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ABSTRACT: Insulin is a therapeutically relevant molecule with
use in treating diabetes patients. Unfortunately, it undergoes a
range of untoward and often unpredictable physical trans-
formations due to alterations in its biochemical environment,
including pH, ionic strength, temperature, agitation, and exposure
to hydrophobic surfaces. The transformations are prevalent in its
physiologically active monomeric form, while the zinc cation-
coordinated hexamer, although physiologically inactive, is stable
and less susceptible to fibrillation. The resultant molecular
reconfiguration, including unfolding, misfolding, and hydrophobic
interactions, often results in agglomeration, amyloid fibrillogenesis,
and precipitation. As a result, a part of the dose is lost, causing a
compromised therapeutic efficacy. Besides, the amyloid fibrils form insoluble deposits, trigger immunologic reactions, and harbor
cytotoxic potential. The physical transformations also hold back a successful translation of non-parenteral insulin formulations, in
addition to challenges related to encapsulation, chemical modification, purification, storage, and dosing. This review revisits the
mechanisms and challenges that drive such physical transformations in insulin, with an emphasis on the observed amyloid fibrillation,
and presents a critique of the current amelioration strategies before prioritizing some future research objectives.
KEYWORDS: diabetes, insulin monomer, insulin hexamer, physical transformation, protein unfolding, protein agglomeration,
amyloid degeneration, fibrillogenesis, hydrophobic interactions, translation

Modern society is suffering from a surge of diabetes cases
due to sedentary habits, consumption of unhealthy food

with plenty of empty calories, underlying hypertension,
obesity, smoking, and genetic predisposition.1,2 The silent
pandemic of diabetes is now affecting all age groups while
causing diseases such as diabetic retinopathy (Figure 1B),
nephropathy, foot ulcers (Figure 1C), cardiovascular manifes-
tations (e.g., stroke), and neuropathy.3 Emerging data have
also linked diabetes with dementia.4 An estimated ∼10% of the
global population is now affected by diabetes while under
regular monitoring of capillary blood glucose (Figure 1D),5

while the mortality and morbidity due to diabetes have put the
healthcare sector under stress.
Diabetes caused 4.2 million deaths worldwide in 20195 and

emerged as the seventh leading cause of death.6 Such a
deteriorating landscape has naturally made insulin a therapeuti-
cally relevant biomacromolecule (Figure 1A). It is even more
pertinent now as the global research community celebrates the
centenary year of the discovery of insulin by the Canadian
researchers Frederick Banting, Charles Best, John Macleod,
and James Collip.7,8 It is also fair to recognize the seminal prior
work by the Romanian physiologist Nicolae Paulescu that
contributed to the discovery.9 Later, insulin became the first
protein to be fully sequenced by Frederick Sanger (Nobel Prize

in Chemistry, 1958). Unfortunately, the medical community is
still searching for enteral formulations of insulin despite the
advent of advanced delivery systems, including subcutaneous
injections via pen (Figure 1E,F).
Injectable formulations of insulin, despite precise dosing,

suffer from drawbacks like poor patient compliance and,
important in the context of this review, the formation of
amyloid fibrils10 that cause amyloidosis at the injection sites,
noted commonly in Type II diabetes patients. Such amyloid
fibrillation of insulin was reported as early as 1928,11,12 and is
often noted as a subcutaneous lump with an immune response.
The amyloid fibrillation also curtails the yield after purification
in vitro.
Additionally, amyloid fibrils may result in poor dosing and

hindrance to parenteral delivery. Although not reported in
humans, insulin amyloidosis in the islets of the pancreas
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causing diabetes has been noted in the rodent degu (Octodon
degus),13 found in Chile. Published reports have cautioned
against the cytotoxic potential of amyloid insulin agglomerates
due to oxidative stress caused by reactive oxygen species.14,15

Furthermore, an autoimmune response toward insulin fibrils
has been linked with Parkinson’s disease.16

Such a tendency toward amyloid degeneration and
formation of fibrils in vitro is also noticed when insulin is
subjected to physicochemical alterations (e.g., fluctuations in
pH, temperature, ionic strength), stirring/agitation, or
exposure to hydrophobic surfaces (e.g., Teflon, polystyrene)
due to a loss of secondary backbone.17,18 Insulin even elicits

Figure 1. Overview of the insulin molecule, its delivery platforms, and complications associated with diabetes. (A) Insulin is released into the
bloodstream from the β-cells of the pancreatic islets of Langerhans. (B) Lateral and anteroposterior ocular view in a case of diabetic retinopathy.
(C) Foot ulcer found in diabetic patients. (D) Capillary blood glucose measurement (glycosimetry). (E, F) Insulin administration by (E) insulin
pen and (F) subcutaneous injection.

