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Abstract

Phosphorus, often in the form of inorganic phosphate (Pi), is critical to cellular function on many 

levels; it is required as an integral component of kinase signaling, in the formation and function of 

DNA and lipids, and energy metabolism in the form of ATP. Accordingly, crucial aspects of cell 

mitosis – such as DNA synthesis and ATP energy generation – elevate the cellular requirement for 

Pi, with rapidly dividing cells consuming increased levels. Mechanisms to sense, respond, acquire, 

accumulate, and potentially seek Pi have evolved to support highly proliferative cellular states 

such as injury and malignant transformation. As such, manipulating Pi availability to target rapidly 

dividing cells presents a novel strategy to reduce or prevent unrestrained cell growth. Currently, 

limited knowledge exists regarding how modulating Pi consumption by pre-cancerous cells might 

influence the initiation of aberrant growth during malignant transformation, and if reducing the 

bioavailability or suppressing Pi consumption by malignant cells could alter tumorigenesis. The 

concept of targeting Pi-regulated pathways and/or consumption by pre-cancerous or tumor cells 

represents a novel approach to cancer prevention and control, although current data remains 

insufficient as to rigorously assess the therapeutic value and physiological relevance of this 

strategy. With this review, we present a critical evaluation of the paradox of how an element 

critical to essential cellular functions can, when available in excess, influence and promote a 

cancer phenotype. Further, we conjecture how Pi manipulation could be utilized as a therapeutic 

intervention, either systemically or at the cell level, to ultimately suppress or treat cancer initiation 

and/or progression.
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Introduction

Phosphorus/inorganic phosphate (Pi) is rarely lacking in the human diet and has therefore 

been largely neglected in terms of health-related research in the context of normal kidney 

function. Relatively little is understood about long-term consequences of altered serum Pi 

levels on health and disease with the underlying mechanism(s) associated with cellular Pi 

consumption just beginning to be explored. However, emerging data suggests the need for a 

paradigm shift from viewing Pi as only a passive element of systemic and cellular function 

to that of an active modulator of tissue and cellular behavior. Although increased serum Pi 

levels as a result of either hereditary syndromes or kidney disease are known to result in 

significant health consequences [1], there is a growing appreciation that increased serum Pi 

as a result of increased dietary consumption in adults [2], and the ensuing changes in serum 

Pi levels, influence age-associated disease progression as observed with bone metabolism 

[3–8] and cardiovascular function [9–12]. The importance of regulating systemic Pi levels is 

further highlighted by knockout or mutation of the phosphaturic hormone fibroblast growth 

factor 23 (FGF23) or its co-receptor Klotho in mice; loss or reduction of these hormones 

results in hyperphosphatemia, inflammation and a premature-aging syndrome that can be 

corrected with a low Pi diet [13, 14]. Yet, the cellular requirement for Pi is complex. In early 

life, a period of rapid growth, dietary Pi is critical for bone and mineral formation, as well 

as energy metabolism. Severely restricted young rats (0.02% Pi diet) die within eight weeks 

[15] and weanling rats fed a low Pi diet (0.2%) have reduced bone mineralization rates 

[16]. Taken together, the results suggest a stage- and tissue-specific relationship between 

the cell and tissue requirements for Pi related to cellular processes ranging from growth to 

senescence. It has been theorized that the mechanisms underlying these observations involve 

changes in extra and intracellular Pi concentration which, in turn, alter glucose metabolism, 

increase oxidative stress, and inflammation [17, 18]. These biological processes are being 

increasingly appreciated for their roles in tumorigenesis and tumor progression. Whereas 

Pi levels and cellular consequences related to bone, kidney, and cardiovascular disease are 

currently an active area of investigation, the role of Pi consumption and metabolism in 

cancer has only begun to be investigated. Here we discuss data supporting the concept that 

both pre- and fully malignant cells require additional Pi, causing a Pi “addiction”, and how 

Pi consumption can be exploited for health benefits and disease treatment.

1. Regulation of systemic, cellular, and microenvironment Pi

To better understand the role of excess Pi in influencing complex diseases such as cancer, 

it is important to first understand how Pi is regulated in a healthy adult. Although Pi 

homeostasis is typically described as being tightly regulated comparable to calcium, in fact, 

Pi lacks the tight control at the systemic and cellular levels [19]. Whereas calcium levels 

are maintained in a very narrow range in the serum and the intracellular levels are much 
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lower than the extracellular levels, Pi levels have more fluctuation in the serum and are 

substantially higher intracellularly than extracellularly [20]. This increased range, provides 

multiple points for therapeutic intervention and suggests the possibility of a therapeutic 

window of opportunity to modulate Pi levels without detrimental systemic or cellular effects.

1.1. Endocrine homeostasis of systemic Pi

Serum Pi levels in health humans are generally reported in the clinical laboratory reference 

range of 2.5 to 4.5 mg/dL (0.81 to 1.45 mmol/L) although this can vary slightly with 

fasting, dietary consumption, age, gender, hormone status, and diurnal fluctuations [19–29]. 

