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A B S T R A C T

Background: Imaging-based characteristics associated with the progression of stable coronary atherosclerotic lesions are poorly defined. Utilizing a combination of
optical coherence tomography (OCT) and intravascular ultrasound (IVUS) imaging, we aimed to characterize the lesions prone to progression through clinical
validation of a semiautomated OCT computational program.

Methods: Patients with stable coronary artery disease underwent nonculprit vessel imaging with IVUS and OCT at baseline and IVUS at the 12-month follow-up. After
coregistration of baseline and follow-up IVUS images, paired 5-mm segments from each patient were identified, demonstrating the greatest plaque progression and
regression as measured by the change in plaque burden. Experienced readers identified plaque features on corresponding baseline OCT segments, and predictors of
plaque progression were assessed by multivariable analysis. Each segment then underwent volumetric assessment of the fibrous cap (FC) using proprietary software.

Results: Among 23 patients (70% men; median age, 67 years), experienced-reader analysis demonstrated that for every 100 μm increase in mean FC thickness, plaques
were 87% less likely to progress (P ¼ .01), which persisted on multivariable analysis controlling for baseline plaque burden (P ¼ .05). Automated FC analysis (n ¼ 17
paired segments) confirmed this finding (P ¼ .01) and found thinner minimal FC thickness (P ¼ .01) and larger FC surface area of <65 μm (P ¼ .02) and <100 μm (P ¼
.04) in progressing segments than in regressing segments. No additional imaging features predicted plaque progression.

Conclusions: A semiautomated FC analysis tool confirmed the significant association between thinner FC and stable coronary plaque progression along entire vessel
segments, illustrating the diffuse nature of FC thinning and suggesting a future clinical role in predicting the progression of stable coronary artery disease.
Introduction

Coronary arterial plaques that exhibit rapid progression are associ-
ated with a higher incidence of clinically adverse events.1 Although
several recent imaging studies have identified the characteristics of un-
stable coronary lesions that are associated with accelerated luminal
narrowing or future coronary events, including large baseline plaque
volume, large necrotic core, and thin-cap fibroatheroma (TCFA)
morphology by intravascular ultrasound (IVUS) and optical coherence
tomography (OCT), the features associated with the progression of stable
atherosclerotic lesions are less well-characterized.2–4 IVUS may be
important in evaluating coronary disease progression by quantifying
vessel size, plaque burden and distribution, and basic phenotypic plaque
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features through the visualization of the entire vessel wall; however, as a
single modality, it is unable to resolve detailed structural plaque com-
ponents such as fibrous cap (FC) thickness.5

Several reports have demonstrated the utility of combined intravas-
cular imaging with IVUS and OCT to identify the role of FC thickness in
atherosclerotic progression and regression,6–9 and few reports have
similarly incorporated automated software aided by expert reader guid-
ance to analyze FC thickness.9–12 These studies, however, primarily
examined vessels during an active acute coronary syndrome. Addition-
ally, FC measurement has traditionally been recorded at single or select
time points along focal lesion segments, in turn failing to capture the
3-dimensional morphology of the true FC. In our dual-modality analysis,
we sought to validate a novel, fully volumetric and comprehensive OCT
nd; OCT, optical coherence tomography; TCFA, thin-cap fibroatheroma.
graphy.
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computational algorithm relative to traditional experienced-reader
analysis, while demonstrating whether it offers a more complete under-
standing of FC thickness as a potential predictor of stable coronary
atherosclerotic progression.
Methods

Study patients

The Loyola University Medical Center Intravascular Imaging Data-
base was established in 2009 and was approved by the institutional
review board to allow for retrospective analysis of intravascular im-
aging procedures, including IVUS and OCT, performed at the time of
coronary intervention. All patients within this registry of >500 subjects
provided written informed consent. Included in this database are 56
patients with symptomatic stable CAD enrolled as part of the Charles
University Prediction of Extent and Risk Profile of Coronary Athero-
sclerosis and Their Changes During Lipid-lowering Therapy Based on
Non-invasive Techniques (PREDICT) trial (NCT01773512) who un-
derwent angiography and culprit lesion percutaneous coronary inter-
vention, with IVUS evaluation in a nonculprit vessel both at the index
procedure and 12-month follow-up. We identified a subset of 31 pa-
tients from this cohort who underwent OCT imaging in the same
setting as IVUS at the time of index procedure. After excluding patients
with poor capture or quality of OCT images (n ¼ 2) or with lack of
either a progressing (n ¼ 5) or regressing (n ¼ 1) coronary segment
within the nonculprit vessel from baseline to follow-up, 23 patients
were analyzed. Of these 23 paired samples, 6 additional studies were
excluded from automated FC analysis because of insufficient lipid
plaque burden in either paired segment (Figure 1). Before the index
2

procedure, baseline demographic, laboratory testing, and clinical data
were recorded (Supplemental Material).
IVUS image acquisition