Figure 2. Human insulin molecule with its two polypeptide chains (A and B). The two interchain disulfide bonds (A7−B7, A20−B19) and one
intrachain disulfide bond (A6−A11) are also shown. The darkened residues remain conserved across all the species. In porcine insulin, alanine
replaces threonine (B30), whereas in bovine insulin, in addition to the substitution in porcine insulin, two additional substitutions are noted:
alanine for threonine (A8) and valine for isoleucine (A10). The residues that help dimerization and hexamerization are marked with “D” and “H”,
respectively.
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such degeneration after coming in contact with infusion
apparatus, implantable pumps, and injectable pens.19 The
insulin amyloid, although not an in vivo deposit in a strict
sense, demonstrates a β-pleated structure, enhanced emission
with a characteristic right shift with thioflavin-T (Th-T)
fluorescence, and apple-green birefringence under polarized
light upon staining with Congo Red dye.20

The physical transformation of insulin impacts its
therapeutic strategy in the following ways: (i) it renders the
dose, in full or partially, inactive or with a compromised
physiological activity that is undesirable in diabetes patients;
(ii) it is difficult, if not impossible, to model or predict such
amyloid degeneration, which in turn aggravates the challenge
of dose calculation; (iii) therapeutically it becomes difficult to
access other routes of administration, including oral, nasal, or
long-acting depot formulations, where encapsulated insulin
formulations may address certain challenges, such as offering
protection from an acidic (pH 2−3) gastric environment
during oral delivery.
This discourse shall revisit the existing knowledge on such

physical alterations of insulin with an emphasis on its
molecular mechanisms, various factors that trigger such
transformations, the ways to investigate the phenomena, and
finally, the available strategies to mitigate them. The account
will appreciate how such preventive measures can be
incorporated within the existing therapeutic paradigms with
anticipated challenges and prioritize strategies that can
enhance the impact of existing insulin-based therapeutics
with a fruitful translation.

1. THE INSULIN MOLECULE
Insulin (C257H383N65O77S6) is a globular protein and harbors a
helical structure composed of A (21 amino acids) and B (30
amino acids) polypeptide chains (Figure 2).21 These chains are
held together by two interchain disulfide linkages formed
between the cysteine residues of A7−B7 and A20−B19.22 The
molecular weight of an insulin molecule is 5808 Da.23 The A-
chain has an intramolecular disulfide bond (A6−A11) and two
antiparallel α-helices (A1−A8 and A12−A20), whereas the B-
chain contains one such α-helix (B9−B19) flanked by dual
turns and a flexible terminal (B21−B30).24
In humans, insulin is stored in the pancreas as an inactive

and symmetric hexamer (∼36 000 Da) held together by two
Zn2+ cations at the center of symmetry, surrounded by three
molecules of water and six histidine residues (B10).25 Whereas
the A-chain and helical segment of B9−B19 are stable, the
regions of B1−B8 and B25−B30 are more flexible and
vulnerable to manipulation. For example, adding phenol or
its derivatives (e.g., m-cresol, resorcinol) in an insulin
suspension introduces an extra helix at B1−B8 with ∼25 Å
displacement of the phenylalanine (B1) residue (Figure 3).26

The hexameric insulin has two major conformational isomeric
forms: the T6 isomer is produced by Zn2+ ions, and the R6
isomer is produced in the presence of both Zn2+ ions and
phenolic compounds. The R6 isomer is thermoenergetically
more stable than the T6 one (Figure 3).27,28

The INS gene of the pancreatic β-cells regulates the
secretion of inactive pre-proinsulin (110 amino acids) that
consists of a signal peptide connected to the A-, B-, and C-
chains.29 Later, the signal peptide is cleaved in the rough
endoplasmic reticulum by the signal peptidase enzyme, while
the A- and B-chains remain connected by the C-chain, forming
the proinsulin.30,31 As the proinsulin molecule folds, the A- and