Sustained low (<0.81 mmol/L (<2.5 mg/dL for hypophosphatemia) and high (>1.46 mmol/L 

(generally 7–9mg/dL for severe hyperphosphatemia)) serum Pi levels are known to result in 

significant health consequences and are generally the result of either hereditary or disease 

acquired syndromes [20, 30–34]. For healthy adults, dietary intake provides the main source 

of serum Pi with the intestine being the main site of absorption, the kidney being the main 

site of excretion, and the skeleton being the main site of storage [35]. Total body Pi is 

approximately 500 to 800 grams of which 85–90% is in the skeleton and 10–15% resides in 

other tissues [36, 37]. Due in part to the increased consumption of convenience foods, such 

as highly processed “enhanced/restructured” meats and fast foods [38], the amount of Pi in 

the American diet continues to rise well above levels considered high by the FDA [3, 39]. 

Changes in serum Pi levels, in the absence of disease, are generally proportional to dietary 

intake [19, 40] and a high Pi meal can significantly increase serum Pi levels for up to 8 hours 

[41–43]. With the goal of keeping serum Pi levels in balance, a number of tissues sense 

changes in Pi levels and produce endocrine factors such as parathyroid hormone (PTH) and 

fibroblast growth factor-23 (FGF23) (reviewed [44–48]) (Fig.1). Increased intake of Pi leads 

to increased circulating levels of PTH and FGF23 which, in turn, act on the kidneys to 

decrease Pi reabsorption through the downregulation of Pi transporters Slc34a1 and Slc34a3 

via internalization. These events also trigger a decrease in active vitamin D (D3) produced in 

the kidney as a result of a decrease in the synthesizing enzyme 1α hydroxylase (CYP27B1) 

and increase in the degrading enzyme 24-hydroxylase (CYP24A1). The decrease in serum 

vitamin D is presumed to reduce Pi absorption from the intestines as well as generate a 

negative feedback loop to reduce PTH and FGF23 (Fig.1). The net result is increased Pi 

excretion in the urine and decreased absorption in the gut which brings serum Pi levels back 

into balance. While PTH acts by binding to the PTH receptor, FGF23 requires both the FGF 

receptor as well as the co-factor Klotho. Mice with mutations in the Klotho gene, which 

decreases FGF23 efficacy, are characterized by hyperphosphatemia, osteoporosis, vascular 

calcification, and thinning skin among other premature aging related pathologies [49–51]. 

Remarkably, most of this robust aging phenotype can be corrected with a low Pi diet [52, 

53], emphasizing the potential contribution of dietary Pi and serum Pi to health, disease, and 

the aging process and its modulation as a potential therapeutic intervention.

1.2. Cell autonomous regulation of intracellular Pi

Intracellular Pi levels are difficult to precisely quantify because much of the Pi is bound 

and may vary substantially between cell types; however, levels are generally estimated to be 

in the range of 50–100mM with approximately 5mM existing as free inorganic phosphate 

[54]. The primary mechanism by which cells regulate and possibly sense the extracellular 
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distribution and levels of Pi is through a family of sodium dependent Pi-transporters 

(reviewed in [55]). Type II transporters (current nomenclature Slc34a1-3) are thought to 

be responsible mainly for absorption in the intestine and resorption in the kidney (reviewed 

in [56]), although recent data suggests the possibility of more diverse functions [57]. Type 

III transporters (current nomenclature Slc20a1-2) are expressed more ubiquitously with 

evidence highlighting important roles in calcifying tissues (reviewed in [58]). Although 

the potential role(s) of Pi-transporters as active regulators of cell function - as opposed 

to “housekeeping” ion transport functions - are not fully understood, cell culture studies 

have linked changes in extracellular Pi concentrations to changes in cell behavior in 

numerous cell types of varying function [59–70]. Most cells express more than one of 

the Pi-transporters and therefore sorting out individual roles for specific transporters has 

been challenging. To date, two Pi-transporters Slc20a1 and Slc34a2 have been linked to 

modulation of cell behavior related to the cancer phenotype (discussed below). While active 

Pi transport is a critical function of transporters in the kidney and intestine, in other cell 

types, it is possible that these membrane proteins also act as Pi-sensors of extracellular 

concentrations in addition to ion channels [71].

1.3. Regulation of Pi in the cellular microenvironment; paracrine/autocrine and 
ectoenzymes

Although systemic and cellular regulation of Pi are at least partially understood, the control 

of Pi levels in the microenvironment is less so. Similar to serum, interstitial or extracellular 

fluid is broadly thought to contain 0.5–2mM Pi, but data are limited and levels likely 

vary by tissue environment [40, 72–74]. Supporting the increased Pi demand of tumors a 

recent study identified an almost two-fold increase in tumor microenvironment interstitial Pi 

relative to corresponding normal tissue [75]. There are a number of factors in the cellular 

microenvironment that are known to alter the cellular handling of Pi. Cell surface enzymes 

(ectoenzymes) are known to increase extracellular Pi through cleavage of various available 

forms of organic phosphates including ATP. Under physiological conditions, the generation 

of free extracellular Pi is normally associated with mineralizing cells and the activity of 

the established ectoenzyme Alkaline phosphatase. Alkaline phosphatase (ALP) is actually 

four unique genes/enzymes (Tissue non-specific ALP (TNALP; or also referred to as liver/

bone/kidney), Placental, Intestinal, and Germ Cell) which are membrane bound but can 

also be measured in circulation and have been found elevated in many different cancers 

[76–79]. The extracellular environment can also influence the amount of cellular Pi uptake 

by autocrine and paracrine signaling. A number of factors have been identified that will 

directly influence the kinetics of transport of Pi into cells including parathyroid hormone 

