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DNA replication initiation is a complex process involving various genetic and epigenomic signatures. The correct identification of
replication origins (ORIs) could provide important clues for the study of a variety of diseases caused by replication. Here, we
design a computational approach named iORI-Epi to recognize ORIs by incorporating epigenome-based features, sequence-
based features, and 3D genome-based features. The iORI-Epi displays excellent robustness and generalization ability on both
training datasets and independent datasets of K562 cell line. Further experiments confirm that iORI-Epi is highly scalable in
other cell lines (MCF7 and HCT116). We also analyze and clarify the regulatory role of epigenomic marks, DNA motifs, and
chromatin interaction in DNA replication initiation of eukaryotic genomes. Finally, we discuss gene enrichment pathways
from the perspective of ORIs in different replication timing states and heuristically dissect the effect of promoters on
replication initiation. Our computational methodology is worth extending to ORI identification in other eukaryotic species.

1. Introduction

DNA replication in eukaryotic cells requires the accurate
synthesis of large amounts of DNA, which is a critical factor
that guarantees the fidelity of genetic information before cell
division [1]. Errors in DNA replication can be amplified and
accumulate over time, leading to cancer [2] and aging [3]. In
eukaryotes, DNA replication starts from thousands of spe-
cific sites called the origin of DNA replication sites (ORIs),
which are activated in a specified chronological order during
each cell cycle [4]. The DNA replication initiation system
mainly encompasses a highly regulated sequential two-step
process (Figure 1(a)): origin licensing and origin activation
[5]. The licensing and activation of replication origins are
regulated by both DNA sequence and chromatin features
[6]. It has been reported that, at each cell division in humans,
30,000-50,000 DNA replication origins are activated [7].

However, it is still unclear how they are selected and recog-
nized by replication factors.

Recent studies also have certified that genomic and epi-
genomic characteristics contribute to the regulation of
DNA replication initiation [8]. Eaton et al. found that
chromatin modification helps to maintain the function and
relative strength of replication initiation in Drosophila mel-
anogaster genome [9]. Picard et al. emphasized that the cou-
pling of H4K20me1 and H3K27me3 is associated with the
improvement of replication origin efficiency of mammalian
cell lines [10]. Long et al. showed that the histone variant
H2A.Z epigenetically regulates the licensing and activation
of early replication origins and maintains replication timing
[11]. In addition, researchers have found a correlation
between replication origin efficiency and chromatin
architecture [12], as well as a linkage between replicons
and chromatin loops [13]. More studies have revealed that
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the spatiotemporal replication initiation is regulated at the
chromatin domain level [14]. These findings provided
strong support and a basis for further study on the regula-
tion mechanism, role, and function of epigenomic marks
and chromatin structure on replication initiation.

Nowadays, a series of ORI identification algorithms based
on machine learning or statistical analysis have emerged, such
as iORI-PseKNC [15], iROS-gPseKNC [16], iRO-3wPseKNC
[17], iOri-Human [18], Stack-ORI [19], yORIpred [20],
iORI-ENST [21], ORI-Deep [22], Ori-Finder system [23],
and iORI-Euk [24]. Unfortunately, these DNA-sequence-
information-based approaches rarely elucidate the extent to
which epigenomic marks, transcription factor (TF) motifs,
and chromatin spatial structure regulate DNA replication ini-
tiation. Thus, we tested whether publicly available epigenome
data, DNA motifs, and chromatin loop data can be used to
mark human ORIs.