After coronary angiography and revascularization of the culprit
lesion, IVUS gray-scale imaging of the nonculprit vessel was performed
using standard techniques with an Eagle Eye 20-MHz 2.9F phased-array
IVUS probe (Volcano Corporation), utilizing automatic pullback
(research pullback, model R-l00) at 0.5 mm/s. Before any intravascular
imaging procedure, all participants received 200 μg of intracoronary
nitroglycerin to prevent catheter-induced vasospasm. IVUS was per-
formed in an identical manner and vessel location at both baseline and
follow-up time points.
OCT image acquisition

After acquiring IVUS imaging during the index procedure, OCT im-
aging was performed in the identical vessel segment via a frequency-
domain ILUMIEN OCT catheter (St. Jude Medical). After contrast
administration via power injection to create a blood-free field, OCT im-
ages were recorded at 20 mm/s for a total of 54 mm from distal to
proximal within the vessel.
Target plaque identification

IVUS pullback data were stored on DVDs for offline quantitative
analysis by the University of Iowa Institute for Biomedical Imaging, a
highly experienced center with proprietary software analyzing IVUS/
Figure. 1. Flowchart of study patient selec-
tion. A total of 23 subjects with stable coronary
artery disease who underwent nonculprit vessel
imaging with optical coherence tomography and
intravascular ultrasound at baseline and
intrvascular ultrasound at follow-up were
included in the study. Of these, 6 patients did
not undergo fibrous cap analysis due to insuffi-
cient lipid plaque to assess these parameters.
CAD, coronary artery disease; FC, fibrous cap;
IVUS, intravascular ultrasound; OCT, optical
coherence tomography; PCI, percutaneous cor-
onary intervention.
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OCT imaging. Frame-by-frame coregistration of baseline and follow-up
IVUS image pullbacks was performed through an optimization tech-
nique based on geometrically correct, full 3-dimensional–vessel recon-
struction, a previously validated approach with registration performance
statistically identical to human experts, and plaque analysis was per-
formed for each patient in increments of adjacent 5-mm vessel
segments.13–16 Plaque burden of each frame in both baseline and
follow-up pullbacks was then calculated as follows: (external elastic
membrane cross-sectional area [CSA] – lumen CSA) / external elastic
membrane CSA. The absolute change in plaque burden from baseline to
follow-up was defined as the difference between the averaged value of
each 5-mm segment. Two 5-mm segments were identified per patient: the
segment with the greatest degree of plaque progression and the segment
with the greatest degree of plaque regression, as determined by the
change in IVUS-derived plaque burden. With this approach, a paired
sample analysis was performed. To ensure examination of identical re-
gions between imaging modalities, IVUS images were coregistered with
OCT using anatomical landmarks, including measured distances from the
vessel ostium and side branches.
IVUS image analysis

All IVUS pullback frames were quantitatively analyzed for coronary
plaque morphology using a proprietary in-house automated system.13

Morphological assessment included luminal CSA, external elastic mem-
brane CSA, eccentricity ([maximum plaque thickness – minimum plaque
thickness] / maximum plaque thickness), total plaque, and plaque
burden.17 Additionally, the Liverpool Active Plaque Score, a validated
method to discriminate acute coronary syndrome lesions from clinically
stable lesions, was determined.18
OCT image analysis

Experienced readers. OCT images were stored in DICOM format and
analyzed on a dedicated offline workstation (St. Jude Medical) with
LightLab Imaging software by 2 experienced readers (J.J.L., N.K.) using
the previously described validated criteria.19–21 In case of disagreement,
adjudication was performed by consensus.