(PTH), insulin like growth factor-1 (IGF-1), platelet derived growth factor (PDGF) [80], 

calcium [81], IL-8 [82], insulin [83] and the phorbol ester, 12-O-tetradecanocylphorbol-13-

acetate (TPA) [84, 85]. Interestingly, two recent studies have identified the coordinated 

requirement of FGF receptor signaling for both extracellular Pi-induced cell signaling and 

gene expression [86, 87]. The coordination of Pi transport with growth factor stimulation 

would be advantageous so as to allow cells to not enter a proliferative state unless a key 

building block is present and begs the question as to whether this coordination can be 

decoupled to inhibit a cell from proliferating.
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2. Functional consequences of Pi availability on cell proliferation and 

transformation

Traditionally, Pi has been viewed as a required but passive player in cellular behavior. 

Growing evidence suggests a more active role for this common nutritional element in 

influencing various cellular functions. While diet has become increasingly appreciated for 

its profound effects on functional genomics and gene expression, the molecular and cellular 

response to long-term changes in serum Pi levels have only begun to be investigated. 

Specifically, based on the essential requirement of Pi for numerous critical cellular 

functions, it follows that rapidly proliferating cells would have an increased need to Pi. 

Evidence supporting this concept comes from in vivo studies in mice and humans that have 

demonstrated increased Pi uptake and retention in tumors relative to the corresponding 

non-malignant tissue controls [88–92]. More recently, cell-based studies have revealed 

that exposure of a variety of cell types to elevated Pi will alter growth properties, signal 

transduction pathways and gene expression, through a myriad of cell autonomous, autocrine, 

and paracrine effectors. In vitro investigations have begun to uncover diverse downstream 

functional implications of elevated Pi on cell behavior as a result of the cells ability to sense 

and respond to changes in extracellular Pi.

2.1. Functional consequences of Pi on transformation and energy metabolism

Cancerous transformation is the process by which a healthy cell acquires the traits of a 

malignant cell such as uninhibited growth, the ability of normally adherent cells to grow in 

suspension and altered energy metabolism. Early studies using the NIH3T3 focus formation 

assay, cell proliferation in limited growth medium, established Pi as a required nutrient 

in the regulation and stimulation of transformation [93, 94]. A recent study utilizing the 

transformation-sensitive epidermal keratinocyte JB6 cell line, which respond to various 

tumor promoters, such as TPA (12-O-tetradecanoylphorbol-13-acetate), with anchorage-

independent growth in soft agar and tumorigenicity found that addition of Pi, 1–2 mM 

in addition to the 1 mM in the medium, resulted in a significant increase in cell proliferation 

and significantly increased anchorage-independent growth over TPA alone [67]. Further, 

the same study demonstrated that Pi alone (in the absence of TPA) augmented soft agar 

growth, suggesting that Pi is not only a required nutrient in the transformation process but 

excess Pi itself can actively promote it. Elevated Pi availability has also been demonstrated 

to alter cellular energy metabolism, another aspect of malignant transformation. Pi was 

originally determined as a required element for mitochondrial respiration but more recently 

increased Pi was shown to actively increase oxidative phosphorylation and glycolysis 

pathways and ATP production [67, 95–97]. The Pi-induced changes in cellular energy 

metabolism appear to be driven by changes in protein abundance and not linked to changes 

in gene expression, as might be predicted [98]. Further, oxidative phosphorylation was 

demonstrated as necessary for certain Pi-induced changes in gene expression such as OPN 

[86]. Taken together, these results identified that increased Pi availability is sufficient to 

promote altered cellular energy metabolism as well as anchorage-independent growth in cell 

models, indicative of cell transformation towards a malignant phenotype.
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2.2. Functional consequences of Pi on cell proliferation

Fundamentally, cancer is a disease driven, in large part, by excessive and unrestrained cell 

growth, and a number of cell-based studies have demonstrated that the availability of Pi 

influences cell proliferation acting similar to a mitogen. Over four decades ago Pi was 

identified as a limiting nutrient in the proliferation of Swiss 3T3 fibroblast-like cells [99–

101]. Further, contact inhibited 3T3 cells respond to serum stimulation with a rapid increase 

in Pi transport [102–104]. Whereas these studies identified Pi as a required nutrient for cell 

growth, other studies suggest that excess Pi, added to culture medium already sufficient in 

Pi, can actively promote cell proliferation [67–69, 98, 102, 105]. This tight association of 

Pi with cell functions associated with energy metabolism and proliferation has inspired the 

growth rate hypothesis, proposing that tumors, or any fast growing tissue, have an increased 

demand for Pi [88]. However, it should be noted that a number of studies have found an 

increase in apoptosis in certain cell types, including cancer cells, and under certain culture 

conditions, highlighting the complexity of the cellular response to excess Pi [106–111]. 

Whether these complexities and inconsistencies result from specific culture conditions or 

differences in cell types still remains to be determined. Collectively, these results identify 

Pi as a nutrient that when in excess can promote proliferation and transformation but also 

highlight the possibility that Pi consumption can be manipulated to control cell growth, 

particularly in rapidly dividing cells.