B-chains are connected by three disulfide linkages. However,
the C-peptide is later cleaved by the endoprotease enzymes in
the Golgi apparatus, and the cleaved C-peptide is then excreted
in the urine.32 The remaining A- and B-chains�packed within
the secretory vesicles in the Golgi apparatus�are subsequently
processed by the proinsulin convertase and carboxypeptidase E
enzymes that reduce the interchain disulfide bonds from three
to two and activate the hormone as a monomer.33 The
pancreas stores the molecule as a hexamer due to its enhanced
stability.
The cavity inside an insulin hexamer (35 × 50 Å2) is

spatially confined with a cross-section of 1.1 nm.34 The
distance between the two Zn2+ cations is ∼1.4 nm, while the
nanocavity is hydrophilic due to the glutamic acid (B13) and
histidine (B30) residues, and holds 10 water molecules.
Emerging data based on computer simulations, quantum
calculations, and X-ray crystallography suggest that these
confined water molecules contribute toward stabilization of the
hexameric state by providing a dynamic interior while forming
a robust network of hydrogen bonds with the nearby
residues.35

A hydrophobic domain due to amino acids, such as
phenylalanine, facilitates insulin dimerization, often by π−π
interactions. It is worth noting that the free energy of
formation for an insulin dimer and hexamer is −11.9 kcal
mol−1 and −26 kcal mol−1, respectively.36 With an increase in
blood sugar levels, the pancreatic β-cells release the hexamers
into the blood, followed by their rapid dissociation into a
dimer and, finally, the physiologically active monomer.
Interestingly, while the inactive and torus-shaped hexameric
form of insulin is rather stable, the active monomeric form is
not. It only exists at a low concentration (≤0.6 μg/mL)37 and
is fibrillogenic. The polymorphic amyloid fibrils bear a cross-β
motif and are formed by the successive stages of oligomeriza-
tion, nucleation, and growth.

Figure 3. Thermoenergetic profile of insulin oligomers. Although
physiologically active, the monomer (PDB: 3I40) is most unstable
and quickly forms relatively stable dimers (PDB: 6S34). In the
presence of Zn2+, the monomers gradually form the T6 hexamer
(PDB: 1MSO), while adding both Zn2+ and m-cresol produces an
even more stable R6 hexamer (PDB: 1EV6) bearing two extra
chloride ions.
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2. OLIGOMERIZATION OF INSULIN MOLECULES
Insulin molecules, when subjected to a variation of pH,
temperature, or ionic strength, dealt with shaking/agitation, or
mixed with organic co-solvents, are known to self-associate
into oligomers as dimers, tetramers, or hexamers.38 Whether
these partially unfolded oligomers contribute to fibrillogenesis
remains an unsettled issue, although the current consensus is
that they are hallmarks of the pre-fibrillar phase.39 Inves-
tigations based on X-ray crystallography, circular dichroism,
and nuclear magnetic resonance have revealed that such
(partially) unfolded monomers and dimers retain their native
α-helix structure with an increase in both the random coils and
flexibility of the chain termini. However, they lack any
significant β-sheet structure due to a delayed α→β
conversion.40

The isoelectric point of human insulin is 5.4,41 and the net
charge of an insulin molecule varies depending on the pH. For
example, the charges of an insulin monomer at pH values of <2
and 7.5 are +6 and −3, respectively.42 Insulin can thus be
precipitated by setting the pH of its suspension within a range
of 4.5−6.5. The role of acidic pH in triggering insulin
fibrillation is important from a delivery perspective, for
example, in infusion pumps, where the pH may fall due to a
mixing of carbon dioxide and leached substances from the
tubing.43 Moreover, it also creates challenges while storing
insulin, where preservatives like methylparaben gradually
hydrolyze into p-hydroxybenzoic acid.44

Other than pH, co-solvents are also known to influence
insulin oligomerization. For example, in the presence of 20%
(w/w) ethanol and acetic acid, insulin continues to sustain its
monomeric form even at pH 2 and up to a concentration of 3
mg/mL (∼75 IU/mL).45 On the other hand, divalent cations,
such as the Ca2+ and Zn2+, catalyze the formation of hexamers
by imparting stability. Thus, in the presence of zinc, insulin
hexamers start forming already at 0.6 mg/mL (∼15 IU/mL).46
On the contrary, without zinc, they form only at higher
concentrations of ≥12 mg/mL (∼300 IU/mL).37
Fibrillar insulin comprises partially unfolded monomers,

while a complete unfolding results in amorphous precipitates.
Interestingly, unlike many other proteins, insulin is relatively
thermoresistant and does not precipitate at temperatures as
high as 100−140 °C.47 However, the effect of temperature on
insulin fibrillation is often unpredictable and a culmination of a
gamut of factors. For example, shear stress induces rapid
fibrillogenesis in neutral insulin suspensions that are otherwise
stable up to 60 °C.48
Crystallinity also plays a role in the thermosensitivity of

insulin. While crystalline insulin in a suspension can tolerate
higher temperatures, amorphous insulin is more vulnerable to
temperature-induced fibrillation.49 Insulin also exhibits ag-
glomeration when frozen, and upon thawing, the reconstituted
suspension carries lumps and deamidated hydrolyzed products
in acidic suspensions.50 In the presence of excess Zn2+,
especially at a neutral or alkaline pH, insulin hexamers
precipitate as crystals of various shapes, for example, cubic,51

tetrahedral,52 and rhombohedral.53 Both the monomeric and
dimeric insulin have been crystallized.

