Table 3.
Performance comparison with the state-of-the-art methods on three tasks of Dataset1
ACC | AUPR | AUC | F1 | Precision | Recall | |
---|---|---|---|---|---|---|
Task1 | ||||||
MDDI-SCL | 0.9378 | 0.9782 | 0.9983 | 0.8755 | 0.8804 | 0.8767 |
MDF-SA-DDI | 0.9301 | 0.9737 | 0.9989 | 0.8878 | 0.9085 | 0.8760 |
DDIMDL | 0.8852 | 0.9208 | 0.9976 | 0.7585 | 0.8471 | 0.7182 |
Lee et al.'s methods | 0.9094 | 0.9562 | 0.9961 | 0.8391 | 0.8509 | 0.8339 |
DeepDDI | 0.8371 | 0.8899 | 0.9961 | 0.6848 | 0.7275 | 0.6611 |
DNN | 0.8797 | 0.9134 | 0.9963 | 0.7223 | 0.8047 | 0.7027 |
RF | 0.7775 | 0.8349 | 0.9956 | 0.5936 | 0.7893 | 0.5161 |
KNN | 0.7214 | 0.7716 | 0.9813 | 0.4831 | 0.7174 | 0.4081 |
LR | 0.7920 | 0.8400 | 0.9960 | 0.5948 | 0.7437 | 0.5236 |
Task2 | ||||||
MDDI-SCL | 0.6767 | 0.6947 | 0.9634 | 0.5304 | 0.6254 | 0.4814 |
MDF-SA-DDI | 0.6633 | 0.6776 | 0.9497 | 0.5584 | 0.6547 | 0.5078 |
DDIMDL | 0.6415 | 0.6558 | 0.9799 | 0.4460 | 0.5607 | 0.4319 |
Lee et al.'s methods | 0.6405 | 0.6244 | 0.9247 | 0.5039 | 0.5388 | 0.4891 |
DeepDDI | 0.5774 | 0.5594 | 0.9575 | 0.3416 | 0.3630 | 0.3890 |
DNN | 0.6239 | 0.6361 | 0.9796 | 0.2997 | 0.4237 | 0.2840 |
Task3 | ||||||
MDDI-SCL | 0.4589 | 0.3938 | 0.9053 | 0.1919 | 0.2585 | 0.1678 |
MDF-SA-DDI | 0.4338 | 0.3873 | 0.8630 | 0.2329 | 0.2715 | 0.2226 |
DDIMDL | 0.4075 | 0.3635 | 0.9512 | 0.1590 | 0.2408 | 0.1452 |
Lee et al.'s methods | 0.4097 | 0.3184 | 0.8302 | 0.2022 | 0.2216 | 0.2027 |
DeepDDI | 0.3602 | 0.2781 | 0.9059 | 0.1373 | 0.1586 | 0.1450 |
DNN | 0.4087 | 0.3776 | 0.9550 | 0.1152 | 0.1836 | 0.1093 |