2.3. Effects of Pi on cell signaling in cell culture and in vivo

The biochemical mechanisms by which elevated extracellular Pi might alter cell functions 

are also being investigated. Although not fully elucidated, data suggest that increased 

extracellular Pi generates a complex, temporally controlled series of specific signaling 

events likely as specific as those elicited via many traditional signaling molecules. Two 

specific signaling pathways identified as responsive to elevated Pi are the growth related ras-

ERK1/2 pathway [67, 68, 112, 113] and protein translation Akt- eIF4E-BP1 [68] cascades 

(Fig.2). Further, a cell culture study found Pi-induced post-transcriptional regulation 

of the AP-1 factor Fra-1, resulted in increased protein levels [98] demonstrating one 

mechanisms by which Pi might influence protein abundance. Both ERK1/2 and Akt become 

phosphorylated in response to increasing levels of Pi in multiple cell types, and inhibition 

of these proteins by either pharmacological or siRNA knockdown results in elimination 

of downstream Pi-induced effects on gene expression [68, 112]. Specifically, the response 

of the MAPK (ERK) pathway to altered Pi levels has also been identified in drosophila, 

suggesting an evolutionarily conserved mechanism linking ERK1/2 signaling with elevated 

Pi levels [114]. Additional signaling proteins identified as Pi responsive include PKC [112] 

and nitric oxide [115]. These results are also supported by in vivo studies from mice fed 

a high Pi diet for 4 weeks [116], emphasizing the relevance of the cell culture studies to 

mammalian physiology. Taken together, these studies identify an increase in extracellular Pi 

as an initiator of surprisingly specific and conserved signal transduction pathways.

2.4. Pi-induced gene expression correlates with changes in cell behavior

The molecular mechanisms underlying Pi-induced increased proliferation and 

transformation are also currently being investigated. Studies identifying specific genes 
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responsive to elevated extracellular Pi support the idea that changes in extracellular Pi 

could directly and actively alter cell behavior. Many of the original studies on Pi-induced 

changes in cell function focused on calcifying cells such as osteoblasts and vascular 

smooth muscle cells and found the secreted factor osteopontin (OPN) as the first identified 

Pi-responsive gene [70, 112, 117]. Subsequent studies, confirmed and identified elevated 

extracellular Pi as altering gene expression in various cell types, including: osteoblasts 

and cementoblasts [63, 86, 118], keratinocytes [67], vascular smooth muscle [70, 119] 

and bronchial epithelial cells [68] among many others. To date, hundreds of genes have 

been identified that are temporally upregulated or downregulated by varying extracellular 

Pi levels. Consistent across multiple diverse cell types, many of the same genes have 

been identified as Pi-responsive, suggesting conserved regulatory networks. The functions 

of these Pi-responsive genes/proteins generally fall into two categories, regulation of 

calcification or cell proliferation/cancer [98]. Examples of Pi-responsive genes/proteins 

tightly linked to cell proliferation and cancer progression include c-fos (Fos), Egr1 (Ngfi-A, 
Krox24), Cyclin D1 (Ccnd1), Nrf2 (Nfe2l2) and Osteopontin (Spp1), Cox2 (Ptgs2), Fra1 

(Fosl1), among many others [86, 98, 120, 121] (Fig.2). Based on the identification of these 

specific genes a number of transcriptional regulators of the Pi-response have been identified, 

including the activator protein 1 (AP-1) dimers and Egr-1 which have been demonstrated 

to respond to changes in extracellular Pi with rapid post-translational modifications, DNA 

binding, and transcriptional activation [67, 86, 122] (Fig.2). AP-1 is known to regulate 

genes associated with proliferation, differentiation, and apoptosis, and inhibiting activation 

of AP-1 is considered a therapeutic target for cancer prevention [123]. Although the 

accompanying changes in endocrine factors complicates the understanding of the impact of 

serum Pi levels on gene expression in vivo, studies have found increased Pi-responsive genes 

in response to high Pi diets in various tissues [8, 124–126] supporting direct Pi-responsive 

gene expression at least in mice.

2.5. Elevated Pi stimulates OPN in vitro and in vivo

One of the most robust and commonly identified Pi-responsive genes is osteopontin 

(OPN; Spp1, 2ar, eta-1) [117], a circulating cytokine-like factor. Cell culture studies have 

determined that elevated Pi strongly stimulated OPN expression from multiple cell types 

through specific signaling pathways [59, 63, 70, 86, 98, 112, 113, 117, 118, 121, 127–

130] and a high Pi diet has been demonstrated to increase circulating OPN levels in both 

mice and humans [8, 12, 67]. OPN is a particularly interesting Pi-responsive gene as it 

has been linked to neoplastic transformation [131] and overexpression of OPN has been 

intimately associated with cancer progression and metastasis arising from many tissue types 

(reviewed in [132, 133]). OPN can influence changes in cell behavior such as proliferation, 

cell survival, promotion of angiogenesis and can acts as an immune-modulatory factor 

[134–137]. OPN modulates cell function by acting as an endocrine, paracrine, or autocrine 

cytokine (reviewed in [136, 138]) through its ability to bind multiple cell surface receptors, 

such as CD44 and multiple β-integrins pairs [136, 139]. At present, a clear mechanistic role 

for elevated OPN in the context of elevated Pi has not been established, although protection 

against calcification has been suggested as at least one function [140]. Due to the diverse 

functions of OPN, elucidating how Pi-induced OPN influences disease progression will aid 
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in determining if OPN represents a therapeutic target to impinge on Pi-induced changes in 

cell and tissue behavior.

