregation, potentially similar to
effects reported for cognitive training (Lebedev et al.
2018). However, it remains an open question whether
this effect would be evident for both controls and MCI
patients. We envisioned three possibilities: (1) if segrega-
tion increased in both groups, then it would suggest HD-
tDCS effects regardless of clinical phenotype; (2) if seg-
regation increased for controls but not for MCI patients,
then it would suggest that the presumed disease process
is not responsive to HD-tDCS; (3) if segregation increased
for MCI patients but not for controls, then it would
suggest restorative effects in MCI, while the absence of
change in controls could reflect relative integrity of the
system and raise questions about dose–response rela-
tionships. Finally, regarding segregation of individual net-
works, we expected HD-tDCS effects particularly at the
level of task-relevant association networks that include
the lateral parietal cortex as a major “hub,” such as
the dorsal-attention, default-mode, and frontoparietal
networks.

Materials and methods
Participants
Forty-two, right-handed and MRI-compatible older
adults completed this clinical trial (NCT01958437).
Participant diagnosis was achieved via a consensus
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Table 1. Demographic, neuropsychological, and EF characteristics of the HC and MCI groups.

Demographic/Measure HC Group (n = 22) MCI Group (n = 20) Group differences
M (SD) M (SD)

Age 69.50 (6.55) 72.15 (7.14) t = 1.25, P = 0.217
Sex 10 m/12f 13 m/7f χ 2 = 1.62, P = 0.204
Education (years) 15.68 (2.12) 16.65 (2.6) t = 1.33, P = 0.19
MoCA (raw score) 26 (2.53) 23.65 (3.33) t = 2.59, P = 0.13
WTAR (word reading) 114 (9.62) 108.6 (12.64) t = 1.57, P = 0.125
RBANS immediate memory 99.55 (15.71) 77.95 (11.3) t = 5.07, P < 0.001∗∗∗

RBANS visuospatial 111.32 (13.32) 102.4 (17.14) t = 1.89, P = 0.066
RBANS language 104.09 (9.86) 94.65 (9.47) t = 3.16, P = 0.003∗∗

RBANS attention 110.32 (17.49) 102.3 (12.67) t = 1.69, P = 0.1
RBANS delayed memory 103.64 (12.44) 72.74 (19.74) t = 5.89, P < 0.001∗∗∗

Trails A (z-score) 0.71 (0.9) 0.16 (0.96) t = 1.49, P = 0.145
Trails B (z-score) 0.76 (0.99) 0.23 (1.31) t = 2.59, P = 0.013∗

Electric field P2 ROI (V/m) 0.14 (0.05) 0.13 (0.03) t = 0.44, P = 0.66
Residual head motion (mean displacement)

Task
Active 0.19 (0.1) 0.2 (0.09) t = 0.4, P = 0.692
Sham 0.2 (0.1) 0.19 (0.1) t = 0.3, P = 0.767

Rest
Active 0.14 (0.07) 0.16 (0.08) t = 0.9, P = 0.374
Sham 0.15 (0.08) 0.14 (0.06) t = 0.49, P = 0.626

Amount of data retained (scans)
Task

Active 1197.59 (21.79) 1191.7 (25.29) t = 0.81, P = 0.422
Sham 1197.86 (18.3) 1187.7 (27.2) t = 1.43, P = 0.16

Rest
Active 502.91 (4.45) 500.85 (7.18) t = 1.13, P = 0.266
Sham 500.36 (11.15) 500.45 (9.23) t = 0.03, P = 0.978

All test scores represent standard scores (M = 100, SD = 15), unless otherwise specified. Abbreviations: m, male; f, female; MoCA, Montreal Cognitive
Assessment; WTAR, Wechsler Test of Adult Reading; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; ROI, region of interest.

diagnosis in which all relevant data were considered (e.g.
neurological examination, neuropsychological testing,
neuroimaging). Twenty participants were diagnosed
with amnestic MCI with a presumed AD etiology,
following the Albert et al. (2011) criteria (i.e. subjective
complaint, objective evidence of impairment, but intact
everyday functioning). Twenty-two older adults were
deemed to be cognitively unimpaired and are referred
to as healthy controls (HC) hereafter. There were no
between-group differences on demographic variables
(Table 1). Exclusion criteria included history of other
contributing neurological (i.e. epilepsy, moderate–severe
traumatic brain injury) or medical conditions known to
affect cognitive functioning, significant mental illness
(e.g. moderate to severe depression, bipolar disorder,
schizophrenia), sensory impairments that limited their
ability to participate in the study, or a history of alcohol or
drug abuse/dependence. The Veterans Affairs Ann Arbor
Healthcare System’s (VA AAHS) Institutional Research
Board approved this study. All participants provided writ-
ten informed consent. Any protocol amendment were
approved by the VA AAHS and necessary modifications
made to https://clinicaltrials.gov.

Procedures
Following written informed consent, participants under-
went a brief neuropsychological protocol (Table 1).
Eligible participants were randomized to receive sham

HD-tDCS followed by active, or the opposite order, using
the sealed envelope method. Specifically, the tDCS
clinical trial units were preprogrammed with 6-digit
codes that enabled the unit to provide either active or
sham stimulation. One active and one sham code were
included in each envelope (all codes were unique for
each session and participant), in a specified order (i.e.
active→sham or sham→active) prior to the start of the
study. These envelopes were then sealed, shuffled, and
numbered. At the start of the first session, study team
members would take the next envelope, open it, and
enter the session-appropriate code. This ensured that
both study team member and participant were blind to
the stimulation condition. These codes were maintained
in the participant files until enrollment and all data
collection were complete, at which point the blind was
broken (i.e. each code was identified as either active or
sham).

The structure of each session (i.e. sham or active HD-
tDCS) was identical as both started with HD-tDCS and
then proceeded to MRI scanning. At least 48 h sepa-
rated tDCS sessions 1 and 2 (Fig. 1a) since motor physiol-
ogy suggests single-session tDCS effects dissipate within
minutes to hours (Kuo et al. 2013). Supplementary anal-
yses showed that the number of days [M (SD) 7.79 (6.93)
days] between the first and the second session had no
effect on performance in the navigation tasks (see Sup-
plementary Results).

https://clinicaltrials.gov
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Fig. 1. Experimental design, electrode locations, and EF. (a) Diagram of the experimental design. (b) Electrode placement using a model head (center
anode shown in red; surrounding cathodes shown in blue). (c) Finite-element model of the EF using a model brain. (d) Actual EF values extracted from
the P2 ROI for HC and patients with MCI. Each box displays the median (horizontal line), 25th and 75th percentiles (bottom and top box edges), 1.5 times
the interquartile range (whiskers), and observed values for each individual (gray circles).