In this article, we demonstrated for the first time that ORIs
can be computationally recognized using epigenomic marks,
DNA motifs, and chromatin interactions (Figure 1(b)). Our
model achieved excellent accuracy (AUC = 0:9033) by using
available chromatin immunoprecipitation sequencing (ChIP-
seq), deoxyribonuclease I- (DNase I-) hypersensitive site
sequencing (DNase-seq), and reduced-representation bisulfite
sequencing (RRBS-seq) data from ENCODE [25]. The top 20
features reflect the importance of chromatin accessibility,
activity, and long-range contacts in determining ORIs. We
also successfully predicted ORIs only using DNAmotif occur-
rences (AUC = 0:9046) and identified the FOXL1 motif as a
strong predictor. Moreover, a surprising high accuracy
(AUC = 0:8488) was obtained only from the six-dimension
features extracted from chromatin loop data. Furthermore,
the combination of epigenomic marks, sequence-based TF
motifs, and chromatin interactions exhibited a superior
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Figure 1: Formation and activation of DNA replication origins and the workflow of this study. (a) Origin licensing: during G1 phase of the
cell cycle, the origin recognition complex (ORC) binds DNA and, together with Cdt1 and Cdc6, loads minichromosome maintenance
complexes (MCM), the core motor of the replicative helicase, as inactive head-to-head double hexamers (MCM-DHs) around double-
stranded DNA. Origin firing: during S phase, CDK2 and CDC7 kinase activities in conjunction with other origin-firing factors convert
some MCM-DHs into pairs of active CDC45-MCM-GINS helicases that nucleate bidirectional replisome establishment. (b) The
prediction approach of ORI prediction using epigenomic marks, DNA motifs, and chromatin loops based on random forest classifier.
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performance (AUC = 0:9627) for identifying ORIs compared
with each single feature set. The results of feature analysis fur-
ther revealed that the epigenome-based features, sequence-
based features, and chromatin spatial structure-based features
are informative and complementary in determining ORIs. We
also found that the proposed iORI-Epi method in K562 cell
line can be successfully applied to MCF7 and HCT116 cell
lines, indicating that the method has good transferability in
the recognition of ORIs.

2. Results

2.1. ORIs Can Be Predicted from Functional Genomic
Features. The precise regulation of DNA replication initia-
tion is a complex process involving many TFs and histone
modifications (HMs). In order to qualitatively display the
distribution of epigenomic mark signal in the replication ini-
tiation region, we applied the Integrative Genomics Viewer
(IGV) [26] for visualization (Figure 2(a)). We found that
most HM signals are strong in ORI-dense regions and weak
in ORI-sparse regions, indicating that some HMs are coloca-
lized and associated with active ORIs. In addition, compared
with non-ORIs, the colocalization frequency of epigenomic
marks was significantly enriched at ORIs (p < 0:01, t-test),
except for H3K9me3 (p = 0:07, t-test), suggesting the high

correlation between ORIs and epigenomic marks. The most
abundant marks contained H3H4me1 and DNase I, which
also reflects the high coupling between the initiation of
replication, active epigenomic marks, and chromatin acces-
sibility (Figure 2(b)). We also found that some TFs display
significant enrichment between the ORI regions and ORI
flanking regions (Figure 2(c)). Specifically, replication-
related proteins (such as minichromosome maintenance
(MCM) proteins) produce higher enrichment scores in the
ORI region. This result implies that ChIP-seq data including
epigenomic signals and DNase-seq data containing open
chromatin marks in public databases are helpful to the
selection of ORI regions.

In view of the close relationship between ORIs and epi-
genetic chromatin marks, we sought to build a classifier to
distinguish ORIs from non-ORIs based on these marks.
We collected ChIP-seq data of TFs and HMs commonly
available to K562 cell line, DNase-seq, and RRBS-seq data
from ENCODE to annotate ORIs and build feature vectors.
Based on the random forest (RF) classifier, we obtained an
excellent ORI prediction model with an AUC of 0.9033
(Figure 3(a)) and AUPRC of 0.8945 (Figure 3(b)).

In addition, the variable importance (VI) reflecting the
contribution of marks as predictors was also calculated.
Among the 20 most important epigenetic chromatin marks
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Figure 2: Epigenomic, chromatin, and DNA motif profiles of replication origin sites (ORIs). (a) A genome browser view of ORIs with
histone marks, chromatin openness (DNase-seq), and DNA-binding proteins (e.g., CTCF). (b) Colocalization frequencies of histone
modification, chromatin openness (DNase-seq), and DNA methylation at ORIs and non-ORIs. (c) Enrichment distribution of DNA-
binding proteins at the ORI regions and ORI flanking regions. (d) Enrichment of DNA motifs at ORIs, as measured by the odds ratio
and the percentage of ORI loci with a motif. (e) The top 20 variable importance of epigenomic marks. (f) The top 20 variable
importance of DNA motifs.
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(Figure 2(e) and Table. S1), the histone marker H3K4me1
ranked first (VI = 0:0536), highlighting the significant role
of active chromatin in replication initiation, as previously
revealed by enrichment analysis. Moreover, it has been
reported that the synergistic effect of H3k4me1 and
H3K27me3 (VI = 0:0121, ranked 9th) makes the chromatin
environment suitable for DNA replication initiation in the
enhancer regions [27]. ETS1 protein (VI = 0:0291, ranked
2nd) also has great predictive importance for ORIs since
the ETS family plays an essential role in the licensing of
human MCM4 origin of replication [28]. In addition, they
can activate transcription via binding to a core sequence
located in the promoter elements [29], which indicate tran-
scription and replication may share transcription factors in
the two processes of occurrence. YY1 (VI = 0:0188, ranked

