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Abstract 

Background:  Artificial intelligence (AI) algorithms are capable of automatically detecting contouring boundaries 
in medical images. However, the algorithms impact on clinical practice of cervical cancer are unclear. We aimed to 
develop an AI-assisted system for automatic contouring of the clinical target volume (CTV) and organs-at-risk (OARs) 
in cervical cancer radiotherapy and conduct clinical-based observations.

Methods:  We first retrospectively collected data of 203 patients with cervical cancer from West China Hospital. The 
proposed method named as SegNet was developed and trained with different data groups. Quantitative metrics and 
clinical-based grading were used to evaluate differences between several groups of automatic contours. Then, 20 
additional cases were conducted to compare the workload and quality of AI-assisted contours with manual delinea-
tion from scratch.

Results:  For automatic CTVs, the dice similarity coefficient (DSC) values of the SegNet trained with incorporating 
multi-group data achieved 0.85 ± 0.02, which was statistically better than the DSC values of SegNet independently 
trained with the SegNet(A) (0.82 ± 0.04), SegNet(B) (0.82 ± 0.03) or SegNet(C) (0.81 ± 0.04). Moreover, the DSC values 
of the SegNet and UNet, respectively, 0.85 and 0.82 for the CTV (P < 0.001), 0.93 and 0.92 for the bladder (P = 0.44), 
0.84 and 0.81 for the rectum (P = 0.02), 0.89 and 0.84 for the bowel bag (P < 0.001), 0.93 and 0.92 for the right femoral 
head (P = 0.17), and 0.92 and 0.91 for the left femoral head (P = 0.25). The clinical-based grading also showed that 
SegNet trained with multi-group data obtained better performance of 352/360 relative to it trained with the SegNet(A) 
(334/360), SegNet(B) (333/360) or SegNet(C) (320/360). The manual revision time for automatic CTVs (OARs not yet 
include) was 9.54 ± 2.42 min relative to fully manual delineation with 30.95 ± 15.24 min.

Conclusion:  The proposed SegNet can improve the performance at automatic delineation for cervical cancer radio-
therapy by incorporating multi-group data. It is clinically applicable that the AI-assisted system can shorten manual 
delineation time at no expense of quality.

Keywords:  Cervical cancer radiotherapy, Clinical target volume auto-segmentation, Organs-at-risk auto-
segmentation, Artificial intelligence-assisted system
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Introduction
Cervical cancer is the second most common type of 
malignant tumor that poses a threat to women’s health 
[1], and it has the fourth highest incidence among any 
type of cancer in women worldwide, in addition to being 
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the most frequent gynecological cancer in many develop-
ing countries [2, 3]. Current clinical treatments for cer-
vical cancer primarily include surgery, radiotherapy, and 
chemotherapy [4] and of these, radiotherapy has a 5-year 
survival rate of 87–92% for the treatment in women with 
stage IB cervical cancer [5]. There are several ways to 
perform cervical cancer radiotherapy, with photon radia-
tion being the most common approach, such as intensity-
modulated radiation therapy (IMRT). IMRT can deliver 
a relatively large radiation dose to the clinical target vol-
ume (CTV) and reduce the radiation dose to adjacent 
organs-at-risk (OARs), thereby effectively reducing the 
postoperative local recurrence rate of cervical carcino-
mas and providing better protection for non-cancerous 
tissues [6, 7]. It was reported that manual contouring of 
the CTV and OARs on a patient’s computed tomography 
(CT) scans is time-consuming and labor-intensive [8]; 
on the other, CTV contouring has large inter-and intra-
observer variation among radiation oncologists with dif-
ferent levels of clinical experience [9–11]. Therefore, the 
development of quick and effective computer-aided tools 
to automatically delineate the region of interest (ROI) 
can reduce the manual delineation workload and ensure 
quality between radiation oncologists with difference 
working experience.