Navigation task
We updated our virtual navigation task (Hampstead et al.
2014; Krishnamurthy et al. 2015) based on experience
from the earlier study using MazeSuite 2.0 (www.
mazesuite.com) or Plan3D (www.plan3d.com) to create
the virtual environments. Nine allocentric environments
(e.g. house, shopping center) included multiple land-
marks or distinguishing features (e.g. rooms of a house).
We intentionally constructed the fMRI task and asso-
ciated instructions to bias cognitive processing toward
either allocentric or egocentric processing. Specifically,
videos showed unique paths through each allocentric
environment. Participants were instructed to ignore the
series of turns and attend to the specific landmarks (or
key details) and create a mental map that integrated the
spatial relationships of these landmarks to one another.
In contrast, a single path was recorded through each
of the 9 egocentric environments. Participants were
instructed to focus on the series of left/right turns,
remembering them in order. They were explicitly told
not to create a mental map of these environments since
they all used the same general layout and only the series
of turns differed between them.

The fMRI paradigm consisted of 3 functional runs, each
8′6′′ in length. Within each functional run, six active
blocks (60′′ each) were interleaved with seven rest blocks
(18′′ each). The active blocks consisted of one of the
above noted videos, 3 of which were allocentric and 3
egocentric. Run order was randomized for each partici-
pant. Distinct stimuli were used during sessions 1 (List
A) and 2 (List B) to avoid practice effects. Participants
were instructed to press a button on an MRI-compatible

response pad at the start of each block to ensure they
were attending to the task. Task performance data from
2 HC and 1 MCI participants were lost due to equipment
malfunction.

After completing the MRI portion of the study, partic-
ipants were escorted to a quiet room where they com-
pleted a memory test using a touchscreen monitor and
in-house software. For allocentric environments, partic-
ipants were first shown a landmark (or key feature)
and then shown a blank environment that contained a
single landmark that was used to orient their cognitive
map. They were instructed to touch the screen where
they believed the target landmark belonged relative to
the orienting landmark. Distance (in cm) between the
actual and observed location was the primary outcome
measure. For each egocentric environment, participants
were shown an intersection and asked to touch either
the left or right hallway, in consecutive order, thereby
recalling the series of turns. The number of turns (in
serial order) correctly recalled was the primary outcome
measure.

HD-tDCS
HD-tDCS was performed in a quiet office ∼30 feet from
the MRI scanner. At the start of the session, study staff
measured the participant’s head and identified the site
for the center anode (P2) and surrounding cathodes
(CPz, CP6, POz, and PO8; Fig. 1b). Following our standard
protocols, the team member created a cloth template
using these measurements, which facilitated electrode
placement during the second session. Surgilast head
netting was then placed over the participant’s head, HD

www.mazesuite.com
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electrode holders (Soterix Medical Inc.) were positioned
through the holes at the target locations, and the team
member ensured the scalp was visible through the
holder (e.g. by moving hair). Each holder was filled
with ∼10 mL conductive gel and checked to ensure
there were no air bubbles. The silver/silver chloride HD
electrode was then placed into the holder and additional
gel added as necessary to ensure it was completely
covered. The holder cap was then placed. As recently
described (Hampstead et al. 2020), contact quality, as
reflected by quality units (QUs), was measured at the
start of the session as well as after a 10-min phase,
the latter of which was designed to allow the gel to
saturate the scalp and reduce impedance. Additional
modifications (e.g. moving hair, adding gel) were made
as necessary following these measurements with the
goal of achieving a QU ≤ 2. After the 10-min saturation
phase, the team member entered the participant and
session specific code into the Clinical Trial unit (Soterix
Medical, Inc.), which powered the attached 4 × 1 HD-
tDCS unit (Soterix Medical, Inc.). A participant and
session unique code was entered into the Clinical Trial
unit at the start of each session, thereby ensuring both
the study team and participant were blinded to the
stimulation condition. Active stimulation was delivered
at 2 mA for 20 min with a 30 s ramp up and ramp down
period. Sham stimulation consisted of a 30 s ramp up
to 2 mA followed immediately by 30 s ramp down at
both the start and end of the session; an approach that
capitalized on both primacy and recency of sensory
side-effects. Participants completed a standard side-
effect questionnaire (Brunoni et al. 2011; Reckow et al.
2018) and indicated whether they believed they received
active or sham stimulation (As is generally the case,
participants were unable to identify whether they
received active or sham stimulation. Specifically, for
active HD-tDCS, 29% of the participants believed it was
active, 33% believed it was sham, and 38% were not
sure. Likewise, for sham stimulation, 27% believed it
was active, 29% believed it was sham, and 44% were not
sure). Then, the electrodes and holders were removed, a
vitamin E capsule placed at P2 and F5, and the participant
immediately escorted to the MRI scanner.

MRI acquisition and preprocessing
Imaging data were collected using a 3 T General
Electric MR750 scanner with a 32-channel head coil.
First, resting-state data were acquired in interleaved
ascending order using a gradient echo sequence, with
MR parameters: TR/TE = 900/30 ms; multiband fac-
tor = 3; flip angle = 70◦; field of view = 240 × 240 mm2;
matrix size = 74 × 74; slice thickness = 3 mm, no gap;
45 slices; voxel size = 3.24 × 3.24 × 3 mm3. After an
initial 5.4 s of signal stabilization, 506 volumes of
resting-state were acquired. Then, task-related func-
tional images were acquired in interleaved ascend-
ing order using a gradient echo sequence, with MR
parameters: TR/TE = 1200/30 ms; multiband factor = 3;

flip angle = 70◦; field of view = 220 × 220 mm2; matrix
size = 88 × 88; slice thickness = 2.5 mm, no gap; 51 slices;
voxel size = 2.5 × 2.5 × 2.5 mm3. After an initial 7.2 s of sig-
nal stabilization, 406 volumes of task data were acquired
for each of the 3 runs. A high-resolution T1-weighted
anatomical image was also collected following resting-
state and preceding task acquisition, using spoiled-
gradient-recalled acquisition (SPGR) in steady-state
imaging (TR/TE = 12.24/5.18 ms, flip angle = 15◦, field
of view = 256 × 256 mm2, matrix size = 256 × 256; slice
thickness = 1 mm; 156 slices; voxel size = 1 × 1 × 1 mm3).