The minimal and mean FC thicknesses were measured at 1-mm in-
tervals as the distance from the lumen edge to the lipid pool, with
measurements obtained 3 times at the thinnest location and at randomly
selected sites within the frame, respectively (Figure 2). Values for each
frame were subsequently averaged. TCFA was identified as a lipid-rich
Figure. 2. Reader measurement of fibrous cap thickness. Cross-sectional OCT
demonstrates the measurement of fibrous cap thickness (white arrow) within a frame
optical coherence tomography.
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plaque with an arc of �1 quadrant (90�) and an overlying FC below a
particular threshold at its thinnest part; cap thickness cutoffs of <65 μm
and <100 μm were utilized based on postmortem findings and higher
thresholds used in previous studies, respectively.22–25 Although an
important component of TCFA, the presence of macrophages was not
identified because of the controversial capability of OCT in delineating
this feature from various plaque components such as cholesterol crystals
and microcalcifications, previously demonstrating low reproducibility by
expert reader analysis.26,27 Measurements of remaining plaque features
were obtained using the standard criteria (Supplemental Material).

Automated software. Following the traditional OCT analysis by experi-
enced readers, automated segmentation of luminal and FC surfaces was
performedwithin each frame of the target OCT segments that contained lipid
plaque, using validated software for this purpose.28,29 This was achieved
using software tracings delineated through an entirely 3-dimensional LOG-
ISMOS graph-based approach developed for an intravascular OCT environ-
ment adapted to a coronary atherosclerosis scenario.15,28 These borders were
then reviewed and in the event of inaccurate border delineation, efficiently
corrected by an expert reader (N.K.) using our “Just-Enough-Interaction”
adjustment method, as shown in Figure 3 and described in the Supplemental
Material.13,28 The use of manual adjustment of computer-generated luminal
contours is an approach that has previously been employed.10–12 The angular
range of FC in each frame was also specified by the expert reader. Using the
entire extension of FC overlying lipid plaque in a segment, quantitative
volumetric analyses of each 540-frame pullback were then performed to
determine the mean and minimal FC thickness, percentage of frames with
minimal FC thickness of <65, 100, and 200 μm, overall and percentage of
total FC surface area of <65, 100, and 200 μm, mean and maximum total
lipid arcs, as well as FC volume, which was calculated as FC area multiplied
by frame spacing (0.1 mm in our case).13–15,29
Statistical analysis

All continuous measures are expressed as mean and SD or median and
IQR based on their underlying distribution. Categorical risk factors are re-
ported as frequency and proportion. Because of the presence of paired data,
conditional logistic regression models were used to compare descriptive
IVUS variables between segments. OCT variables were compared using
exact conditional logistic regression models to estimate the odds of expe-
riencing plaque progression as a function of univariable clinical measures.
In each model, a binomial distribution was specified for the response var-
iable, whereas logit links were used to estimate the odds ratio for each
images of signal-rich fibrous cap overlying a signal-poor lipid pool. The inset
, achieved using a length measurement tool on an offline OCT workstation. OCT,



Figure. 3. JEI tool enabling manual correc-
tion of automatic wall layer analysis. (A)
Original cross-sectional optical coherence to-
mography image of the lipid-rich plaque. (B)
Angular range of FC overlying the lipid-rich
plaque, denoted by shaded arcs. (C) Automated
segmentation of FC (green line) and lumen (red
line) using multilayer approach, demonstrating
an inaccuracy (red arrow) in border delineation.
(D) FC border correction by experienced reader
using the JEI adjustment method. (E) Optimized,
recomputed 3-dimensional–connected surfaces
after JEI. FC, fibrous cap; JEI, Just-Enough-
Interaction.
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explanatory variable. Amultivariable analysis of imaging features was then
pursued using a 2-predictormodel, owing to the limited size of thematched
sample. Interobserver agreement of OCT plaque features between experi-
enced readers was quantified using a linear mixed model to estimate the
intraclass correlation coefficient in subcohorts of patients. In each com-
parison, random intercepts were allowed for each patient strata to account
for paired cases. An alpha error rate of P < .05 was considered statistically
significant. All analyses were performed using R 3.5.1 and SAS 9.4.
Results

A total of 31 patients met the entry criteria, and 8 patients were
excluded because of poor image quality or absence of paired intra-
vascular imaging segments. Overall, 23 subjects with stable CAD
who underwent nonculprit vessel imaging with OCT and IVUS at
baseline and IVUS at follow-up were included in all analyses,
excluding those based on lipid plaque. An additional 6 patients did
not undergo FC analysis because of insufficient lipid plaque to assess
these parameters.
Patient population