Over the past decade, since deep convolutional neural 
networks (DCNNs) can automatically learn task-related 
features in a data-driven manner [12, 13], artificial intel-
ligence (AI) algorithms have been developed for a vari-
ety of applications in medical image analysis [14–16]. 
Recently, in cervical cancer radiotherapy, Liu et  al. [17]
described a two-dimensional UNet [18] for segmenta-
tion of the OARs of 105 patients, and Sartor et  al. [19]
developed a fully convolutional three-dimensional (3D) 
model [20] for segmentation of the CTV and OARs of 
75 patients. Liu et  al. further developed a 2.5D model 
for cervical cancer radiotherapy of 210 patients and vali-
dated it performance of 27 patients [21]. Most relevant 
research has focused on the performance of automatic 
results based on a structural dataset. However, few stud-
ies have been concerned with the following challenges: 
(1) although there are international guidelines for the 
delineation and treatment of cervical cancer [22], CTV 
contouring still has large variation, which can lead to 
diversity of the collected data. The influence of multi-
group dataset using the data-driven deep convolutional 
neural networks has not been investigated; (2) previous 
subjective evaluations of automatic contours hasn’t pro-
vided objective clinical qualitative criteria; (3) Insufficient 
testing data may fail to generate reliable evaluation [23–
25]; (4) previous clinical validation observations mainly 
focus on the time [17, 26]. To deal with the above prob-
lems, more efforts should be dedicated to constructing 

datasets with multi-group cases and considering the 
influence of the data on AI algorithms employed. A 
large number of testing set is required for clinical-based 
observational study and comparable experiments are 
conducted on the time and quality between radiation 
oncologists with difference working experience.

In this study, we first constructed a relatively large 
cervical cancer dataset of 203 patients including three 
groups with retrospectively collected manual annota-
tions, and of these, 60 cases were used for clinical-based 
analysis. The evaluations based on such a testing set 
would be more reliable. Second, we developed specific 
deep convolutional neural networks for automatic con-
touring of the CTV and OARs of the constructed data-
set. The results of AI models trained with different data 
groups were also evaluated. Finally, we integrated deep 
convolutional neural networks to implement the AI-
assisted system for automatic delineation, and several 
doctors with different experience validated the system on 
20 additional cases.

Material and methods
Study design and participants
This study was designed to develop deep convolutional 
neural networks for automatic contouring of the CTV 
and OARs on cervical cancer CT images. The definition 
of the CTV was based on the consensus guideline [22], 
and the contoured OARs were the bowel bag, left and 
right femoral heads, bladder, and rectum. This study 
was approved by the Institutional Ethics Review Board 
of West China Hospital, Sichuan University and waived 
informed consent.

Between February 2018 and April 2020, the CT images 
of 203 patients with pathologically proven stage IA1–IB2 
cervical cancer who were treated with post-operation 
radiotherapy were retrospectively collected from three 
groups led by three senior radiation oncologists in our 
department of West China Hospital, Sichuan University. 
The inclusion criteria were: (1) patients with pathologi-
cally proven stage IA1–IB2 cervical cancer, (2) who were 
treated with post-operation radiotherapy, (3) CT scan for 
positioning, (4) could obtain the CT images. The exclu-
sion criteria were: (1) patients with cervical cancer who 
are not candidates for radiation therapy, (2) patients with 
advanced cervical cancer. Specifically, 71, 67, and 65 
cases were collected from the three groups led by three 
senior radiation oncologists, respectively. In the clini-
cal routine, the annotations of the CTV and OARs on 
CT images in each group were first manually delineated 
by junior oncologists, and then reviewed and approved 
by other leading experienced oncologists. Moreover, 
the anonymized data set consists of 203 patients’ CT 
images were reconstructed with 3  mm thickness and 
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0.9 m × 0.9 m in-plane resolution using a GE Revolution 
ES CT scanner. The patient was in the supine position 
during CT scans. Before the CT scans, bladder and rectal 
preparation were performed. We did not use the contrast 
agent for the bladder filling. Then the 203 patients were 
randomly divided into three sets, 121 cases of which were 
randomly selected for training set, 22 cases for valida-
tion set, while the remaining 60 cases were testing set in a 
ratio of approximately 6:1:3. To further evaluate the prac-
tical value of the AI-assisted system, 20 additional cases 
were prospectively recorded and analyzed from August 
2020 to November 2020.