Preprocessing was performed using SPM12 (Wellcome
Department of Cognitive Neurology, London) and MAT-
LAB R2019b (The MathWorks Inc., Natick, MA). Func-
tional images were slice-time corrected, realigned, and
coregistered to the anatomical images in two steps, first
within session and then to match the average anatom-
ical image calculated across the two sessions. A study-
specific anatomical template was created, using Diffeo-
morphic Anatomical Registration Through Exponenti-
ated Lie Algebra (DARTEL) (Ashburner 2007), based on
segmented gray matter and white matter tissue classes,
to optimize inter-participant alignment (Klein et al. 2009).
The DARTEL flowfields and MNI transformation were
then applied to the functional images, and the functional
images were resampled to 3 × 3 × 3 mm3 voxel size. The
average proportion of outlier scans (differential motion
d > 2 mm or global intensity z > 5, identified with Artifact
Detection Toolbox [ART]; ww.nitrc.org/projects/artifact_
detect/) was < 3% in both HC (task: 1.66%, resting-state:
0.86%) and MCI (task: 2.32%, resting-state: 1.06%). There
were no significant differences between HC and MCI par-
ticipants in residual head motion (i.e. mean differential
motion after accounting for outlier scans) or the amount
of data retained (i.e. number of scans after accounting for
outliers; all ps > 0.1; see Table 1).

Functional connectivity calculation
Brain-wide functional connectivity analyses were per-
formed using the Connectivity Toolbox (CONN; Whit-
field-Gabrieli and Nieto-Castanon 2012) and a commonly
used functional atlas (Power et al. 2011). A 5 mm-radius
sphere was centered at each atlas coordinate. We used
249 regions of interest (ROIs): 243 ROIs from the Power
atlas that showed overlap with our functional data plus
6 additional regions identifying the anterior, mid, and
posterior hippocampi. To remove physiological and other
sources of noise from the fMRI time series, we used
linear regression and the anatomical CompCor method
(Behzadi et al. 2007; Chai et al. 2012; Muschelli et al. 2014).
Each participant’s white matter and cerebrospinal fluid
masks derived during segmentation, eroded by 1 voxel to
minimize partial volume effects, were used as noise ROIs.
The following temporal covariates were added to the
model: undesired linear trend, signal extracted from each
participant’s noise ROIs (5 principal component analy-
sis parameters for each), motion parameters (3 rotation

ww.nitrc.org/projects/artifact_detect
ww.nitrc.org/projects/artifact_detect
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and 3 translation parameters, plus their first-order tem-
poral derivatives), regressors for each outlier scan (i.e.
“scrubbing”; one covariate was added for each outlier
scan, consisting of 0’s everywhere but the outlier scan,
coded as “1”). For the task-based functional connectivity
analyses, to account for variance associated with task-
related coactivation, additional task regressors, modeled
as boxcar functions convolved with a canonical hemo-
dynamic response function (HRF), were added for each
condition as covariates of no interest. The residual fMRI
time series were high-pass filtered (0.008 Hz). Functional
connectivity was estimated using a Pearson’s correlation
between each pair of time series. For the task-related
functional connectivity, the residual time series for each
task block (accounting for hemodynamic delay by con-
volving the boxcar regressor for each block with a rec-
tified HRF; Whitfield-Gabrieli and Nieto-Castanon 2012)
were concatenated to form condition-specific time series
for each brain region. Finally, the correlation coefficients
were Fisher-z transformed, and the diagonal of the con-
nectivity matrix was set to zero.

Electric field modeling and extraction
A realistic volumetric-approach to simulate transcranial
electric stimulation (ROAST) was used to estimate the
amount of electrical current delivered to each participant
(Huang et al. 2019). The ROAST software segments each
T1 image in several tissue classes (e.g. gray matter, white
matter), utilizes virtual electrodes at specified locations
and current values to generate a finite element method
mesh, and solves for electric field (EF) and voltage values
across the entire brain. The tissue probability maps (TPM)
within ROAST were replaced with the SPM12 default
TPMs as this led to improved tissue class segmentation.
For this study, one electrode montage was used for all
participants, with electrode placements generated from
ROAST. Specifically, the anode at P2 provided 2 mA of cur-
rent while we assumed an equitable split (i.e. −0.5 mA)
across the four cathodes (Fig. 1c). ROAST’s default disc
electrodes were used (6 mm radius, 2 mm height). The
SPM canonical T1 head template was used to determine
the location of the P2 electrode in MNI coordinates within
ROAST. These coordinates were then converted into each
subjects’ space using an affine transformation, and a
10 mm-diameter sphere was built around these trans-
formed coordinates. The intersection between the sphere
and ROAST’s segmentation of gray and white matter was
defined as a ROI, and the average EF was extracted from
each ROI (Fig. 1d and Table 1).

Segregation analyses
We computed network segregation (Chan et al. 2014;
Wig 2017) using the Power et al. (2011) node-module
assignments. Network segregation was defined as the
difference of within- and between-network connectivity
expressed as a proportion of within-network connectiv-
ity, i.e. (Zw−Zb)/Zw, where Zw is the mean within-network
connectivity and Zb is the mean between-network

connectivity. Segregation analyses were performed at
three levels of increasing granularity, namely whole-
brain, system type, and individual network. First, for the
whole-brain analysis, within- and between-network con-
nectivity were averaged across all networks. Second, for
the system-level analysis (Chan et al. 2014), within- and
between-network connectivity were averaged separately
for the association (i.e. cingulo-opercular, default-mode,
dorsal attention, frontoparietal, salience, and ventral
attention networks) and sensory-motor networks (i.e.
auditory, somato-sensorimotor, and visual networks).
(Here, by “system” we simply denote a set of functional
networks.) Finally, for the network-level analysis, within-
network connectivity was calculated for each individual
network, whereas between-network connectivity was
calculated for each individual network relative to all
the other networks belonging to the same system (i.e.
association or sensory-motor) and then averaged.