3: Role of Pi consumption in detecting and modulating cancer initiation 

and/or progression

Malignancy is a multistage, complex process often involving both genetic and environmental 

factors [141, 142]. The cell-based studies described above suggest that Pi availability 

might represent an environmental factor that acts to promote tumorigenesis. Nutritional 

intervention represents a cancer prevention opportunity that can be easily manipulated; 

however, insufficient information currently prevents investigators from capitalizing on this 

intriguing opportunity [143]. The possibility that altering the level of a common dietary 

element might alter tumor formation and/or progression would represent a significant 

opportunity to intervene in potentially numerous cancers [144]. Although limited, some 

evidence from both mice and humans supports the notion that Pi represents a dietary and 

serum factor that might influence malignancy [67, 145–147] and therefore a factor that 

might be modulated for therapeutic benefit.

3.1. Dietary and serum Pi and human cancer

To date, information on the possible relationship between consumption and serum Pi 

availability and cancer in humans is limited. A recent twenty-four year follow-up of 

the Health Professionals Study used Cox proportional hazards modeling to assess the 

association between dietary Pi and calcium intake and prostate cancer [146]. The study 

identified a positive correlation between Pi intake and increased risk of poorly differentiated 

and clinically advanced prostate cancer, independent of calcium intake [146]. Additionally, 

the association between serum Pi and risk of cancer was analyzed in a population-

based observational assessment of serum collected under mostly fasting conditions from 

the Swedish Apolipoprotein Mortality Risk (AMORIS) study [147]. Multivariate Cox 

proportional hazard regression analyses found no overall correlation between serum Pi with 

cancer risk, however, a statistical correlation was identified with cancer from specific tissues 

[147]. Increasing serum Pi quartiles in men correlated with increased risk of pancreatic, 

lung, thyroid, bone, and “other” cancers with an association with liver and gallbladder 

cancers only in the highest quartile. In women, high serum Pi correlated with increased risk 

of esophageal, lung, and non-melanoma skin cancers with an association with stomach and 

bone cancers only in the highest quartile [147]. While only associative these studies are 

some of the first to provide a link between dietary Pi intake and serum Pi levels with cancer 

in humans. Future studies focusing specifically on Pi consumption are needed to further 

understand the role of Pi in human cancer initiation and progression, and to design potential 

interventional strategies aimed at limiting Pi intake in at-risk populations.

3.2. Cellular and serum Pi levels as a diagnostic and prognostic marker

Almost a century ago phosphorus, in the form of the isotope 32P, was investigated as a 

diagnostic marker for cancer as tumors exhibited increased 32P uptake relative to healthy 

tissue [148–150]. In addition to cellular uptake, increased serum Pi levels have been 

investigated for the potential to be a negative prognostic cancer marker. One study found 
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that serum Pi and calcium levels were significantly elevated in 50 patients with disseminated 

breast cancer, before endocrine treatment, and without change in renal clearance of tubular 

reabsorption of calcium or of Pi [151]. More recently, an investigation of whether baseline 

Pi serum levels were prognostic in terms of stage and overall patient survival in newly 

diagnosed non-small cell and small cell lung cancer patients (130 patients) found that 

pre-treatment Pi serum levels were elevated outside of the normal range, additionally, serum 

Pi levels were predictive of disease stage, with a significant impact on patient survival [152]. 

A cohort of 110 patients with multiple myeloma, presented with serum Pi levels that were 

evaluated and a multivariate analysis (Cox’s proportional hazards regression model) showed 

that the serum Pi level was a significant negative prognostic factor in this patient population 

[153]. Finally, a retrospective analysis of 1241 colorectal cancer patients was assessed for an 

association of postoperative hyperphosphatemia with overall patient survival and suggested 

that serum Pi levels represent a negative prognostic marker of colorectal cancer patients after 

surgery [154]. Although correlative, these results support a link between the cancerous state 

and increased cellular Pi consumption and serum availability in vivo.

3.3. Influence of dietary Pi consumption on cancer initiation and progression in 
preclinical mouse models

A direct association between dietary Pi consumption and cancer has been provided by two 

different mouse studies. The two-stage skin carcinogenesis model induces papilloma (tumor) 

formation through chemical carcinogen treatment of the skin of mice [155]. This cancer 

model was used in combination with isocaloric diets that contained high Pi (1.2%) or low 

Pi (0.2%) levels, with calcium kept constant at 0.6%. While mouse weight remained stable, 

the mice on the high Pi diet exhibited a corresponding significant increase in serum Pi 

and decrease in serum calcium [67]. Mice on the high Pi diet developed twice as many 

papillomas as mice fed the low Pi diet, and these papillomas developed at an earlier time 

point (initiation) and were initially larger (progression) [67]. High Pi diet mice also had 

significantly elevated serum PTH and OPN levels suggesting an additional mechanism by 

which Pi consumption might influence tumorigenesis. A second pre-clinical cancer model 

that represents an example of oncogene driven tumorigenesis is the KrasLA1 model of 

spontaneous lung cancer [156]. KrasLA1 mice were fed a diet with normal Pi levels (0.5%) 

or high Pi diet (1.0%) for 4 weeks [145] resulting in a corresponding increase in serum Pi 

in the high Pi diet fed mice. Pathohistological analyses of the lungs revealed a significant 

increase in the total number of tumors including both small (<1.5mm diameter) and large 

tumors (>1.5mm) as well as proliferation index (as indicated by PCNA staining). These 

data suggest that the high Pi diet influenced both tumor initiation and tumor growth and 

progression [145]. Interestingly, the same KrasLA1 mouse model was used with a very low 

Pi diet (0.1%) and identified an increase in lung tumor number relative to the control Pi diet 

(0.5%) [157]. The results suggest the possibility of a U-shaped safety curve regarding Pi 

intake versus risk of tumorigenesis in the presence of an activating oncogenic mutation.
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4: How tumor cells might increase systemic Pi availability: novel 

prevention strategies?