Development of deep convolutional neural network 
models for automatic contouring
In this study, the automatic contouring procedure was 
implemented in a two-stage method called SegNet. The 
first stage distinguishes slices of interest from all slices of 
continuous 3D CT scans. The continuity of these inter-
ested slices containing ROIs is essential for the following 
delineation of ROIs. The second stage is a segmenta-
tion task based on the results of stage 1. The proposed 
SegNet took CT slices as input, and the corresponding 
automatic contours were calculated as output. We used a 
dense convolutional network (DenseNet) [27]for the first 
identification task and a novel encoder-decoder network 
for the segmentation. The encoder of SegNet consists 
of residual convolutional blocks [28], and densely con-
nected blocks were used as the backbone of the decoder. 
SegNet was developed based on UNet by introducing 
shortcut connections and deeper convolutional layers. 
The frameworks of SegNet are shown in Additional file 1: 
Fig. S1. The detailed process and architecture of the two-
stage method are given in Additional file 1: Appendix 1.

Quantitative and qualitative evaluation
For objective evaluation, we used sensitivity and area 
under curve (AUC) to show the recognition accuracy of 
the first stage identification task. Higher scores represent 

better continuity of slices. Three widely used quantitative 
metrics were adopted for the final evaluation of ROI con-
touring: the volumetric dice similarity coefficient (DSC) 
[29], the 95% Hausdorff distance (95HD) [30], and the 
true positive volume fraction (TPVF) [31].

The automatic CTV contours created on the testing 
set were assessed clinically. A six-point set of objective 
evaluation criteria was designed following the interna-
tional guideline [22], as shown in Table 1. The resulting 
contours of AI models trained with whole multi-group 
dataset were recorded as SegNet and UNet, and the auto-
matic contours of the same architecture SegNet only 
trained with a single group data (A, B or C) were called 
as SegNet(A), SegNet(B), and SegNet(C), respectively. Three 
radiation oncologists independently graded these auto-
matically segmented CTVs. The score for each case was 
either 0 or 1: 0- failing the criteria; 1-reaching the crite-
ria. If all the 6 target sites were achieved the criteria in 
one patient, 6 points were given, and a full score of 60 
patients was recorded as 360 points. To avoid bias, each 
radiation oncologist performed the evaluation of auto-
matic CTVs from each model every other day in a rand-
omized double-blind manner. The final qualitative score 
for each case was the rounded average score of three 
experts.

Testing of the AI‑assisted system in clinical setting
The proposed SegNet were integrated to develop an AI-
assisted system for automatic contouring of ROIs in cer-
vical cancer radiotherapy. The software has been assessed 
in the Department of Radiotherapy in West China Hos-
pital since August 2020. The detailed running process 
and workflow of the AI-assisted system was summa-
rized as follows: the proposed two-stage model was inte-
grated into an artificial intelligence (AI)-assisted system 
that can be used for automatic delineation of the clinical 
target volume and organs at risk in the cervical cancer 

Table 1  A six-point evaluation criterion for the clinical target volume (CTV) delineation in cervical cancer radiotherapy

Main differences between UNet and SegNet rely on different network architectures. The differences between SegNet, SegNet(A), SegNet(B) and SegNet(C) are the scale 
of the training set, which is 121 (multisource dataset), 42, 40 and 39, respectively

Nos. Criterion Qualitative evaluation (60 cases)

UNet SegNet SegNet(A) SegNet(B) SegNet(C)

1 The common iliac lymph nodes area is included 56 60 60 59 60

2 The internal iliac lymph nodes area is included 59 60 60 60 60

3 The external iliac lymph nodes area is included 52 59 57 58 55

4 The presacral lymph nodes area is included 40 60 52 50 43

5 The paravaginal tissue area is included 33 53 45 46 42

6 The upper vagina is included 60 60 60 60 60
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radiotherapy treatment. In general, the workflow of the 
AI-assisted system consists of the following stages:

Step 1: Data transfer. The AI-assisted system has a 
user interface. Radiologists log into the system with 
their username and password and then select cases 
for treatment planning. The software sends a request 
to retrieve the patient’s CT scans from the PACS sys-
tem.
Step 2: Automatic delineation. All slices are pre-
processed and then used as the inputs to the first 
stage. Based on the first model’s results, slices likely 
to contain regions of interest (ROIs) are used as the 
inputs to the second stage to determine the ROI 
boundaries. This automatic contouring process does 
not require any human assistance and eliminates the 
drawbacks of inter-and intra-delineation variation 
within the same case.
Step 3: Manual correction. The AI-generated con-
tours are automatically stored in the Ray Station 
treatment planning system, on which oncologists 
can directly re-edit the AI-generated ROI boundaries 
until the plan has been approved.

In the second step in the workflow, SegNet is able to 
generate the automatic contours of the CTV and OARs 
for one case in 13.08 s (on a Linux system with 24 GB of 
RAM and Nvidia RTX 3090 GPUs), and the AI system’s 
average time to process a case was approximately 2 min, 
consisting total three-step workflow.

To analyze the potential value of the AI-assisted sys-
tem, three radiation oncologists with different clinical 
experience conducted comparative experiments on 20 
new patients who were not included in the development 
cohort. First, each doctor’s manual revision time of the 
AI-assisted contours was recorded. The doctors’ time 
to manually contour the same cases from scratch was 
recorded after 2 weeks. Moreover, all annotations by the 
three radiation oncologists were finally reviewed by ZP.L. 
with more than 30 years of clinical experience to evalu-
ate the quality of the radiotherapy planning according to 
a 2—grade score: 0—secondary revision (the treatment 
planning should be re-edited to some extent), or 1—
minor or no revision (the planning is basically acceptable 
for clinical radiotherapy treatment). This comparison 
was developed to assess the potential influence of the AI-
assisted results on radiation oncologists’ plan making. If 
one patient does not need to modify all six target areas, 
the score is 6 points, and the full score of 60 patients is 
360 points.

Statistical analysis
All statistical comparisons were performed using SPSS 
software. The patient characteristics of age were sta-
tistically analyzed, statistical analysis of significant dif-
ferences in age between the training set, validation set 
and testing set were performed by the chi-square test. 
DSC, TPVF and 95HD were computed for all the target 
regions. The independent sample t-test method was used 
to compare DSC, TPVF and 95HD between SegNet and 
UNet. The time used for revising all the CTV and OARs’ 
contours before radiotherapy planning were recorded as 
minutes per case. Statistical significance was set at two-
tailed P < 0.05.

Results
Supplemental Table  S1 shows the characteristics of the 
patients in this study with statistical analysis. No signifi-
cant differences were found regarding age or number of 
cases in the routine groups between the development 
cohort of the training, validation, and testing set.

The testing set was more heterogeneous than the oth-
ers because it contained 9848 slices from 60 cases, which 
impart more reliability to the comparative observations. 
The sensitivity and receiver operating characteristic 
(ROC) curves of the first stage automatic identification 
results are shown in Additional file 1: Fig. S2. The blad-
der had the highest sensitivity score (0.9875), followed by 
the CTV (average score: 0.965). The bladder also had the 
highest area under curve (0.998), followed by the femoral 
heads (0.997) and the rectum (0.993). The high scores of 
these automatic identification results indicated good con-
tinuity of slices that contained interested ROIs (> 0.95).