Segregation scores for each participant, condition,
and session were exported to SPSS and analyzed within
the ANOVA framework. Effect sizes are reported as
partial eta squared (ηp

2). We examined the effects of
HD-tDCS on functional connectivity using a Group
(HC, MCI) × Order (Sham First, Active First) × Treatment
(Sham, Active) × Task (Allocentric, Egocentric) mixed-
effects ANOVA. Significant Group effects were followed-
up with separate Order × Treatment × Task ANOVAs
within each group.

Results
Behavioral results
Behavioral results showed better overall performance for
HC relative to MCI patients, particularly for allocentric
navigation, and no significant effects of HD-tDCS
on performance for either allocentric or egocentric
navigation. Specifically, for allocentric navigation, a
Group×Order×Treatment ANOVA on recall error (i.e.
distance [in cm] between the actual and observed
location of each target landmark, averaged across
presented environments) showed less error (i.e. better
performance) for HC relative to MCI (M(SD) HC: 13.6
(0.52); MCI: 15.21 (0.52); F1,34 = 4.77, P = 0.036, ηp

2 = 0.12)
and an unpredicted Order × Treatment interaction
(F1,34 = 8.56, P = 0.006, ηp

2 = 0.2); there were no other
significant effects (ps > 0.3; ηp

2 < 0.02). Similarly, for
egocentric navigation, a Group × Order × Treatment
ANOVA on recall error (i.e. number of turns in serial
order correctly recalled) showed better performance for
HC relative to MCI at a trend level (M(SD) HC: 9.41 (0.56);
MCI: 7.88 (0.57); F1,35 = 3.66, P = 0.064, ηp

2 = 0.1), and no
other significant effects (ps > 0.1; ηp

2 < 0.05).

Network segregation
Whole-brain network segregation

Whole-brain network segregation, computed by aver-
aging the segregation values across all modules, is
displayed in Figure 2. A Group × Order × Treatment
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Fig. 2. Whole-brain network segregation during spatial navigation. Active HD-tDCS increases segregation for MCI but not HC. Error bars display standard
error of the mean. Abbreviations: HD-tDCS, high-definition transcranial direct current stimulation; HC, healthy controls; MCI, patients with mild
cognitive impairment.

× Task ANOVA on task-related segregation showed a
main effect of Treatment (F1,38 = 7.53, P = 0.009, ηp

2 = 0.17),
qualified by a Group × Treatment interaction (F1,38 = 6.99,
P = 0.012, ηp

2 = 0.16), and no other significant effects
(ps > 0.06, ηp

2 < 0.09). Follow-up Order × Treatment
× Task ANOVAs within each group confirmed that
active HD-tDCS increased network segregation in MCI
(Treatment: F1,18 = 13.4, P = 0.002, ηp

2 = 0.43) but not
in HC (Treatment: F1,20 = 0.005, P = 0.942, ηp

2 < 0.001),
relative to sham. Together, these results suggest that
active HD-tDCS may normalize brain-wide network
segregation during task performance in MCI. In addition,
to check whether the effects of HD-tDCS would also be
observed during resting-state, we performed a Group
× Order × Treatment mixed-model ANOVA on resting-
state brain-wide segregation; however, this analysis
showed no significant effects (ps > 0.2, ηp

2 < 0.03; see
Supplementary Results and Supplementary Fig. S1).

Segregation within sensory-motor and association systems

Segregation within the sensory-motor and association
systems, calculated by averaging segregation values over
the modules belonging to each system, is displayed in
Figure 3. We performed separate Group × Order × Treat-
ment × Task ANOVAs on task-related segregation within
the sensory-motor and associative systems, respectively.
First, within the sensory-motor system, there was a main
effect of Task (F1,38 = 30.05, P < 0.001, ηp

2 = 0.44), indicat-
ing greater segregation between sensory-motor networks
for allocentric compared to egocentric navigation; there
was also an unpredicted Group × Order × Task inter-
action (F1,38 = 5.91, P = 0.02, ηp

2 = 0.14) and no other sig-
nificant effects (ps > 0.1, ηp

2 < 0.07). Second, within the
association system, there was a main effect of Treatment

(F1, 38 = 8.66, P = 0.006, ηp
2 = 0.19), qualified by a Group ×

Treatment interaction (F1,38 = 8.48, P = 0.006, ηp
2 = 0.18);

there was also an unpredicted Group × Order interaction
(F1,38 = 7.6, P = 0.009, ηp

2 = 0.17) and no other significant
effects (ps > 0.08, ηp

2 < 0.08). Follow-up Order × Treat-
ment × Task ANOVAs on network segregation within
the association system, performed separately for each
group, confirmed that active HD-tDCS increased segrega-
tion between the association networks for MCI patients
(Treatment: F1,18 = 11.64, P = 0.003, ηp

2 = 0.39) but not for
HC (Treatment: F1,20 = 0.001, P = 0.977, ηp

2 < 0.001), rela-
tive to sham. Of note, a Order × Treatment × Task ×
System ANOVA on within-system segregation for MCI
patients yielded a medium/large effect for the Treatment
× System interaction, although it did not reach signifi-
cance (F1,18 = 2.76, P = 0.11, ηp

2 = 0.13), and we posit that
this was likely due to lack of power for capturing an
ordinal interaction, which is a known issue for ANOVA
designs (see Bobko 1986; Strube and Bobko 1989). By
comparison, the effect size of the Treatment × System
interaction in a similar ANOVA for HC was virtually null
(F1,20 = 0.08, P = 0.786, ηp

2 = 0.004). Together, these results
suggest that, while the sensory-motor system is primar-
ily responsive to the allocentric vs. egocentric nature of
the navigation task, increased network segregation for
active HD-tDCS in MCI is likely driven by changes within
the association system.