3rd) can bind replication-dependent histone genes to affect
proliferation and chromatin remodeling to accelerate repli-
cation [30]. It also plays a major role in the coordinated
upregulation of histone genes at the G1/S boundary of the
cell cycle [31]. The fourth good marker H4K20me1
(VI = 0:0172) may affect the status of H4 acetylation, which
can modulate origin of replication licensing [32]. DNA
methylation (VI = 0:0154) and DNase I (VI = 0:0130) also
performed good predictors, highlighting the roles of active
chromatin and chromatin accessibility in predicting ORIs.
The E2F transcription factors (VI = 0:0133, ranked 6th) are
essential regulators of cell growth in multicellular organisms,
controlling the expression of a number of genes whose prod-
ucts are involved in DNA replication and cell proliferation
[33]. SUZ12 (VI = 0:0084, ranked 15th) is the subunit of
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Figure 3: Prediction of ORIs using epigenomic data, DNA motifs, and ChIA-PET data by random forests. (a) Receiver operating
characteristic (ROC) curve and (b) precision-recall (PR) curves for four different feature sets are plotted, in which area under the ROC
curves (AUCs) and areas under the PR curves (AUPRCs) also are marked. (c) A plot showing the feature selection procedure for
identifying ORIs based on 626-dimension features. When the top 60 features optimized by VI scores were used to perform prediction,
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PcG proteins, which has a high correlation with ORIs. More-
over, PcG and open chromatin marks have a synergistic
effect in the selection of ORIs [27]. The epigenomic marks
mentioned above are all related to DNA replication with
higher VI scores, indicating that the features selected by RF
are more explanatory and meaningful for ORI identification.

2.2. ORIs Can Be Predicted from DNA Motifs. We have pre-
dicted ORIs through epigenomic marks containing some
TFs, but the ChIP-seq data of TFs available in public data-
bases is limited, which means we cannot use more TF fea-
tures as input of the model. Hence, we sought DNA motifs
that may be enriched in ORIs as a way to obtain a more
comprehensive list of candidate DNA-binding proteins.
Among the 537 available motifs in the JASPAR 2018 data-
base, 193 were significantly enriched (odd ratio > 1), indicat-
ing that ORIs are associated with a large number of protein
binding sites (Figure 2(d)). Furthermore, 49 TFs of the
C2H2 family accounted for the largest proportion of 193
TFs. C2H2 family has been shown to be more prone to bind-
ing to GC-rich motifs [34]. This finding is consistent with
the conclusion that ORI of H. sapiens is located in GC-rich
regions [24]. Among the most enriched and common motifs,
SPI1 and MAF1 have significantly higher ORI percentages
with prominent OR values (Figure 2(d)). The two motifs
are both G-rich sequences. Investigations have discovered
that SPI1 enhances the speed of DNA replication by acting
particularly on elongation [35], and that MZF1 can activate
the expression of MCM4 to promote the initiation of DNA
replication [36]. That indicates they serve important roles
in process of DNA replication.

Based on the above-mentioned DNA motif enrichment
analysis, we explored the possibility of using the occurrences
of DNAmotifs to predict ORI. We built an RF classifier using
537 available motifs from the JASPAR 2018 database and
obtained satisfactory prediction performance with an AUC
of 0.9046 (Figure 3(a)) and AUPRC of 0.8807 (Figure 3(b)).
Similarly, we also picked out the optimal 20 variables of
DNA motifs according to their VI scores for further analysis
(Figure 2(f) and Table. S1). We found that the fork-head box
(FOX) family motifs (FOXL1_MA0033.1, ranked 1st;
FOXL1_MA0033.2, ranked 9th; and FOXC1_MA0032.1,
ranked 14th) showed optimistic predictors for ORI
classification. Fox family TFs were demonstrated to play crit-
ical roles in regulating DNA replication and cell cycle, in
which they can directly participate in DNA replication and
determine the global replication timing program in a
transcription-independent mechanism [37]. GATA family
motifs (GATA3_MA0037.1, ranked 8th; GATA2_
MA0036.1, ranked 11th) were also observed to have higher
levels in the S phase of DNA replication [38], which
explained their higher contribution to the ORI prediction
model. This indicates that RF can select effective DNAmotifs
for ORI recognition.