The quantitative evaluation of automatic CTVs and 
OARs by SegNet and UNet trained with whole multi-
group dataset is summarized in Table  2. For the CTV, 
the average volumetric DSC scores predicted by SegNet 
and UNet were 0.85 and 0.82, respectively, and the mean 
TPVF values of SegNet and UNet were 0.87 and 0.77, 
respectively. These differences between the two meth-
ods were statistically significant (P < 0.001). SegNet also 
achieved better results than UNet on the contouring of 
OARs. For the rectum and bowel bag, SegNet showed a 
significant improvement in DSC and 95HD scores over 
UNet. For instance, for the bowel bag, volumetric DSC 
for SegNet and UNet were 0.89 and 0.84, respectively; 
95HD for SegNet and UNet were 9.95 mm and 18.78 mm, 
respectively. Besides, TPVF scores for the bladder and 
the right and left femoral heads predicted by SegNet 
were 0.95, 0.92, and 0.93, respectively. In Table  1, the 
grading of SegNet’s results was greatly different from that 
of UNet, especially in terms of the region of the presacral 
lymph nodes and paravaginal tissue (Additional file  1: 
Fig. S3). Overall, more than 98% (352/360) predicted by 
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SegNet were totally clinically acceptable, whereas the 
evaluation score for UNet was 83% (300/360).

The quantitative evaluation of the automatic CTVs 
generated by SegNet (A), SegNet (B) and SegNet (C) inde-
pendently trained by the single group are summarized in 
Table S2. The mean DSC and 95HD values of SegNet(A), 
SegNet(B), and SegNet(C) were 0.82, 0.82, and 0.81 and 
10.33  mm, 9.57  mm, and 10.42  mm, respectively. How-
ever, as clinical grading listed in Table  1, SegNet(C) had 
the worst clinical-based score. The differences in auto-
matic CTVs among three models mainly occurred in the 
end of the presacral area (Fig. 1, fourth column). As for 
criterion 4, among the 60 graded cases, SegNet(A) and 

SegNet(B) passed 52 and 50 cases, whereas SegNet(C) only 
passed 43 cases.

The times of manual contouring from scratch and AI-
assisted revision of only CTV contouring are shown 
in Table  3. The average time for three doctors was 
30.95 ± 15.24  min. By comparison, the average time 
taken to manually revision of AI-assisted contours was 
9.54 ± 2.42  min. The number of plans approved after 
using the AI-assisted system was slightly larger than 
those with manual delineation from scratch.

The key raw data and the system demo have been 
uploaded to github (https://​github.​com/​luvWY/​Autom​
aticC​ontou​ring.​git).

Table 2  Volumetric Dice similarity coefficient (DSC), true positive volume fraction (TPVF), and 95% Hausdorff distance (95HD) scores 
of the six automatic contours predicted by SegNet and UNet

The performance of two methods was tested by the independent sample t-test method. R-FH is short for the right femoral head. L-FH is short for the left femoral head

Volumetric DSC TPVF 95HD

SegNet UNet P SegNet UNet P SegNet UNet P

CTV 0.85 ± 0.02 0.82 ± 0.03  < 0.001 0.87 ± 0.04 0.77 ± 0.07  < 0.001 7.91 ± 2.93 9.44 ± 4.53 0.03

Bladder 0.93 ± 0.05 0.92 ± 0.05 0.44 0.95 ± 0.04 0.90 ± 0.07  < 0.001 6.83 ± 8.79 6.04 ± 5.52 0.54

Rectum 0.84 ± 0.06 0.81 ± 0.06 0.02 0.84 ± 0.09 0.84 ± 0.09 0.72 8.81 ± 7.04 13.20 ± 12.01 0.02

Bowel bag 0.89 ± 0.04 0.84 ± 0.05  < 0.001 0.88 ± 0.05 0.79 ± 0.07  < 0.001 9.95 ± 5.45 18.78 ± 23.55 0.01