3. AMYLOID DEGENERATION OF INSULIN
The kinetics of insulin fibrillation has been investigated by
various techniques, such as dynamic light scattering, small-
angle X-ray scattering (SAXS), small-angle neutron scattering,

atomic force microscopy (AFM), and Th-T fluorescence. The
cumulative data have elicited that insulin fibrillation begins
with a lag phase when no fibril is visible.54 The process
gradually progresses toward a faster elongation/growth phase,
followed by an equilibrium when the relative ratio between
insulin monomers and fibril remains static.
Investigations based on Th-T fluorescence have revealed

that, depending on physicochemical conditions, the sequence
of lag, growth, and equilibrium phases demonstrates sigmoidal
or double-sigmoidal kinetics (Figure 4).55 The agglomeration

of unfolded insulin monomers is known to be energetically
favorable. Hydrophobic interactions, van der Waals and
electrostatic forces, hydrogen bonding, and solvation effects
influence such agglomeration.56

4. A MECHANISTIC OVERVIEW OF INSULIN
FIBRILLOGENESIS

The mechanism of insulin fibril formation remains an unsettled
issue, although the major consensus favors a nucleation-driven
polymerization model.57 Such a mechanism proposes the
formation of an unstable nucleus that provides a template for
further addition of monomers, resulting in an extension of the
fibrils.58 These primary nuclei are minuscule and comprise
insulin dimers, trimers, or tetramers. The formation of such
nuclei depends on a critical protein concentration59 and is able
to skip the lag phase through less understood molecular
interactions. However, adding insulin to the solution
establishes a lag phase. A major drawback of such a
nucleation-driven mechanism is its inability to explain the
sigmoidal kinetics of fibrillation; instead, it depicts a parabolic
curve.
Thus, rather than a primary nucleation-driven mechanism,

the formation of secondary nuclei was proposed.60 It is a
heterogeneous nucleation process where the fibrillation
continues due to a range of processes, including fragmentation
and branching, where nucleation to form new fibrils begins at
the surfaces of already existing fibers. Time-lapse AFM studies
have supported such a secondary nucleation model. It can
explain the lag phase and sigmoidal nature of fibrillation in
conjunction with the observed kinetics under pre-defined and
confined reaction conditions.61

Figure 4. Sigmoidal (black) and double-sigmoidal (red) kinetics of
insulin fibrillation passing through the lag, growth, and equilibrium
phases�as determined by Th-T fluorescence.
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An intriguing observation is that insulin fibrillation becomes
largely independent of concentration after a certain threshold
(∼5 mg/mL).62 This finding indicates that the process follows
a concentration-dependent nucleation mechanism where the
formed nuclei keep gaining stability after a certain concen-
tration. As a result, the existence of monomers in isolation
becomes energetically untenable, and the fibrillation accel-
erates. Although such concentration-dependent nucleation has
received endorsement from SAXS investigations, it still fails to
explain the characteristic sigmoidal curve noticed during
insulin fibrillation.
Perhaps there is no single mechanism that explains all the

observations adequately. Some have even proposed an
irreversible downhill polymerization63 that, instead of a
nucleation-driven approach, follows a mechanism where the
dissociation of insulin molecules into monomers is the rate-
limiting step. Here, the monomers denote a higher energy state
that pushes the equilibrium toward fibrils.
The role of insulin oligomers during insulin fibrillogenesis

remains controversial. The oligomers vary widely in size: from
a small globular geometry of 125 Å diameter to elongated
forms of 200 Å to 1 μm.64 Some of them demonstrate a height
commensurate to the insulin fibers, supporting the notion that

such oligomeric species participate in fibrillogenesis. Inves-
tigations based on SAXS have demonstrated that, under an
acidic condition with a mildly raised temperature, smaller
oligomeric insulin facilitates the formation of mature insulin
fibers in a concentration-dependent manner.62 Moreover, the
helical shape of such oligomers renders them tailor-made for
integration into the insulin fibers. The obtained data suggest
the incorporation of such oligomers into insulin protofila-
ments65 with a probable role in fiber elongation. These smaller
oligomers demonstrated a lack of native structure and a
prevalence of β-sheets. The amyloid fibrils are insoluble in
aqueous solvents and mineral acids. However, some reports
indicate they dissolve and even renature under alkaline
conditions (pH ≥ 11).66