Segregation of dorsal-attention, frontoparietal, and
default-mode from other associative networks in MCI

Given the significant effects of active HD-tDCS on
segregation within the association system only in MCI
patients, we further examined the segregation between
association networks within this group, focusing on three

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac010#supplementary-data
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Fig. 3. Segregation within the sensory-motor (upper panel) and association systems (lower panel) during spatial navigation. Active HD-tDCS increases
segregation within the association system in MCI. Colored spheres identify nodes of each network projected on the brain surface. Error bars display
standard error of the mean. Abbreviations: Aud, auditory; SMN, somato-sensorimotor; Vis, visual; CON, cingulo-opercular; DMN, default-mode; DAN,
dorsal-attention; FPN, frontoparietal; SaN, salience; VAN, ventral-attention network; HD-tDCS, high-definition transcranial direct current stimulation;
HC, healthy controls; MCI, patients with mild cognitive impairment.

task-relevant networks that involve the targeted right
parietal cortex, namely dorsal-attention, frontoparietal,
and default-mode networks (Fig. 4). These analyses were
justified by (1) our a priori hypotheses regarding the
involvement of the three targeted networks (i.e. dorsal-
attention, default-mode, and frontoparietal) and (2)
significant Group × Treatment interactions on individual
network segregation. Specifically, Group × Order ×
Treatment × Task ANOVAs on network segregation
yielded significant Group × Treatment interactions for
the dorsal-attention (F1,38 = 9.39, P = 0.004, ηp

2 = 0.2) and
default-mode networks (F1,38 = 5.73, P = 0.022, ηp

2 = 0.13),
whereas the Group × Treatment interaction for the
frontoparietal network was only a trend (F1,38 = 3.64,
P = 0.064, ηp

2 = 0.09). Further exploratory analyses (see
Supplementary Results) also identified a trending
Group × Treatment interaction for salience (F1,38 = 3.51,
P = 0.069, ηp

2 = 0.09) but not for any other association (or
sensory-motor) networks (ps > 0.1, ηp

2 < 0.05).
As planned, we performed Order × Treatment ×

Task ANOVAs on task-related segregation of the dorsal-
attention, frontoparietal, and default-mode networks,
respectively. First, regarding the dorsal-attention net-
work, there was greater segregation following active

compared to sham stimulation (Treatment: F1,18 = 13.47,
P = 0.002, ηp

2 = 0.43) and greater segregation for allocen-
tric compared to egocentric navigation (Task: F1,18 = 36.43,
P < 0.001, ηp

2 = 0.67), indicating additive effects of HD-
tDCS and task on dorsal-attention network segrega-
tion; there were no other significant effects (ps > 0.1,
ηp

2 < 0.14). Second, regarding the frontoparietal network,
there was a main effect of Task (F1,18 = 10.24, P = 0.005,
ηp

2 = 0.36) and a trend for Treatment × Task interac-
tion (F1,18 = 3.79, P = 0.067, ηp

2 = 0.17), indicating greater
frontoparietal network segregation following active HD-
tDCS for the egocentric compared to the allocentric
task. Finally, regarding the default-mode network, there
were additive effects of Treatment and Task, with
greater segregation following active compared to sham
stimulation (Treatment: F1,18 = 8.69, P = 0.009, ηp

2 = 0.33)
and greater segregation for egocentric compared to allo-
centric navigation (Task: F1,18 = 13.06, P = 0.002, ηp

2 = 0.42);
there was also an unpredicted main effect of Order
(F1,18 = 4.61, P = 0.046, ηp

2 = 0.2) and no other significant
effects (ps > 0.07, ηp

2 < 0.17). Exploratory analyses on
within- and between-network connectivity suggest
that greater network segregation following active HD-
tDCS in MCI patients may be primarily driven by

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac010#supplementary-data


5238 | Cerebral Cortex, 2022, Vol. 32, No. 22

Fig. 4. Segregation of dorsal-attention, frontoparietal, and default-mode networks from other association networks, during spatial navigation, for MCI
patients. Active HD-tDCS increases segregation of dorsal-attention and default-mode networks from other association networks in MCI. Error bars
display standard error of the mean. Abbreviations: HD-tDCS, high-definition transcranial direct current stimulation; MCI, patients with mild cognitive
impairment.

reductions of between-network connectivity among the
association networks (see Supplementary Results and
Supplementary Fig. S2). In sum, results suggest that HD-
tDCS effects for MCI patients were primarily driven
by the dorsal-attention and default-mode networks,
consistent with their complementary roles in processing
oriented toward the external and internal environments,
respectively.

Discussion
The present study identified both lower overall navi-
gation performance and lower baseline (i.e. following
sham HD-tDCS) network segregation in MCI patients
compared to HC, consistent with prior work (Brier
et al. 2014; Damoiseaux 2017). In addition, we showed
that the difference in brain-wide network segregation
between MCI patients and HC was primarily driven by
the association networks, whereas the sensory-motor
networks were more sensitive to the allocentric versus
egocentric nature of the task. Critically, segregation
of the associative networks increased following active
HD-tDCS only for MCI patients and achieved levels
similar to HC. This suggests that HD-tDCS (center
anode) may normalize network segregation in MCI
patients; however, no changes were detected at the
level of behavioral performance, suggesting that “dose”
effects are critical (discussed below). At the same
time, the lack of HD-tDCS effects in HC may be
due to this group already showing optimal network
segregation during task performance. Indeed, higher
performance on specialized tasks has been associated
with greater network segregation (Bassett et al. 2011;

Finc et al. 2020). Of note, the effects of HD-tDCS on
segregation were specific for task performance, as no HD-
tDCS effects were observed during resting-state for either
MCI patients or HC. This suggests that the functional
state of the targeted brain regions/networks influences
the effects of tDCS, in line with the “functional targeting”
hypothesis (Guleyupoglu et al. 2013).

At the level of brain systems, our results showed
increased segregation following HD-tDCS within the
association system, but not within the sensory-motor
system, and only for the MCI patients. This suggests that
the normalization of whole-brain segregation for MCI
patients was driven by stimulation-related effects within
the association system. In contrast, segregation within
the sensory-motor system was influenced only by the
nature of the task, with both groups showing greater seg-
regation during allocentric than egocentric navigation.
This suggests that the sensory-motor networks may be
more selectively recruited during allocentric navigation,
consistent with prior evidence (Hampstead et al. 2014).