2.3. ORIs Can Be Predicted from Chromatin Interaction. An
important feature of ORIs is that their activation is usually
synchronous in that several consecutive replication units
form a replication cluster [39]. As shown in Figure 4(a), each

replication unit (replisome) contains an average of three to
four potential flexible replication origins (blue circles) [40].
These replication units (chromatin loop) interact to form a
replication domain (RD), in which the selected ORIs will
be synchronously activated (green circles) within the cluster
by gathering at specific times during the S phase. The
CoREP model pointed out that replication activation events
may take place preferentially at CTCF-mediated loop
anchors within each RD and then propagate to the periphery
of the domain according to the observed spatiotemporal pat-
tern of replication foci (RFi) propagation during early S
phase [41]. Recently, the CRISI model was proposed to
reveal a new ORI selection mechanism, in which multiple
high-efficiency ORIs locate at the periphery of the topologi-
cally associating domains (TADs) at the beginning of S
phase and are preferentially fired under the influence of
the replication machinery protein PCNA [42]. Thus, the
three-dimensional (3D) genome structure plays a regulatory
role in ORI selection.

To investigate if chromosome conformation data could
contribute to ORI prediction, ChIA-PET data [43] and Hi-
C data [44] of K562 were collected. Subsequently, chromatin
interaction abundance [45] and the overlapping ratio
between anchors and ORIs were calculated to establish a
model on the basis of RF classifier. Finally, a model with
an AUC of 0.8488 (Figure 3(a)) and AUPR of 0.8781
(Figure 3(b)) was generated by six-dimension features.

In which, the features of RNA polymerase II- (Pol2A-)
mediated loops were ranked first and second, respectively
(Figure 3(d), green bar) in the 626-dimension fusion feature
set described as below, indicating that chromatin interaction
information is meaningful for the detection of ORIs. This
result of the model confirmed that the information from
chromatin interaction could provide effective help for the
recognition of ORIs.

2.4. Feature Selection Strategy Is Significant for ORI
Prediction. To further improve the predictive performance
of the model, the extracted features from epigenomic marks,
DNA motifs, and chromatin loops were combined to form a
626-dimension feature set. As shown in Figures 3(a) and
3(b), the model trained on the fusion feature set achieved
better performance (AUC = 0:9627 and AUPR = 0:9602)
when compared with the models trained on the single fea-
ture set, suggesting that the feature fusion strategy is effective
in the detection of ORIs and could produce significant per-
formance improvement.

However, heterogeneous features may lead to dimension
disaster, bring noise, and reduce the robustness of the model,
which may undermine model performance. To overcome
these disadvantages, based on generated VI scores, the recur-
sive feature elimination (RFE) technique [46] was applied to
optimize the features. Our experiments showed the perfor-
mance of the model still increased slightly (AUC from
0.9627 to 0.9638) when the feature dimension reduced from
626 to 60 (Figure 3(c)), which demonstrated that there was a
lot of information redundancy and noise in the initial fusion
features. In addition, the dimensions of the selected features
are significantly lower than that of the original fusion feature

5Research



set, which shortens the running time of the prediction model
and saves computing resources (Table. S2). As the feature
dimension is further reduced from 60 to 1, the prediction
performance of the model showed a downward trend. The
reason for the phenomenon is that fewer features cannot
afford enough information of replication initiation. Thus,
these results provide useful insights when considering build-
ing prediction models.

Then, the importance and contribution of features were
further analyzed to find out which feature was more valuable
to the model performance after feature selection. In the 60-
dimension optimal feature set, the epigenetic mark-based
features, sequence-based features, and three-dimension
genome-based features account for 48.3%, 48.3%, and 3.3%,
respectively. Although these screened epigenomic-based
and sequence-based features are much more than the three-

dimension genome-based features, they only account for
34.9% (29/83) of the total epigenomic marks and 5.4% (29/
537) of the total sequence features. Accordingly, two features
based on the chromatin interaction were with highest VI
scores (Figure 3(d)), which means that the three-dimension
genome features are new information independent of epige-
nomic and sequence, and are indispensable information in
ORI recognition. If we further reduce the dimension of the
optimal feature set to 20 features, the model can still produce
an AUC of 0.9515. Among the top 20-rank features, 60.0%
(12/20) were epigenomic mark-based features, 30.0% (6/20)
were sequence-based features, and 10.0% (2/20) were chro-
matin interaction-based features (Figure 3(d)).