5. MORPHOLOGY OF THE INSULIN FIBERS
Insulin amyloid fibrils are known to demonstrate varied
morphology and arrangements under the influence of
fluctuating pH, ionic strength, and temperature. Investigations
with X-ray crystallography, SAXS, AFM, and cryo-electron
microscopy have provided valuable insights into the topic. A
mature insulin amyloid fibril is often helical (left-handed),67

unbranched, and ∼100 Å in diameter,68 while its length may be

Figure 5. Successive stages of development in insulin oligomers: protofilaments, protofibrils, and fibrils. (A) Side and top views of an intertwined
conglomeration of eight helical insulin oligomers (color scale: purple → red → light yellow) that form a protofilament. The gray segments at the
open ends mark additional precursors. (B) Two intertwined protofilaments form a protofibril of 100 Å diameter. The orange ellipse shows the
boundaries of an assembled protofibril. (C) Three protofibrils (orange, red, and yellow) interweave to form a mature insulin amyloid fibril. Both
the side and frontal views are shown here. Reproduced from ref 62 under an open access Creative Commons License.
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up to a few μm (Figure 5).69 Such fibrils are composed of
shorter units called protof ilaments (length ∼40 Å, width ∼30
Å) composed of β-sheet polypeptide chains oriented
perpendicularly to the fiber.68 It is thought that a cross-β
spine is situated at the core of fibrils.70

Typically, 2−8 protofilaments form an individual fibril, and
depending on the biochemical environment, it can be twisted
or flat ribbon-shaped.71 The width of individual fiber bundles
varies between 600 and 1000 Å, and the distance between
crossovers in a fibril composed of two, four, and six helically
twisted protofilaments is 525 Å, 355 Å, and 426 Å,
respectively.68 Point mutations also impact insulin fibrillation.
Hence, unlike the bovine insulin, where the amyloid fibrils
demonstrate a helical arrangement, Asp(B10)-mutated human
insulin under acidic conditions (0.1 M hydrochloric acid)
forms laterally aggregated fibrils arranged in parallel bundles.72

Besides fibers, globular/spherical73 and circular agglomerates
of insulin are also reported.74

The spherical insulin agglomerates are up to 50 μm in size
and harbor a condensed core wrapped within a cloak of
fibers.73 On the other hand, circular agglomerates develop
under high-pressure conditions with diameters between 340
and 420 nm.74 The bovine insulin exhibits more fibrillation
than the human and porcine ones due to the presence of
hydrophobic alanine at the A8 position on the hexamer surface
instead of the hydrophilic threonine in human and porcine
insulin.
Due to a lack of imaging platforms that offer an atomic-level

resolution, our knowledge of the molecular mechanisms of
insulin fibrillogenesis remains nascent. Studies based on
Fourier-transform infrared spectroscopy, circular dichroism,
X-ray diffraction, and Raman spectroscopy have confirmed the
gain in the β-sheet content in exchange for a loss in α-helices
during insulin unfolding.68 Both the A- and B-chains
contribute to fibrillation.
Cleaving the B-chain’s C-terminal accelerates fibrillogenesis.

A repositioning of the hydrophobic moieties in an insulin
monomer, viz., isoleucine at A2, leucine at B11, and leucine at
B15�that are otherwise buried inside the monomer�by
displacing the C-terminal of the B-chain might explain such a
finding. Moreover, it also clarifies why insulin fibrillation is
largely absent in proinsulin75 and mini-proinsulin,76 where the
C-terminal of the B-chain is linked with the −NH3

+ groups of
the A-chain, thus restricting its mobility.