Follow-up analyses in MCI patients at the level of
individual networks showed that HD-tDCS increased seg-
regation of the dorsal-attention and default-mode net-
works from the other associative networks. Together with
the results outlined above, this suggests that normal-
ization of segregation for MCI patients was driven by
modulation of the dorsal-attention and default-mode
networks for both brain-wide and association system
analyses. In addition, there was a subtask specific effect
independent of HD-tDCS, where the dorsal-attention net-
work showed greater segregation from the other asso-
ciation networks during allocentric navigation, whereas
the default-mode network showed greater segregation

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac010#supplementary-data
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during egocentric navigation. This is consistent with the
putatively distinct specializations of these two networks,
namely processing oriented toward the external envi-
ronment (dorsal-attention—i.e. attending to landmarks
and spatial relationships) vs. the internal environment
(default-mode—i.e. attending to self-referential relation-
ships of left vs. right turns) (Fox et al. 2005; Spreng
et al. 2013; Dixon et al. 2017). Finally, only the fron-
toparietal network showed a trending Treatment × Task
interaction indicating greater tDCS-related reorganiza-
tion during egocentric than allocentric navigation, a pat-
tern more similar to the default-mode than the dorsal-
attention network. Given the task-dependent fractiona-
tion of the frontoparietal network (Dixon et al. 2018), this
may reflect greater HD-tDCS impact on the frontopari-
etal component preferentially involved in the regulation
of introspective processes.

Limitations and future directions
Despite the observed neurophysiological effects at the
level of brain networks, neither group showed altered
memory test performance. We suspect this reflects
an insufficient “dose” of HD-tDCS which could be
conceptualized as either (or both) the amount of current
delivered to the brain or the number of sessions pro-
vided. Regarding the former, the individualized models
demonstrated two critical findings. First, there was
marked variability in the amount of current delivered,
on the order of 370% (range [0.07, 0.31] V/m), which
raises the possibility that some participants simply
did not receive enough stimulation to evidence an
effect. Second, the models revealed a small overall
amount of delivered current reached the brain region,
as reflected by the peak of 0.31 V/m, which is below
known dose–response curves (Esmaeilpour et al. 2018).
While sufficient to restore a relatively fragile network
in those with MCI, the EF may have been insufficient
to affect the HC group. Of note, correlations between
network segregation and behavioral performance, as well
as correlations linking the amount of current delivered
with segregation and behavioral performance, were not
significant (all ps > 0.1). These null results may be due
to the relatively small samples (Schönbrodt and Perugini
2013), and future studies, with larger samples, are needed
to investigate these aspects further. Another potential
source of variability may be represented by variations
in the location of peak stimulation across participants
(e.g. Indahlastari et al. 2019; Indahlastari et al. 2020). In
addition to the limited magnitude and range of delivered
stimulation, we selected EF values from only a single
location (under P2), which is a reasonable approach but
likely fails to capture the overall “dose” delivered to all
affected regions. We are currently developing methods to
better account for the presence/absence and magnitude
of delivered current in individual regions, which may
clarify such dose–response relationships in the future.

Regarding the number of sessions, it is likely unrea-
sonable to expect that a single session would enhance

cognitive performance in a population that has expe-
rienced progressive change as a function of “normal”
aging (i.e. controls), let alone in one with additional
superimposed disease-related change (i.e. the MCI
group). The network level changes are critical in this
regard since they demonstrate that HD-tDCS “restored”
network functioning and raise the possibility that, with
sustained efforts (e.g. multiple sessions), cognition would
also improve. These findings form the basis for our
ongoing randomized controlled trial of dose–response
relationships in those with MCI and dementia of the
Alzheimer’s type (NCT03875326).

Another potential limitation of our study is that there
were no fMRI data collected prior to participant random-
ization. However, because we directly compared active
versus sham HD-tDCS, our design controlled for any
nonspecific effects associated with setting-up the HD-
tDCS montage or potential sensory experiences (i.e. tin-
gling) associated with the initial ramp-up and final ramp-
down of the stimulation. Therefore, sham HD-tDCS con-
stituted a much stricter control for active HD-tDCS than
a prerandomization baseline. While the number of days
between sessions had no significant effects on navigation
performance (see Supplementary Results), future studies
should explicitly address potential order effects and bet-
ter define wash-out periods.

Conclusions
In sum, we provide initial fMRI evidence for restorative
effects of HD-tDCS on task-related functional network
organization in MCI patients. The balance between net-
work segregation and integration is critical for efficient
brain function, but is already affected in preclinical AD
(Brier et al. 2014). Our results show that, while network
segregation during spatial navigation is normally lower
in MCI patients compared to HC, HD-tDCS over the right
parietal cortex may be able to restore it to levels observed
in HC. The present findings advance our understanding
of the effects of brain stimulation on functional net-
work organization in MCI and open new avenues for
applying (HD-) tDCS as a targeted system-level inter-
vention for restoring brain activity in AD and related
dementias. Additional work will be needed to estab-
lish the parameters necessary to translate such system-
level changes into meaningful and sustained real-world
behavioral change.

Acknowledgments
The contents of this manuscript do not represent the
views of the Department of Veterans Affairs or the United
States Government.

Supplementary material
Supplementary material is available at Cerebral Cortex
online.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac010#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac010#supplementary-data


5240 | Cerebral Cortex, 2022, Vol. 32, No. 22

Funding
This work was supported primarily by a Small Projects in
Rehabilitation Research (SPiRE) Award (IRX001381) grant
awarded to B.M.H. by Rehabilitation Research & Develop-
ment, Office of Research and Development, Department
of Veterans Affairs. Partial support from R35AG072262
(to B.M.H. for effort and infrastructure) and the Michigan
Alzheimer’s Disease Research Center (P530AG053760-5),
National Institute on Aging, National Institutes of Health
is also acknowledged. A.D.I. was supported by the Michi-
gan Institute for Clinical and Health Research (KL2 TR
002241, PI Ellingrod; UL1 TR 002240, PI Mashour). Neu-
roimaging took place at the Functional MRI Laboratory of
the University of Michigan, which is supported by and a
National Institutes of Health grant (1S10OD012240-01A1,
PI Noll).

Conflict of interest statement. None declared.

Data Availability Statement
The data sets analyzed for this study may be available
upon request to the corresponding author, pending
approval from participants and adherence with the
Department of Veterans Affairs central and local
approval mechanisms.

References
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox

NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, et al. The
diagnosis of mild cognitive impairment due to Alzheimer’s dis-
ease: recommendations from the national institute on aging-
Alzheimer’s association workgroups on diagnostic guidelines for
Alzheimer’s disease. Alzheimers Dement. 2011:7:270–279.

