Skip to main content
. 2022 Nov 15;14:81. doi: 10.1186/s13321-022-00659-8

Table 3.

Performance comparison with the state-of-the-art methods on three tasks of Dataset1

ACC AUPR AUC F1 Precision Recall
Task1
 MDDI-SCL 0.9378 0.9782 0.9983 0.8755 0.8804 0.8767
 MDF-SA-DDI 0.9301 0.9737 0.9989 0.8878 0.9085 0.8760
 DDIMDL 0.8852 0.9208 0.9976 0.7585 0.8471 0.7182
 Lee et al.'s methods 0.9094 0.9562 0.9961 0.8391 0.8509 0.8339
 DeepDDI 0.8371 0.8899 0.9961 0.6848 0.7275 0.6611
 DNN 0.8797 0.9134 0.9963 0.7223 0.8047 0.7027
 RF 0.7775 0.8349 0.9956 0.5936 0.7893 0.5161
 KNN 0.7214 0.7716 0.9813 0.4831 0.7174 0.4081
 LR 0.7920 0.8400 0.9960 0.5948 0.7437 0.5236
Task2
 MDDI-SCL 0.6767 0.6947 0.9634 0.5304 0.6254 0.4814
 MDF-SA-DDI 0.6633 0.6776 0.9497 0.5584 0.6547 0.5078
 DDIMDL 0.6415 0.6558 0.9799 0.4460 0.5607 0.4319
 Lee et al.'s methods 0.6405 0.6244 0.9247 0.5039 0.5388 0.4891
 DeepDDI 0.5774 0.5594 0.9575 0.3416 0.3630 0.3890
 DNN 0.6239 0.6361 0.9796 0.2997 0.4237 0.2840
Task3
 MDDI-SCL 0.4589 0.3938 0.9053 0.1919 0.2585 0.1678
 MDF-SA-DDI 0.4338 0.3873 0.8630 0.2329 0.2715 0.2226
 DDIMDL 0.4075 0.3635 0.9512 0.1590 0.2408 0.1452
 Lee et al.'s methods 0.4097 0.3184 0.8302 0.2022 0.2216 0.2027
 DeepDDI 0.3602 0.2781 0.9059 0.1373 0.1586 0.1450
 DNN 0.4087 0.3776 0.9550 0.1152 0.1836 0.1093