Throughout this review, we present the hypothesis that due to the importance and necessity 

of Pi for many critical cell functions, a rapidly growing tumor mass will require additional 

nutrients, with Pi being one of the most important. This hypothesis is supported by a 

recent study in which electron paramagnetic resonance was used to non-invasively assess the 

chemical nature of the tumor microenvironment in vivo [75]. The most dramatic differences 

in tumors vs. non-malignant tissues, were observed with interstitial Pi levels, more so than 

hypoxic or acidic regions. Interstitial Pi represented the only parameter in this study that 

also allowed for discrimination between non-metastatic and highly metastatic tumors [75]. 

Another recent study found Pi levels three times greater in the cyst fluid from malignant 

brain tumors than in cerebrospinal fluid [158]. So, if cancerous cells require additional 

Pi how can a rapidly expanding tumor cell population obtain additional Pi and what 

are the potential avenues of therapeutic intervention? We propose four distinct, although 

not mutually exclusive, means by which a cancerous cell and a growing tumor mass 

could obtain additional Pi (Fig.3): 1) indirectly, through increased systemic levels, most 

likely from diet, 2) actively, by the generation of free Pi in the microenvironment and/or 

autocrine/paracrine stimulated transport, 3) directly, by cell autonomous transport mediated 

by increased transporter membrane abundance, or 4) actively, by the generation of increased 

blood flow to supply nutrients such as Pi.

4.1. Dietary Pi consumption and absorption: a prevention or therapeutic opportunity

The results from preclinical mouse studies suggest the intriguing possibility that 

manipulating Pi intake might represent a novel strategy to either reduce the likelihood of 

cancer initiation or slowing tumor progression as a growing tumor might acquire needed 

Pi through elevated serum levels (Fig.3). As noted above, many Western-style diets are 

high in Pi which could lead to a transient increase in serum Pi or a long-term sustained 

increase that could be utilized by an initiated cell or growing tumor. The current dietary 

recommended allowance for Pi is 700mg/d; the typical American adult consumes 1200–

1500 mg/d with the 90th percentile at ~2500 mg/d [3, 39, 159]. These calculations are likely 

underestimated [160] as nutrient composition databases do not fully account for Pi as a 

food additive [3, 161]. In fact, a diet high in processed foods, such as convenience and fast 

foods, has been estimated to more than double Pi daily intake [162]. Compounding the high 

overall daily intake, Pi from highly processed foods is often in the form of inorganic salts, 

which are more efficiently absorbed than naturally occurring phosphates that can require 

enzymatic digestion (80–100% vs. 40–60%, respectively). Importantly, these diets often do 

not have the corresponding increase in calcium (Ca) which is observed with a diet high 

in dairy for example. In addition to managing Pi intake through dietary considerations, 

Pi absorption might also be therapeutically targeted. Pi transport occurs in the small 

intestine through transcellular transport, which is mainly handled by the Slc34a2 transporter 

[163]. Importantly, paracellular transport also contributes significantly to absorption [164]; 

therefore, attempts to specifically target individual Pi-transporters in the digestive tract 

may prove difficult. However, Pi-binders, such as sevelamer and lanthanum carbonate are 

currently being clinically used to reduce absorption and lower serum Pi levels in chronic 
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kidney disease patients [165] and two investigational drugs, Tenapanor, which reduces Pi 

absorption by inhibiting the intestinal sodium/hydrogen exchanger 3 [166], and EOS789, a 

pan-Pi transport inhibitor [167], could represent a novel approach to lower Pi serum levels in 

the context of cancer prevention or treatment.

4.2. Generation of free Pi in the microenvironment

In addition to acquiring Pi from the circulation, we speculate that tumor cells might 

also evolve the means to actively generate free Pi in the microenvironment. (Fig.3). Two 

possibilities include: i) an increase in levels of a Pi generating ectoenzyme, and ii) the 

necrosis of intratumoral or surrounding cells and subsequent release of intracellular Pi. 

Circulating levels of the ectoenzyme ALP, both TNAP and placental, have been studied 

and utilized as prognostic markers that correlate with various cancers and possibly relate to 

bone metastasis [76, 77]. In addition to serum levels, ALP has also been found expressed 

by tumor cells of various origins [78, 79] suggestive of an active generation, however, 

functional evidence for these enzymes in cancer initiation or progression has not been 

reported. A recent review of the literature has also linked the increased expression of 

ecto-nucleotidases and ecto-phosphatases to the possible generation of increased free Pi 

in the tumor microenvironment [168]. Another possible source of Pi for a growing tumor 

mass could be the adjacent non-malignant tissue or cells within the growing tumor mass. 