Ashburner J. A fast diffeomorphic image registration algorithm.
NeuroImage. 2007:38:95–113.

Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton
ST. Dynamic reconfiguration of human brain networks during
learning. Proc Natl Acad Sci U S A. 2011:108:7641–7646.

Behzadi Y, Restom K, Liau J, Liu TT. A component based noise
correction method (compcor) for bold and perfusion based fMRI.
NeuroImage. 2007:37:90–101.

Bobko P. A solution to some dilemmas when testing hypotheses
about ordinal interactions. J Appl Psychol. 1986:71:323–326.

Boccia M, Nemmi F, Guariglia C. Neuropsychology of environmental
navigation in humans: review and meta-analysis of fMRI studies
in healthy participants. Neuropsychol Rev. 2014:24:236–251.

Brier MR, Thomas JB, Fagan AM, Hassenstab J, Holtzman DM, Ben-
zinger TL, Morris JC, Ances BM. Functional connectivity and graph
theory in preclinical Alzheimer’s disease. Neurobiol Aging. 2014:35:
757–768.

Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F.
A systematic review on reporting and assessment of adverse
effects associated with transcranial direct current stimulation.
Int J Neuropsychopharmacol. 2011:14:1133–1145.

Brunyé TT. Modulating spatial processes and navigation via tran-
scranial electrical stimulation: a mini review. Front Hum Neurosci.
2017:11:649.

Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default
network: anatomy, function, and relevance to disease. Ann N Y
Acad Sci. 2008:1124:1–38.

Cano T, Morales-Quezada JL, Bikson M, Fregni F. Methods to focalize
noninvasive electrical brain stimulation: principles and future
clinical development for the treatment of pain. Expert Rev Neu-
rother. 2013:13:465–467.

Chai XJ, Castanon AN, Ongur D, Whitfield-Gabrieli S. Anticorrela-
tions in resting state networks without global signal regression.
NeuroImage. 2012:59:1420–1428.

Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. Decreased
segregation of brain systems across the healthy adult lifespan.
Proc Natl Acad Sci U S A. 2014:111:E4997–E5006.

Cona G, Scarpazza C. Where is the "where" in the brain? A meta-
analysis of neuroimaging studies on spatial cognition. Hum Brain
Mapp. 2019:40:1867–1886.

Corbetta M, Shulman GL. Control of goal-directed and stimulus-
driven attention in the brain. Nat Rev Neurosci. 2002:3:201–215.

Crossley NA, Mechelli A, Vertes PE, Winton-Brown TT, Patel AX,
Ginestet CE, McGuire P, Bullmore ET. Cognitive relevance of the
community structure of the human brain functional coactivation
network. Proc Natl Acad Sci U S A. 2013:110:11583–11588.

Damoiseaux JS. Effects of aging on functional and structural brain
connectivity. NeuroImage. 2017:160:32–40.

Dehaene S, Kerszberg M, Changeux JP. A neuronal model of a global
workspace in effortful cognitive tasks. Proc Natl Acad Sci U S A.
1998:95:14529–14534.

Dixon ML, Andrews-Hanna JR, Spreng RN, Irving ZC, Mills C, Girn
M, Christoff K. Interactions between the default network and
dorsal attention network vary across default subsystems, time,
and cognitive states. NeuroImage. 2017:147:632–649.

Dixon ML, De La Vega A, Mills C, Andrews-Hanna J, Spreng RN, Cole
MW, Christoff K. Heterogeneity within the frontoparietal control
network and its relationship to the default and dorsal attention
networks. Proc Natl Acad Sci U S A. 2018:115:E1598–e1607.

Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosen-
bach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, et al. Distinct
brain networks for adaptive and stable task control in humans.
Proc Natl Acad Sci U S A. 2007:104:11073–11078.

Duncan J. The multiple-demand (md) system of the primate brain:
mental programs for intelligent behaviour. Trends Cogn Sci.
2010:14:172–179.

Ekstrom AD, Huffman DJ, Starrett M. Interacting networks of
brain regions underlie human spatial navigation: a review
and novel synthesis of the literature. J Neurophysiol. 2017:118:
3328–3344.

Esmaeilpour Z, Marangolo P, Hampstead BM, Bestmann S, Galletta
E, Knotkova H, Bikson M. Incomplete evidence that increasing
current intensity of TDCS boosts outcomes. Brain Stimul. 2018:11:
310–321.

Finc K, Bonna K, He X, Lydon-Staley DM, Kühn S, Duch W, Bassett
DS. Dynamic reconfiguration of functional brain networks during
working memory training. Nat Commun. 2020:11:2435.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle
ME. The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proc Natl Acad Sci U S A.
2005:102:9673–9678.

Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM. A brain-wide
study of age-related changes in functional connectivity. Cereb
Cortex. 2015:25:1987–1999.

Grady C. The cognitive neuroscience of ageing. Nat Rev Neurosci.
2012:13:491–505.

Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity
in the resting brain: a network analysis of the default mode
hypothesis. Proc Natl Acad Sci U S A. 2003:100:253–258.

Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classifi-
cation of methods in transcranial electrical stimulation (TES) and



Iordan et al. | 5241

evolving strategy from historical approaches to contemporary
innovations. J Neurosci Methods. 2013:219:297–311.

Hampstead BM, Brown GS, Hartley JF. Transcranial direct current
stimulation modulates activation and effective connectivity dur-
ing spatial navigation. Brain Stimul. 2014:7:314–324.

Hampstead BM, Ehmann M, Rahman-Filipiak A. Reliable use of silver
chloride HD-TDCS electrodes. Brain Stimul. 2020:13:1005–1007.

Huang Y, Datta A, Bikson M, Parra LC. Realistic volumetric-approach
to simulate transcranial electric stimulation-roast-a fully auto-
mated open-source pipeline. J Neural Eng. 2019:16:056006.

Indahlastari A, Albizu A, Nissim NR, Traeger KR, O’Shea A, Woods
AJ. Methods to monitor accurate and consistent electrode place-
ments in conventional transcranial electrical stimulation. Brain
Stimul. 2019:12:267–274.