From the above analysis, it can be concluded that the
feature encoding schemes used in the study are effective to
improve the prediction ability of the model. In addition,
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the epigenomic information plays a more important role in
the initiation of genome replication. We speculate that
sequence-based features can be used as complementary
information for epigenomic marks and chromatin interac-
tion to identify ORIs.

2.5. The Different Strategies of Negative Class Prove Model
Performance Is Not Inflated. To assess whether the high
prediction accuracy of the model was overestimated due to
the way we selected non-ORIs (the negative class), we
designed the three different strategies on the basis of selected
top 60 features.

First, we considered that the number of non-ORI regions
far exceeds the number of ORI regions in the whole genome.
Constructing a dataset with a lower positive to negative ratio
could better reflect the reality. Therefore, positive samples
were divided into five equal subpositive sets, and then, we
combined them with whole negative samples to form five

new datasets with a 1 : 5 ratio of positive and negative. On such
datasets, our model could still produce very good AUCs (the
average is 0.9536). The AUPRs (the average is 0.8473) were
also much larger than the AUPR baseline of 0.1667
(Figure 5(a)).

Second, we focused on ORIs with gene promoter activity
and built an RF classifier to discriminate ORIs associated
with the promoters (35,977 sites) from promoters without
ORIs (35,801 sites). The model could still achieve the satis-
factory results (AUC = 0:9148 in Figure 5(b) and AUPR =
0:9109 in Figure 5(c)).

Third, we constructed a classifier to distinguish ORIs
associated with enhancers (1,950 samples) from enhancers
without ORIs (63,415 sites). Due to the high-class imbalance
of data, we observed lower AUC (0.7902; Figure 5(b)) and
AUPR (0.1418; Figure 5(d)), suggesting that false positives
can be detected by our method. The three experiments sug-
gested that the excellent accuracy of our model was not
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Figure 5: Different strategies of model validation by controlling negative class. (a) AUCs and AUPRCs for five imbalanced datasets of K562.
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exaggerated by the selection of non-ORI strategy in the
genome.

2.6. Independent Datasets Validate High Predictive Ability of
Model. To further evaluate the predictive ability of the pro-
posed model, we designed two independent datasets, which
are separated from the benchmark dataset and downloaded
from the Replication Domain database [47].

The model to be verified was established based on the
60-dimension optimized features. As shown in Figure 6(a),
the AUC of the model on the independent dataset is
0.9387, indicating that our model can effectively identify
the ORIs. For the potential ORIs in Replication Domain
database, we observed that our model could correctly iden-
tify 123,467 of 148,211 ORIs (83.30%) (Figure 6(b)). The
accurate predictions of the above two experiments demon-
strate that the model trained by 60-dimension features is a
reliable strategy for recognizing ORIs.

Meanwhile, compared with our previous work that only
used sequence information to predicted ORIs [24], iORI-
Euk can recognize 115,718 of 148,211 ORIs (78.08%). There-
fore, using only fewer dimensions of epigenomic marks,
DNA motifs, and chromatin interaction may achieve better
prediction outcomes.

2.7. The Proposed iORI-Epi Method Can Be Transferred to New
Cell Lines.We further conducted cross-cell line validation using
the knowledge of transfer information [48] to examine whether
the model trained with K562 data could recognize the ORIs in
other cell lines (here, we considered MCF7 and HCT116 cell
lines, which were downloaded from GSE28911 [49]). The epi-
genomic information provided in the ENCODEdatabase is dif-
ferent for different cell lines. Therefore, we need to select the
intersection to obtain the epigenomic marks shared by the
three cell lines. In the top 60 features, only 8 epigenomic marks
were available for K562, MCF7, and HCT116 cell lines includ-
ing 3 HMs, 3 TFs, DNA methylation, and DNase I (Table. S4).
To generate the chromatin interaction features, we downloaded
loop data for MCF7 and HCT116 from GEO database
(GSE39495) and ENCODE (ENCFF246ZKR), respectively.

As a result, a total of 39-dimension fusion features were
extracted from ORI benchmark datasets for the three cell
lines. Using these features, we rebuilt the models on K562,
MCF7, and HCT116 data and then yielded AUCs of
0.9539, 0.9329, and 0.9527, respectively (Figure 6(c)). Subse-
quently, we used any model to predict the datasets from
other cell lines, and the obtained AUC heat map is shown
in Figure 6(d) to describe the prediction performance of
cross-cell line validation. From the heat map, it can be
observed that all AUCs are greater than 0.85; that is, the
ORI prediction across-cell line is successful. That also indi-
cates our proposed method can be transferred to a dataset
of other cell lines.