6. PREVENTIVE MEASURES
The strategies for discouraging amyloid degeneration of insulin
primarily rely on stabilizing the hexameric form and limiting
the hydrophobic interactions. A common way to reinforce the
hexameric form in a suspension of both short-acting (e.g.,
Actrapid, Humulin) and long-acting (Humalog) insulin is to
mix zinc77 and phenolic compounds78 at a neutral pH (Figure
6). Conjugation of myristic acid to the lysine residue at the
B29 position (e.g., Levemir) not only increases the plasma half-
life of the formulation but also imparts stability by making the
unfolded protein energetically unfavorable.79

Long-acting insulin formulations are less prone to fibrillation
than short-acting ones. However, formulations like Lantus
(glargine) are known to demonstrate fibrillation, although
glargine was originally not formulated as a hexamer.80

Preservatives like methylparaben (Figure 6) are known to
stabilize the crystallized forms, such as in ultralente insulin,
ensuring a gradual release.81 Using a crystallized form of

insulin is also a strategy for intermediate-acting isophane
insulin. Dry powder formulations for nasal delivery, such as
Exubera82 (Pfizer) and Afrezza (Sanofi)83�unfortunately now
discontinued due to side effects and low sales�also
demonstrated less fibrillation.
Bio-inspired peptides, such as the heptapeptide LVEALYL

(Figure 7), which is part of the B-chain (B11−B17), have been

used as anti-amyloidogenic agents.84 Interestingly, this
heptapeptide sequence is known to self-fibrillate and even
induce fibrillation at low concentrations. However, when
present in excess, it retards fibrillogenesis. It is argued that at
lower concentrations the heptapeptide favors the nucleation-
driven insulin fibrillogenesis, whereas at higher concentrations
it competes with insulin molecules in binding to the aggregated
nuclei.
Other bio-inspired peptides with anti-amyloidogenic activity

include RRRRRRLVEALYLV85 and NIVNVSLVK,86 with the
latter noted to inhibit fibrillation in a dose-dependent manner.
Synthetic peptides bearing tryptophan87 and taurine88 residues
also deter insulin fibrillation. Short ferrocene-based peptide
conjugates (e.g., ferrocene-Phe-Phe, ferrocene-Phe-Tyr) have
also demonstrated their ability to limit insulin fibrillation and
even dissolve the formed fibrils.89

Binding to hydrophobic surfaces, such as silane,90 inhibited
insulin fibrillation at lower temperatures. Similarly, piperine-
functionalized gold nanoparticles (∼10 nm) impeded insulin
fibrillogenesis.91 The inhibitory effect of such hydrophobic
surfaces toward insulin fibrillation might appear as a paradox,
as such surfaces (e.g., Teflon,92 silicone oil,93 polystyrene94),
on the contrary, are known to induce fibrillogenesis. It is
argued that the hydrophobic surfaces blocking insulin
fibrillation bind and subsequently mask the hydrophobic
B23−B28 domain�a major driver of insulin agglomeration.
The chirality of the surface-grafted molecules also influences

insulin fibrillation. For example, mica surfaces grafted with D-
tartaric acid, when exposed to human insulin, elicited less
fibrillation and reduced cytotoxicity in vitro.95 On the contrary,

Figure 6. Chemical structures of phenol and phenolic compounds
used as additives and preservatives in insulin formulations to impart
stability.

Figure 7. Chemical structure of the heptapeptide LVEALYL.
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L-tartaric acid-grafted mica surfaces showed enhanced
fibrillation and cytotoxicity. In a separate study, amyloid β-
peptide, when incubated with insulin on a D-phenylalanine-
functionalized mica surface, caused co-agglomeration of insulin
with fibrous deposits and cytotoxicity against neuronal PC12
cells.96 On the contrary, L-phenylalanine-grafted surfaces under
an identical experimental setup did not show fibrillation of
comparable magnitude or cytotoxicity.
A gamut of natural compounds, such as flavonoids (e.g.,

quercetin,97 myricetin,98 and rutin99�a glycoside, Figure 8),

polyphenols (e.g., rosmarinic acid100�inhibits insulin fibrilla-
tion by blocking dimer to monomer transition; resorcinar-
ene101�a cyclic polyphenolic derivative of resorcinol, Figure
9), and phenolic compounds (ferulic acid,102 curcumin103),

have been used to inhibit insulin fibrillation. Examples of other
such natural compounds are ascorbic acid (vitamin C)104 and
the anticancer drug paclitaxel.105 Additionally, gelatin has
demonstrated an anti-fibrillogenic potential.106 These com-
pounds not only can inhibit insulin fibrillation but also
ameliorate the cytotoxicity of the fibers.
Besides, cyclodextrin,107 metal complexes (e.g., zirconium

phthalocyanine, hafnium phthalocyanine, iron(II) clathroche-
late),108,109 nanoparticles (e.g., carbon dots,110 fluorinated and
magnetic core−shell nanoparticles111), and tetraphenylethene
derivatives (e.g., 1,2-bis[4-(3-sulfonatopropoxyl)phenyl]-1,2-
diphenylethene)112 inhibit insulin fibrillation through various
mechanisms. For example, metal complexes intercalate within
the early fiber grooves by stacking and inhibiting fiber
elongation.
Hydroxyl- and acid-terminated carbon dots are known to

engage the histidine residues at the B5 and B10 positions by
electrostatic interactions, thus inhibiting fibrillogenesis.113