Indahlastari A, Albizu A, O’Shea A, Forbes MA, Nissim NR, Kraft JN,
Evangelista ND, Hausman HK, Woods AJ. Modeling transcranial
electrical stimulation in the aging brain. Brain Stimul. 2020:13:
664–674.

Iordan AD, Cooke KA, Moored KD, Katz B, Buschkuehl M, Jaeggi SM,
Jonides J, Peltier SJ, Polk TA, Reuter-Lorenz PA. Aging and network
properties: stability over time and links with learning during
working memory training. Front Aging Neurosci. 2018:9:419.

Jerde TA, Curtis CE. Maps of space in human frontoparietal cortex.
J Physiol Paris. 2013:107:510–516.

Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C, Brunelin J,
Möller HJ, Reiser M, Padberg F. Prefrontal transcranial direct cur-
rent stimulation changes connectivity of resting-state networks
during fMRI. J Neurosci. 2011:31:15284–15293.

Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC,
Christensen GE, Collins DL, Gee J, Hellier P, et al. Evaluation of 14
nonlinear deformation algorithms applied to human brain MRI
registration. NeuroImage. 2009:46:786–802.

Krishnamurthy V, Gopinath K, Brown GS, Hampstead BM. Resting-
state fMRI reveals enhanced functional connectivity in spatial
navigation networks after transcranial direct current stimula-
tion. Neurosci Lett. 2015:604:80–85.

Kuo HI, Bikson M, Datta A, Minhas P, Paulus W, Kuo MF, Nitsche
MA. Comparing cortical plasticity induced by conventional and
high-definition 4 × 1 ring TDCS: a neurophysiological study. Brain
Stimul. 2013:6:644–648.

Lebedev AV, Nilsson J, Lovden M. Working memory and reasoning
benefit from different modes of large-scale brain dynamics in
healthy older adults. J Cogn Neurosci. 2018:30:1033–1046.

Li LM, Violante IR, Leech R, Ross E, Hampshire A, Opitz A, Rothwell
JC, Carmichael DW, Sharp DJ. Brain state and polarity dependent
modulation of brain networks by transcranial direct current
stimulation. Hum Brain Mapp. 2019:40:904–915.

Meinzer M, Lindenberg R, Phan MT, Ulm L, Volk C, Flöel A. Tran-
scranial direct current stimulation in mild cognitive impairment:
Behavioral effects and neural mechanisms. Alzheimers Dement.
2015:11:1032–1040.

Muschelli J, Nebel MB, Caffo BS, Barber AD, Pekar JJ, Mostofsky SH.
Reduction of motion-related artifacts in resting state fMRI using
aCompCor. NeuroImage. 2014:96:22–35.

Park DC, Polk TA, Park R, Minear M, Savage A, Smith MR. Aging
reduces neural specialization in ventral visual cortex. Proc Natl
Acad Sci U S A. 2004:101:13091–13095.

Peña-Gómez C, Sala-Lonch R, Junqué C, Clemente IC, Vidal D, Bar-
galló N, Falcón C, Valls-Solé J, Pascual-Leone Á, Bartrés-Faz D.
Modulation of large-scale brain networks by transcranial direct
current stimulation evidenced by resting-state functional MRI.
Brain Stimul. 2012:5:252–263.

Petersen RC. Mild cognitive impairment: transition from aging to
Alzheimer’s disease. In: Iqbal K, Sisodia SS, Winblad B, editors.
Alzheimer’s disease: advances in etiology, pathogenesis and therapeu-
tics. New York: Wiley; 2001. pp. 141–151

Petersen SE, Posner MI. The attention system of the human brain: 20
years after. Annu Rev Neurosci. 2012:35:73–89.

Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ,
Smith GE, Jack CR Jr. Mild cognitive impairment: ten years later.
Arch Neurol. 2009:66:1447–1455.

Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity
patterns and topological functional organization of the human
brain with transcranial direct current stimulation. Hum Brain
Mapp. 2011:32:1236–1249.

Power JD, Petersen SE. Control-related systems in the human brain.
Curr Opin Neurobiol. 2013:23:223–228.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA,
Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, et al. Func-
tional network organization of the human brain. Neuron. 2011:72:
665–678.

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shul-
man GL. A default mode of brain function. Proc Natl Acad Sci U S
A. 2001:98:676–682.

Reckow J, Rahman-Filipiak A, Garcia S, Schlaefflin S, Calhoun O,
DaSilva AF, Bikson M, Hampstead BM. Tolerability and blinding of
4x1 high-definition transcranial direct current stimulation (HD-
TDCS) at two and three milliamps. Brain Stimul. 2018:11:991–997.

Sale MV, Mattingley JB, Zalesky A, Cocchi L. Imaging human brain
networks to improve the clinical efficacy of non-invasive brain
stimulation. Neurosci Biobehav Rev. 2015:57:187–198.

Schönbrodt FD, Perugini M. At what sample size do correlations
stabilize? J Res Pers. 2013:47:609–612.

Sehm B, Kipping J, Schäfer A, Villringer A, Ragert P. A comparison
between uni- and bilateral TDCS effects on functional connec-
tivity of the human motor cortex. Front Hum Neurosci. 2013:7:183.

Smallwood J, Bernhardt BC, Leech R, Bzdok D, Jefferies E, Margulies
DS. The default mode network in cognition: a topographical
perspective. Nat Rev Neurosci. 2021:22:503–513

Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic
architecture underlying the relations among the default, dorsal
attention, and frontoparietal control networks of the human
brain. J Cogn Neurosci. 2013:25:74–86.

Strube MJ, Bobko P. Testing hypotheses about ordinal interac-
tions: simulations and further comments. J Appl Psychol. 1989:74:
247–252.

To WT, De Ridder D, Hart J Jr, Vanneste S. Changing brain net-
works through non-invasive neuromodulation. Front Hum Neu-
rosci. 2018:12:128.

Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connec-
tivity toolbox for correlated and anticorrelated brain networks.
Brain Connect. 2012:2:125–141.

Wig GS. Segregated systems of human brain networks. Trends Cogn
Sci. 2017:21:981–996.


	 High-definition transcranial direct current stimulation enhances network segregation during spatial navigation in mild cognitive impairment
	 Introduction
	 Materials and methods
	 Results
	 Discussion
	 Limitations and future directions
	 Conclusions
	 Acknowledgments
	 Supplementary material
	 Funding
	 Data Availability Statement