R-FH 0.93 ± 0.04 0.92 ± 0.05 0.17 0.92 ± 0.07 0.88 ± 0.08 0.01 4.58 ± 7.01 5.25 ± 7.28 0.61

L-FH 0.92 ± 0.03 0.91 ± 0.04 0.25 0.93 ± 0.07 0.90 ± 0.07 0.027 4.71 ± 4.65 6.83 ± 17.96 0.38

Fig. 1  Clinical target volume (CTV) contouring predicted by SegNet(A, B, C). The orange, turquoise, purple, and red contours represent the CTV 
segmented by SegNet(A), the CTV by SegNet(B), the CTV by SegNet(C), and the corresponding manual annotations, respectively. The first and 
second columns indicate the areas of the common iliac lymph area and the internal and external iliac lymph nodes, respectively. The third and 
fourth columns present the presacral lymph nodes area and the end of this area, respectively. The fifth and sixth columns indicate the paravaginal 
tissue and upper vagina areas, respectively. In Case a, the volumetric DSC quantitative scores by SegNet(A), SegNet(B), and SegNet(C) were 0.81, 
0.86, and 0.82, respectively. In cases b–d, the volumetric DSC scores for SegNet(A), SegNet(B), and SegNet(C) were 0.87/0.84/0.81, 0.80/0.86/0.85, and 
0.80/0.86/0.82, respectively

https://github.com/luvWY/AutomaticContouring.git
https://github.com/luvWY/AutomaticContouring.git
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Discussion
It was clinically acceptable to apply the proposed SegNet 
to automatically delineate the CTV and OARs in cervi-
cal cancer radiotherapy. Additionally, the experimental 
results showed that training the SegNet using data from 
multi-group dataset can improve the quality of the auto-
matic contouring and achieve more robust performance. 
To the best of our knowledge, this was the first study that 
provided clinical evaluations on an adequate number of 
test set cases by several methods, developed a clinically 
applicable AI-assisted system, and compared the quality 
and time cost between AI-assisted results and manual 
delineation (20 cases).

The 60 cases in the testing set were evaluated inde-
pendently. Both of deep convolutional neural networks 
can detect the obvious visual edges of OARs such as the 
femoral heads and the bladder to achieve a high-quality 
score. The average volumetric DSC and TFVF scores 
of the femoral heads and bladder were greater than 0.9, 
which greatly reduced the workload associated with man-
ual correction of these organs. However, the contouring 
quality of the rectum and bowel bag using the deep con-
volutional neural networks was slightly lower. The reason 
might be that the boundary between the lower rectum 
and the surrounding soft tissue was less obvious because 
of CT’s low resolution in soft tissue and the low-density 
difference between rectum and soft tissue. Moreover, 
because the abdominal cavity is large, there was a large 
variation in cavitary organs among different individuals. 
For example, the boundary of the bowel bag for a patient 
with intestinal inflation should include the gas area, but 
the automatic results failed to cover this area (Fig.  2a). 
These problems indicate that the automatic results 
learned in a data-driven manner from a limited dataset 
may lead to poor performance in some certain aspects, 
especially for unclear boundaries.

The quantitative metrics of the predicted CTV by Seg-
Net were also superior to those by UNet. The grading 
results also showed that automatic delineation results 
predicted by SegNet were more clinically acceptable 

than those by UNet. In terms of criteria 1, 2, 3, and 6, 
the predicted results from both two models were highly 
consistent with the cervical contouring guideline, while 
the differences between two methods were large in 
terms of criteria 4 and 5. For instance, as shown in the 
fifth column of Additional file  1: Fig. S3, the automatic 
CTVs from SegNet completely covered the parametrial 
area, whereas the prediction by UNet was inconsistent 
with the manual annotation. It indicated SegNet per-
formed better at detection of targets with more indistinct 
boundaries since it had deeper network architecture and 
shortcut connections to facilitate learning of task-related 
feature representations.

In Table  1, three radiation oncologists concluded that 
the overall performance of SegNet trained by multi-
group data of 121 cases was the best. The number of 
training cases for SegNet(A), SegNet(B) and SegNet(C) 
are nearly equal, while the performance of SegNet(C) 
was significantly worse than that of the other two mod-
els (SegNet(A) and SegNet(B)). The reason for this finding 
may be that the training datasets played a crucial role in 
developing deep convolutional neural networks. Since 
the training of AI algorithms is a data-driven manner, the 
dataset covering various features and variations tend to 
access more robustness. This finding is basically consist-
ent with the current research findings that mixing dif-
ferent groups or sources for AI algorithms can help to 
eliminate the influence of the variety and preferences and 
achieve more clinically satisfactory results [23, 25, 26, 32, 
33].