And then, based on the above-mentioned three models,
the potential ORIs of the other two cell lines were used as
independent sets, respectively. The cutoff value of prediction
probability is set as 0.5, which means that prediction accu-
racy greater than 0.5 is regarded as true ORIs. We found that
the probabilities of correctly predicting ORIs were greater

than 70% (Figure S2a), suggesting that a model from one
cell line can be used to identify the ORIs of another cell
line to some extent.

Next, we wondered whether only using epigenetic marks
and chromatin interaction features could also produce better
performance. To this end, we eliminated the 39 sequence fea-
tures, retained 8 epigenetic marks and 2 chromatin interaction
features, and repeated the above prediction process. Finally,
AUCs (0.8023, 0.8032, and 0.7730) and AUPRs (0.8454,
0.8266, and 0.8197) were generated on K562, MCF7, and
HCT116 benchmark datasets, respectively (Figure S2b and
S2c). And all calculated AUC values were greater than 0.54
in the heat map of cross-cell line (Figure S2d). This suggests
that feature set integrating epigenetic marks, chromatin
interactions, and sequence features contains more valuable
information and is more conducive to generating robust
models than single types of features. It also reflects that
epigenomic marks, chromatin interaction information, and
sequence features all play important regulatory roles in
replication initiation.

2.8. GO Term Enrichment Analysis in Early ORIs and Late
ORIs. The replication of eukaryotic chromosomes takes
place in segments that generally replicate in a predictable
temporal order, which is known as the replication timing
(RT) program [50]. The RT program is related to many
key biological processes, including cell fate commitment,
the 3D structure of chromosomes, and transcription regula-
tion. However, the biological significance of RT remains a
puzzle [51].

To investigate whether there are specific pathways or gene
sets that are enriched in ORIs of different RT states, we con-
ducted GO term enrichment analysis on the genes overlapping
with each of ORIs in early and late RT states [52]. According to
statistics, the specific genes that overlap with early-state and
late-state ORIs are 5,936 and 439, respectively (Figure 4(b)).
This indicated that the gene dose of early replication initiation
genes is higher than that of late replication initiation genes.
Next, Figures 4(c) and 4(d) show the 10 most significantly
enriched GO terms in each ontology group of early-state and
late-state ORIs, respectively. We found that early ORIs are
mainly involved in the process of modulating the frequency,
rate, or extent of cell morphogenesis at the cellular level, such
as regulation of cell morphogenesis, extracellular structure
organization, extracellular matrix organization, cell junction
organization, while late ORIs are enriched with GO terms
related to stress response or defense response and are enriched
in processes involving in neural cell regulation and tissue
development.

2.9. Enrichment Analysis between Promoter-Related TFs and
ORIs. Both DNA replication and gene transcription occur in
the active chromatin compartments, and double-stranded
DNA needs to be unraveled, raising a pivotal question, that
is, whether these processes will share transcription factors
to save resources. Previous studies have suggested that tran-
scription may affect the initiation of DNA replication, but
the underlying mechanism of this interaction in mammalian
cells remains elusive [53, 54]. In general, as the binding sites
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of RNA polymerase (RNApol), promoters are usually
located near the transcription start site (TSS) to turn genes
on or off [55]. The eukaryotic promoter region is rich in a
variety of motifs, mainly including TATA/TBP, ETS family,
E2A family, SP1-like, NRF, and CREB/ATF [56].

To investigate whether TFs bound on promoter are
related to DNA replication initiation, we plotted the enrich-
ment distributions of several major TFs on TSS and ORI
(Figure 7(a)). We found that promoter-related TFs are
intensely enriched in TSS locations compared with TSS
flanking regions. In addition, ORIs displayed a significantly
lower enrichment score at the TSS locations. Moreover,
ATF1 and ETS1 showed significant enrichment in the ORI
regions (Figure 7(b)). According to previous studies, the

bZIP transcription factor (ATF1) is an activator of the ana-
phase promoting complex and facilitates degradation of the
mitotic cyclin Cdc13 and the securin Cut2 [57]. ETS tran-
scription factors are novel regulators of MCM4 origin,
whose binding sites are localized between two divergently
transcribing MCM4 and PRKDC genes [28]. Therefore,
these two TFs play an important role in the process of tran-
scription and replication.