Similarly, magnetic γ-Fe2O3 nanoparticles (15.0 ± 2.1 nm)
wrapped within a shell of fluorinated polymer poly-
(2,2,3,3,4,4,4-heptafluorobutyl acrylate), when incubated with
insulin, demonstrated a full inhibition of fibrillation by
stabilizing its helical backbone.111 Moreover, uncoated γ-
Fe2O3 nanoparticles were shown to bind to insulin fibers which
could be later used to separate the fibers by application of an
external magnetic field.114 The thermostability of insulin has
also been improved with the use of glycosylated insulin (e.g.,
disialo-glycoinsulin),115 the use of single-chain insulin (e.g.,
SCI-57116�a thermostable insulin analog where the A- and B-
chains are connected by a glycine-rich peptide linker of six
amino acids: GGGPRR), and the introduction of additional
disulfide linkages between the A- and B-chains.117

7. IMPLICATIONS FOR TRANSLATION
The molecular instability of insulin toward even subtle changes
in its biochemical environment entails significant challenges
while preparing non-parenteral formulations, such as oral
nanomedicines. Insulin suffers solubility issues and only
dissolves in (mildly) acidic water. Unfortunately, an acidic
environment favors fibrillation despite aiding solubility,
especially after prolonged storage. Moreover, an acidic pH
below insulin’s isoelectric point of 5.4 makes the protein
cationic, which favors binding with a large range of
biomacromolecules and surfaces that are anionic under
physiological conditions.
Fibrillation is also evident when an insulin suspension is

subjected to shaking, stirring, and heating. Hence, it is difficult
to conduct wet lab procedures without disturbing the physical
stability. As a result, an insulin mixture inadvertently bears
some dissolved materials with insoluble fibers. Formation of
insulin fibers represents not only a wastage of materials but
also an undesirable reduction in yield. A fibril network in the
reaction mixture hinders further reaction and causes difficulty
in purification.
Moreover, it makes insulin delivery a challenge in resource-

poor areas of the world, where sustaining a cold chain to
preserve the molecular integrity of insulin formulations is
difficult, if not impossible, at times. Unfortunately, a significant
proportion of the global pool of diabetic patients now resides
in tropical and developing areas of the world and are from
impoverished backgrounds, with meager access to healthcare
or refrigeration facilities to minimize temperature fluctuation
or agitation that trigger insulin fibrillogenesis. Noticing the
vacuum in the literature on how such lack of preservation
impacts insulin delivery, there is enough space and reason to
conduct studies investigating this issue, especially in remote
areas and on deprived sections of humanity.
The physical transformations of insulin after coming in

contact with hydrophobic surfaces make encapsulation
difficult, especially from the perspective of oral delivery,
where encapsulation within pH-sensitive materials, such as
polymers, might be an option to safeguard the encapsulated
payload from a highly acidic gastric juice followed by a release
in the small intestine, the jejunum in particular, close to the
Peyer’s patches.118 Regrettably, insulin tends to agglomerate
after coming in contact with many of the polymeric candidates
of encapsulation due to hydrophobic interactions that are
difficult to predict, intervene, or contain.
Nanoformulations go through various maturation processes,

such as Ostwald ripening,119 to gain thermodynamic
stability�and the same is true for encapsulated insulin

Figure 8. Chemical structures of the flavonoid compounds used to
inhibit insulin fibrillation.

Figure 9. Chemical structures of polyphenolic compounds used to
inhibit insulin fibrillation.
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formulations. Hence, the particulate insulin formulations
change in composition, with or without fibrillation and
crystallinity over time. Unfortunately, such biochemical
fluctuations are difficult to model, quantify, or compare,
making the formulations untrustworthy from a delivery
perspective.
Encapsulation in a typical core−shell particulate formulation

condenses insulin molecules to form the cores, and the
resulting spatiotemporal proximity between the molecules
might trigger fibrillation.120 Over time, a part of this dense
insulin core may get crystallized, which might provide stability.
However, it is difficult to speculate how that will influence drug
release. Furthermore, the coating layer, often composed of
polymers, can catalyze fibrillation, especially at its interface
with the core.