Further analyzing five groups automatic CTVs in 
Table  1, the clinical results showed that the models’ 
automatic contouring boundaries of the presacral lymph 
nodes and the paravaginal tissue area required the most 
manual correction. For instance, in the delineation of 
the paravaginal tissue area, the automatic results some-
times failed to cover this area entirely. There could be 
two reasons for this finding: (1) some high-risk subclini-
cal lesions near the parametrial area are not defined in 
detail, but they may be clinically important, depending 

Table 3  Comparisons time between artificial intelligence (AI)-assisted CTV correction and manual CTV contouring for 20 additional 
cases

Doctor 1 has more than 5 years of working experience in cervical cancer radiotherapy. Doctor 2 and doctor 3 have about 3 years of experience

Manual contouring from scratch AI-assisted correction

Doctor 1 Doctor 2 Doctor 3 Doctor 1 Doctor 2 Doctor 3

Time (/min)

 Range 15.67–22.28 22.27–42.13 36.03–38.21 5.07–9.37 7.55–15.85 8.70–17.48

 Median (IQR) 18.09 (17.43–19.07) 33.03 (25.62–38.14) 38.21 (36.03–43.98) 7.37 (6.47–7.88) 9.90 (8.36–10.58) 11.16 (9.73–12.48)

Number of approv-
ing cases (n = 20)

16 17 16 16 18 18
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on the doctors’ experience; (2) the parametrial area varies 
greatly among different individuals. For example, in some 
patients with a large pelvic cavity, the intestines may fall 
into the pelvic cavity after surgery and fill the original 
position of the ovaries and uterus, which leads to com-
plexities and unclear boundaries of the parametrial area. 
If we can collect more data to ensure the model’s gener-
alization performance, emphasizing these noteworthy 
features in advance, the deep learning algorithm would 
be likely to perform better from the clinical perspective.

In terms of delineation time in Table 3, the automatic 
contouring was proved to be time-saving for radiation 

oncologists, especially for junior doctors. Furthermore, 
to resolve the open question of whether automatic pre-
dictions influence radiation oncologists’ decision mak-
ing in comparison with manual delineation alone, the 
three doctors’ acceptance rates were at the same level 
or slightly improving. It was indicated that AI-assisted 
system might be able to improve the junior radiation 
oncologists’ contouring quality and there was no nega-
tive impact in practice. Based on clinical observations, 
the main difference always occurred in the parametrial 
area, which could be expected considering its complex-
ity as addressed above. For instance, on the basis of the 

Fig. 2  Automatic contours for organs-at-risk predicted by SegNet. Parts a–c are the upper, middle, and lower three-dimensional sections, 
respectively. The lemon green and lemon yellow areas indicate the automatic bowel bag contours and the manual annotation, respectively. 
The blue and red areas denote the automatic bladder contours and the corresponding labels, respectively. The dark green and dark yellow areas 
indicate the automatic contours for the left and the right femoral head and the labels, respectively. The purple and the violet blue contours indicate 
the automatic rectum results and the manual annotations, respectively. The quantitative DSC results for the bladder, rectum, bowel bag, and left 
and right femoral head were 0.96, 0.90, 0.90, 0.94, and 0.93, respectively
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patient’s other clinical materials, it is possible that the 
parametrial area should be enlarged to encompass some 
high-risk subclinical lesions that may lead to local recur-
rence. In contrast, the same area might contain parts of 
intestines that are unnecessary to irradiate, and the irra-
diation of which may aggravate radiation enteritis.

Conclusion
The AI-assisted system achieved good accuracy at con-
touring the CTV and OARs in cervical cancer radio-
therapy from the clinical perspective, which reduced the 
workload of manual delineation at no expense of quality. 
Further studies are necessary to collect multi-center data 
and validate the AI-assisted system in different centers.
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