Cells contain a substantial amount of Pi and during necrosis or tumor lysis [169–171], 

this Pi would be released into the local microenvironment producing a substantial pool 

to be utilized by a growing tumor. Currently, these mechanisms for tumor Pi acquisition 

are mostly speculative and therefore the therapeutic value of targeting Pi in the tumor 

microenvironment remains essentially unknown.

4.3. Increased expression/abundance of Pi transporters; Slc34a2 and Slc20a1

To date, two particular Pi-transporters have been linked to proliferation and cancerous cells: 

Slc34a2 and Slc20a1. The type-II co-transporter, Slc34a2 (NAPI-IIb, NaPi-3b, NPTIIb) 

has a more limited tissue expression profile than other Pi-transporters, and RNA/protein 

is expressed at high levels mainly in lung, seminal vesicles, and female genital tract. 

Overexpression of Slc34a2 has been linked to cancer in humans in ovarian cancer [172, 

173], papillary thyroid cancers [174] and breast cancer samples [175]. Slc34a2 has also 

recently been demonstrated as necessary for tumor cell growth from various cancers [176–

181]. Knockdown of Slc34a2 in the lungs of KrasLA1 mice resulted in suppressed lung 

cancer growth, and decreased cancer cell proliferation and angiogenesis while increasing 

apoptosis [182]. Increased expression of RNA and protein levels of Slc34a2 have been 

identified in the lungs of mice consuming a high Pi diet [116, 145], as well as increased 

expression in human lung cancer cells exposed to elevated Pi in vitro [68]. Likewise, 

functional studies have identified the requirement specifically of Slc20a1 (Pit-1, Glvr-1) 

for Pi-induced changes in cell behavior including proliferation, transformation and tumor 

growth both in cell culture and a xenograft mouse model [113, 183–187]. Interestingly, some 

studies suggest that the effect on cell proliferation is independent from its transport function. 

Gene expression profiling studies in human cancer cells have identified Slc20a1 as more 

highly expressed in a number of tumor types [188–190] and high levels were associated 

with poor 10-year survival rate in estrogen receptor-positive breast cancer [191]. Taken 
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together, growing evidence does support an association between increased abundance of 

Pi-transporters and tumorigenesis (Fig.3) which generates the question; can Pi transport at 

the cell membrane level be therapeutically targeted. At least one broad Pi-transport inhibitor 

has been identified that is used clinically as an antiviral, the pyrophosphate analog Foscavir 

(Foscarnet, phosphonoformic acid). However, it is a relatively weak inhibitor, at least for 

intestinal Pi absorption and requires levels that could cause nephrotoxicity. A Slc34a2 

inhibitor, ASP3325 was recently reported to provide no reduction in serum Pi when given 

orally with the goal of reduced Pi absorption [192] although targeting Pi transport in a tumor 

might represent a different scenario. Collectively, these results identify at least two specific 

Pi-transporters as possible cancer therapeutic targets although challenges of off-target effects 

particularly on the intestine and kidney, if given systemically would need to be addressed 

and overcome.

4.4. Effects of Pi on angiogenesis

A primary mechanism by which rapidly expanding tumors acquire additional nutrients 

and oxygen is through a new or expanded blood supply which can be achieved by 

neovascularization and/or angiogenesis. This might represent an additional means whereby 

a tumor could obtain additional Pi. To better understand the mechanism(s) by which a high 

Pi environment might alter cancer progression, a recent study utilized lung and breast cancer 

cell lines in combination with the human umbilical vascular endothelial cell (HUVEC) 

vessel formation model. Exposure of cancer cells to elevated Pi stimulated expression of 

the transcription factor FOXC2 and OPN, and conditioned medium from the Pi-stimulated 

cancer cells stimulated migration and tube formation in the HUVEC model. Mechanistically, 

the requirement of FOXC2 for Pi-induced OPN expression and secretion from cancer cells 

was identified as necessary for the angiogenic response [121]. These results identify an 

additional mechanism by which Pi availability and Pi-responsive factors might influence 

the process of cancer progression and increase the Pi supply to a growing tumor (Fig.3). 

In regard to therapeutically inhibiting this process, OPN is being investigated for targeting 

with antibody neutralization strategies with limited success [193] possibly because the 

high circulating levels and whether OPN could be targeted specifically in the tumor 

microenvironment remains to be determined.

5: Conclusions and Future Directions

Here we have presented evidence supporting Pi consumption, both at the systemic and 

cellular level, as a possible driver of various stages of malignancy and as such a novel 

therapeutic target for the possible prevention, control and/or treatment of cancer. Although 

speculative at times, we have also described various mechanisms by which tumors might 

acquire Pi but also how these processes might be therapeutically targeted including; 1) 

reduced dietary Pi intake, 2) inhibition of Pi absorption in the intestine, 3) inhibition of 

Pi generation in the tumor microenvironment, 4) targeting Pi transporters at the tumor cell 

surface, and 5) neutralization of Pi-induced tumor secreted paracrine factors that generate 

new sources of Pi, such as OPN (Fig.3). Although these strategies present therapeutic 

challenges, the novel idea that Pi acts as an important systemic signaling molecule capable 

of altering cell behavior through the regulation of signaling pathways and gene expression 
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provides a unique and potentially powerful target for the development of cancer prevention 

and therapeutic interventional strategies. Therefore, even with the challenges described 

above, defining how Pi availability through either dietary consumption or generation within 

the microenvironment influences cell metabolism, systemic energy metabolism, and cell 

behavior will provide valuable future information about long-term health and disease 

initiation.