Our findings imply that there is a chronological relation-
ship between replication and transcription, and fewer TFs
can participate in more biological processes to improve effi-
ciency. Recently, Liu et al. proposed a “transcription bull-
dozing” model to describe the key role of transcription in
maintaining genomic stability during DNA replication
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initiation in mammalian cells [58]. Therefore, mammalian
cells employ an extremely sophisticated and multilayered
coregulation mechanism to replicate and transcript in a
highly coordinated manner.

3. Discussion

Various genetic and epigenomic signatures, including CpG
islands, G-quadruplexes, nucleosome-depleted regions, and
histone modifications, have been found to be associated with
the initiation of DNA replication in eukaryotes [59]. Hence,
it is obviously insufficient to decipher the mechanism of repli-
cation initiation selection only by DNA sequence information.
For the first time, various functional genomics data, including
ChIP-seq data of transcription factors and histone modifica-
tions, DNase-seq data of chromatin accessibility, RRBS-seq
data of DNA methylation, and chromatin loops, were used
to predict ORIs in this study. The method named iORI-Epi
displayed excellent prediction accuracy in training dataset.
Moreover, the prediction results on other cell lines and inde-
pendent datasets also indicate that our model is highly scal-
able. We believe that iORI-Epi could serve as a useful tool
for the discovery of novel ORIs and pave the way for a better
understanding of DNA replication initiation.

To explore the conservative pattern of epigenome prefer-
ence for DNA replication initiation, the ChIP-seq peaks of his-
tone modification and transcription factors in K562 cell line
from the ENCODE database were mapped to corresponding
ORI regions. Previous research has shown that H3K9me3 has
the highest level during and just after replication in HeLa S3
cells, in which H3K9me3 may be required for the regulation
of replication at both heterochromatin and euchromatin
regions [60]. However, we found that H3K9me3 is not signifi-
cantly distributed in the ORI regions from IGV map
(Figure 2(a)) and colocalization frequencies (Figure 2(b)).
The genome-wide ORI distribution also showed that
H3K9me3 had no significant signal both in the ORI-rich region
of K562 and MCF-7 cell lines (Figure S3). Additionally, the IV

value of H3K9me3 (VI = 5:61e − 05) also reflected that it has
almost no contribution to the classification model. These
results suggest that the initiation of DNA replication may be
cell-specific, which also lays the foundation for the study of
the cell-specific mechanism of ORI.

The enrichment distribution of DNA-binding proteins in
the ORI regions and ORI flanking regions also showed an
interesting distribution trend, in which DNA-binding proteins
were symmetrically distributed almost centered on the mid-
point of ORI (Figure 2(c)). All lines intersect at ±250bp posi-
tions, forming a distinct ORI region and ORI flanking region.
Therefore, we speculated that the length of ORI may be less
than 500bp. In fact, approximately 85% of ORIs were less than
500bp in length for K562 cell line (Figure S1a), which exactly
supports our conjecture. We also found that three cell lines
(K562, MCF7, and HCT116) have similar distribution of
length and distance between two adjacent ORIs, which all
obey the gamma distribution [61] (Figure S4). This is a very
interesting discovery, which provides a fundamental principle
for the study of ORIs in human cell.

Moreover, we also propose several directions worth
exploring in the future. Firstly, in this work, an
epigenome-based model was constructed to predict ORIs,
and satisfactory performance and computational efficiency
were achieved. Since the initiation of eukaryotic genome
replication is such a sophisticated process, it makes sense
to apply the information from epigenomic signals and
DNA-binding proteins to target specific ORIs. As a result,
our computational methodology can be further extended to
ORI identification in other eukaryotic species, tissues, and
cell lines. Second, RNA polymerase II can redistribute
MCM complexes to nontranscribed regions to minimize
replication-transcription collisions and maintain genome
stability in mammalian cells [58]. Therefore, it is worth
probing into the relationship between transcription and
replication selection. Third, here, we observed that chroma-
tin loop anchors are important in predicting ORIs
(Figure 3(d)). It is necessary to extract more features from
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3D genome to identify ORIs and explain how the replication
initiation event is spatially regulated in a replication domain.