8. FUTURE PERSPECTIVES
Knowledge about the physical transformations in insulin is
almost as old as insulin’s discovery a century back. Surprisingly,
despite such transformations being a widely studied and
chronicled phenomenon, the research community is still
struggling to find a solution to curb them. It is established
now that the hydrophobic sites in insulin, such as the 10-
residue-long hydrophobic patch at the C-terminal of the B-
chain, facilitate fibrillation. It is prudent to note that a hexamer
to monomer transition, which is necessary to exert a
physiological effect, inevitably displaces this hydrophobic
patch. Thus, it is a complex and, at times, paradoxical situation
where the molecular reconfiguration that makes insulin
physiologically useful simultaneously renders it vulnerable to
deleterious physical transformations.
An interesting observation is that the physiologically active

insulin monomer acts fast in the human body, leaving little
time for fibrillation, agglomeration, or precipitation. It shows
that any measure to slow down insulin fibrillation should shift
the equilibrium toward hexamer or mask the hydrophobic
patches. Unfortunately, none of these strategies is straightfor-
ward, well established, or free of the risk of curtailing insulin’s
physiological impact or even making it defunct.
Adding excipients or organic molecules provides stability to

insulin, although these external agents can compromise the
biocompatibility of such formulations. Current insulin
formulations frequently carry phenol or phenolic compounds
that, apart from ensuring sterility, also promote the hexameric
form in a suspension. However, these phenolic compounds are
known to be toxic and cause neuronal symptoms by affecting
the central nervous system. Exposure to hydrophobic surfaces
inhibited fibrillation by engaging the hydrophobic pockets in
insulin. Unfortunately, the balance between causing stability by
masking the hydrophobic residues and stimulating fibrillo-
genesis by hydrophobic interactions is delicate, with little
margin for error. Moreover, although such an approach might
work in vitro under controlled lab conditions, a successful
translation inside a human body remains elusive.
Given the molecular properties and behavior of insulin, it

would be difficult to achieve stability and efficacy simulta-
neously. Engineering the insulin molecules, for example, by
replacing some of the hydrophobic residues with hydrophilic
ones might be an option. However, it risks compromising the
physiological impact of the molecule. From an assay point of
view, while discussing the bioactivity of insulin, the terms active
and inactive are also not well defined and leave room for
interpretation.

Fortunately, in vitro cellular assays are now available, for
example, with insulin receptor-expressing hepatic
HepG2121−123 and murine fat cells,124,125 to investigate the
physiological activity of insulin. These assays provide an
affordable, robust, and reproducible platform to investigate the
bioactivity of insulin. They also provide numerical read-outs
that can be used to quantify and compare different
formulations from a functional perspective. Additionally, the
inherent fluorescence of insulin molecules can be used to
investigate its cellular uptake by microscopic tools. Such
investigations can reveal how different insulin with various
bioactivity behaves inside cells after uptake. The obtained data
can be useful in recalibrating insulin activity and provide
guidance while designing insulin therapeutics, where the
challenge is to strike the right balance between stability and
activity.

9. CONCLUSIONS
Despite earning the recognition of being the first peptide
hormone to be discovered, fully sequenced, and synthesized by
DNA recombinant technology, unfortunately, the parenteral
route of administration continues to dominate insulin-based
therapeutics, and endeavors toward developing enteral or nasal
formulations have often resulted in frustrating outcomes. The
molecular instability of insulin, especially its vulnerability to
physical transformations due to alterations in heat, pH, ionic
strength, additives, and hydrophobic surfaces, continues to
hinder translation. The unchecked hydrophobic interactions
facilitate the unfolding and, at times, misfolding of the
polypeptide chains, resulting in agglomeration, fibrillogenesis,
and precipitation. Such physical transformations result in
curtailment of insulin efficacy with untoward therapeutic
outcomes.
Current amelioration strategies include stabilization of

insulin’s hexameric form by using additives, for example, zinc
cations and phenol or its derivatives like m-cresol. However,
such additives risk compromising the biocompatibility of the
formulations. Other additives have also been tried, with a
varied magnitude of success. Masking the hydrophobic pockets
in the insulin molecule with synthetic peptides and mica
surfaces functionalized with enantiomers has decreased fibril
formation. However, such strategies need further investigation
and a robust plan for translation from benchtop to bedside.
Where applicable, relevant bioassays should be employed to
assess the activity of insulin formulations. Future investigations
should try to comprehend how insulin molecules behave in a
biological milieu and gauge insulin’s physiological impact due
to such transformations.
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