Many key issues and challenges still need to be addressed regarding a possible role of Pi 

in tumorigenesis and cancer progression, and in defining its value as a therapeutic target. 1) 

There is substantial and growing evidence from cell-based studies suggesting that increased 

Pi availability alters cell behavior towards increased proliferation and a more tumorigenic 

phenotype; however, whether this translates to the in vivo environment has not been fully 

established. This may be complicated by the complexities of nutrition in which the presence 

or absence of other nutrients might significantly alter the cellular or systemic response to Pi, 

a challenge associated with most diet and cancer studies [194]. Further, cancer often requires 

decades to develop. Therefore, maintaining a specific diet in humans for extended periods of 

time is both challenging and difficult to correlate with a lifestyle choice that might change 

with age or geographic location. 2) A challenge with targeting cellular Pi consumption is 

associated with defining an appropriate therapeutic window. Can cellular Pi metabolism 

be therapeutically targeted without disrupting the Pi metabolism of healthy cells? If cells 

require additional Pi, is that requirement at a level that is sufficiently different from baseline 

needs to generate a therapeutic window of opportunity? Pi is necessary for certain cell 

functions and therefore targeting Pi therapeutically produces a number of obstacles mainly 

surrounding possible off-target effects on healthy cells as well as Pi homeostasis regulated 

by Pi-transporters in the intestine and kidney. Although we have focused mostly on excess 

Pi in this review, it should be noted that a low Pi environment might also generate a more 

cancerous phenotype by putting selective survival pressure on cells to seek Pi, although this 

has yet to be investigated. 3) Finally, one challenge associated with correlating mouse and 

human data is that most serum from mice is collected from ad lib feeding; whereas, the vast 

majority of human serum is collected under fasting conditions. Do these different conditions 

affect serum Pi levels in the context of normal renal function, or levels of Pi-responsive 

circulating factors?

The effects of high Pi consumption on health and disease, in the context of normal 

renal function, have only begun to be investigated. A comprehensive understanding of 

the common dietary element Pi in regulating cell behavior both in the healthy state and 

in response to challenges represents multiple significant interventional opportunities to 

alter the initiation, promotion, and/or progression of various age-related diseases, such 

as osteoporosis, cardiovascular disease and cancer. If a low Pi diet is to be used, future 

studies will be required to determine the lower limits for adult human consumption before 

negative health consequences become a complication. In the coming age of personalized 

medicine, a more complete understanding of how individual dietary components influence 

cells and tissues will greatly improve our ability to manipulate diet for health benefits as 

well as enhance existing therapies. The idea that dietary Pi could be manipulated for health 

benefits represents an attractive future novel strategy for influencing disease initiation and 

progression.
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Figure 1: Regulation of serum Pi levels.
In response to a high Pi diet serum Pi levels increase along with FGF23, expressed in 

osteoblasts and osteocytes, while PTH is increased in the parathyroid gland. Both proteins 

act on receptors in the kidney to reduce the number of Pi-transporters thereby increasing 

Pi excretion and lowering serum Pi levels. Simultaneously, the synthesis of vitamin D3 is 

decreased in the kidney which is thought to decrease Pi absorption in the gut and to generate 

a negative feedback loop to decrease synthesis and release of PTH and FGF23.
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Figure 2: Effects of increased Pi availability on cellular signaling.
Cell-based studies have identified specific membrane and signaling events associated with 

increased extracellular Pi availability including the coordinated requirement of sodium 

dependent Pi-transporters/sensors as well as FGF receptor signaling. Downstream signaling 

proteins include the FGF receptor associated factor FRS2, as well as N-ras, c-raf, Mek 

and ERK1/2, leading to activation of transcription factors such as AP-1, Srf, Nrf2, and 

Egr-1 and expression of genes associated with cell growth and metabolism. A second 

pathway identified as Pi-responsive includes Akt, ERK1/2, Mnk ultimately resulting in the 

regulation of eIF4E-BP1, a key component of the protein translation machinery. A third 

Pi-stimulated and required cellular event is changes in energy metabolism including an 

increase in oxidative phosphorylation. Stimulation of these pathways have been identified 
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in varying cell types in response to elevated extracellular Pi. Inhibitor studies suggest that 

the three pathways are required for different aspects of the Pi-induced alterations in cell 

functions related to altered gene expression, increased proliferation and metabolism, and 

angiogenesis.
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Figure 3: Possible mechanism by which a growing tumor might acquire Pi.
1) Pi might be acquired through increased serum Pi levels subsequent to a high Pi meal or 

sustained high Pi diet. 2) Pi from the tumor microenvironment could be obtained through 

the actions of ectoenzymes such as alkaline phosphatase, to generate an increase in local Pi, 

and through the necrosis of surrounding tissue and intratumoral cells which would release 

cellular contents including substantial Pi. 3) Increased transport of Pi into the cell could 

be accomplished by an increase in Pi-transporter abundance or increased transport kinetics 

stimulated by autocrine/paracrine factors. 4) The growing tumor might acquire additional 

sources of Pi through increased blood flow by neovascularization/angiogenesis.
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