4. Materials and Methods

4.1. Benchmark Dataset Construction.We collected K562 ORIs
with genomic location in BED format from GSE28911 [49] as
positive samples, the replication initiation profiles obtained
throughmassively parallel sequencing of nascent DNA strands.
Meanwhile, the length distribution of ORIs (Figure S1a) and
the distance distribution between two adjacent ORIs
(Figure S1b) indicated more than approximately 95% of ORIs
between 100bp and 800bp in length, and more than 60% of
the adjacent ORIs were less than 10,000bp. Therefore, the
sequence fragments with length in ranges of 800-1000bp
located between the adjacent ORIs with length more than
10,000bp were selected as on-ORI samples.

Generally, independent datasets should be established for
objectively evaluation proposed model. Therefore, we divided
the benchmark dataset into training dataset and independent
dataset in a ratio of 7 : 3 in both positive samples and negative
samples (Figure S1c). The training dataset was used to build
classification model, in which 8/10 is used to train the model
and 2/10 is used to test and tune the model. Once the model
is determined, the independent dataset was applied to further
validate the model. In addition, the data of K562 ORIs is also
collected from another database called Replication Domain
[47] to generate the second independent dataset to test the
performance of the model.

4.2. Encoding Schemes. We downloaded 83 epigenomic marks
with bed format from the ENCODE for K562 cell line, which
included 69 TF binding profiles, 12 HMs, chromatin accessibil-
ity, and DNA methylation (Table S2). The human genome
assembly hg19 was as our reference. We calculated the
overlap ratio of epigenomic marks with ORI and non-ORI
regions as feature vectors.

We also downloaded 537 DNAmotifs of transcription fac-
tor binding sites from the JASPAR 2018 database [62]. Accord-
ing to the corresponding position weight matrices, we can call
these motifs over DNA sequences using a minimum matching
score of 80%. Therefore, the number of motif occurrences
within ORI and non-ORI regions was calculated.

As for the part of chromatin interaction features, the ChIA-
PET data was download from NCBI/GEO, which included
Pol2A-mediated loop data (GSM970213) and CTCF-
mediated loop data (GSM970216). The Hi-C data was collected
from Rao’s study (GSE63525). For each loop data, the number
of ChIA-PET/Hi-C interactions that have overlapping with the
ORI regions at both ends was used as the feature of chromatin
interaction abundance. We also calculated the overlap ratio
between loop anchors and ORI regions.

4.3. Machine Learning. The random forest (RF) algorithm is
a flexible and practical machine learning method based on
bagging, which consists of a large number of individual deci-
sion trees that operate as an ensemble. Here, we used an R
package ranger to execute RF classifier with default package
parameters. Meanwhile, the feature importance score was

calculated using the mean decrease in accuracy in the out-
of-bag sample. Thus, the features were ranked from large
to small according to the obtained feature importance score,
and then, the best feature subset that can produce the best
prediction performance is obtained by the recursive feature
elimination (RFE) technique [46].
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Supplementary Materials

Figure S1: the information of ORIs in human K562. (a) The
length distribution of ORIs. (b) The distance distribution
between two adjacent ORIs. (c) The benchmark dataset was
separated training dataset to build model and independent
dataset to validate model in a ratio of 7 : 3. Figure S2: (a) a
model of one cell line obtained by 39-dimension features
was used to identify the potential ORIs of the other two cell
lines. (b, c) The analysis of the robustness and reliability of
model based on 8 epigenomic marks and 2 chromatin interac-
tion features. The AUC and AUPR values of K562, MCF7, and
HCT116 based on 10-dimension features are recorded, respec-
tively. (d) The heat map showing the prediction performance
in cross-cell line validation based on 10-dimension epigenetic
marks and chromatin interaction. Once a classification model
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of cell line was established on its own dataset in columns, it
was validated on its own data as well as another cell line data
in rows. Figure S3: a genome browser view of ORIs with
H3K9me3 signal in whole genome for K562 and MCF-7 Fig-
ure S4. The length distribution of ORIs (left) and the distance
distribution between two adjacent ORIs (right) in K562,
MCF7, and HCT116 cell lines. Table S1: functional annota-
tions on DNA replication-related HMs and TFs in the top
20 features. Table S2: the 83 epigenomic marks were down-
loaded from the ENCODE for K562 cell line. Table S3: time
of growing tree model and computing permutation impor-
tance for different feature dimensions. Table S4: in the top
60 features, 8 epigenomic marks including 3 histone marks,
3 transcription factors, DNA methylation, and DNase I were
downloaded from ENCODE forMCF7 andHCT116 cell lines.
(Supplementary Materials)
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