As summarized in Table 1, the cohort included 70% men with a
median age of 67 years. The left anterior descending artery was the
nonculprit vessel most commonly (43%) imaged. All patients received a
high-intensity statin as part of the PREDICT trial. All patients were taking
aspirin 100 mg before vessel imaging, with nearly all subjects (96%)
additionally on an angiotensin-converting enzyme inhibitor or angio-
tensin receptor blocker. The mean time to follow-up from the index
procedure was 12 (8, 14) months, during which 2 patients underwent
percutaneous coronary intervention for stable angina (1 at the index
culprit site and 1 in a new lesion). No patients underwent intervention at
the nonculprit study segments of interest.
4

IVUS imaging features

The baseline plaque burden in both progressing (39% [33%, 59%])
and regressing (53% [45%, 58%)] segments demonstrated a moderate
burden of atherosclerosis, with the baseline plaque burden (P ¼ .04) and
plaque area (P ¼ .01) inversely related to progression (Table 2). The
changes in plaque burden were modest but differed between segments
(progressing þ2.9 % [þ1.1%, þ5%] vs regressing �4.9 % [�7.5%, �1.9
%], P < .001). Baseline Liverpool Active Plaque Score was similar be-
tween groups (progressing �0.8 vs regressing þ0.3, P ¼ not significant)
and well within the range of stable atherosclerotic lesions (score < 6).
OCT predictors of progression by experienced-reader analysis

Univariable and multivariable OCT analyses by experienced readers
are displayed in Table 2. The presence of early atherosclerosis among
segments is evidenced by the scarcity of calcified plaque (8.6% of total
frames). Experienced-reader analysis demonstrated that progressing
segments had significantly thinner mean FC relative to regressing seg-
ments (250 [200, 290] μm vs 260 [240, 320] μm, P ¼ .01). On further
analysis, plaques were 87% less likely to progress for every 100 μm in-
crease in mean FC thickness (odds ratio, 0.13; 95% CI, 0.01-0.68; P ¼
.01). After adjusting for baseline plaque burden, multivariable analysis
confirmed the significant association between FC thickness and plaque
progression per 100 μm increase in FC thickness (odds ratio, 0.13; 95%
CI, 0.02-0.998; P ¼ .05).
OCT predictors of progression by semiautomated FC analysis

As described in Table 2, a significant difference in mean FC thickness
was confirmed with automated FC analysis (P ¼ .005), which further
demonstrated thinner minimal FC thickness (P ¼ .008), higher percent-
age of frames with FC thickness of <65 μm (P ¼ .01), larger FC surface



Table 1. Patient characteristics.

N ¼ 23

Age, y 66.8 � 9.5
Male 16 (70)
Female 7 (30)
Body mass index, kg/m2 27.9 � 4.3
Follow-up, mos (range) 12 (8-14)
CAD risk factors
Prior tobacco use 12 (52)
Current tobacco use 5 (22)
Diabetes mellitus 5 (22)
Hypertension 22 (96)
Hyperlipidemia 20 (87)
Previous myocardial infarction 16 (70)
Family history of CAD 11 (48)

Medications at index procedure
Aspirin 23 (100)
Calcium channel blocker 10 (43)
Statin 23 (100)
ACE-I/ARB 22 (96)
Beta-blocker 17 (74)

Baseline laboratory data
LDL, mg/dL 83 � 32
HDL, mg/dL 49 � 16
Total cholesterol, mg/dL 155 � 36
Triglycerides, mg/dL 128 � 53
Lipoprotein(a), mg/dL 34 � 32
hs-CRP, mg/L 1.3 � 1.5
MMP-9, ng/mL 3.7 � 3.7

12-Month laboratory data
LDL, mg/dL 56 � 15
HDL, mg/dL 46 � 10
Total cholesterol, mg/dL 125 � 21
Triglycerides, mg/dL 114 � 43
Lipoprotein(a), mg/dL 38 � 42
hs-CRP, mg/L 2.4 � 4.3
MMP-9, ng/mL 5.2 � 4.3

Imaged vessel
Left anterior descending artery 10 (43)
Left circumflex artery 6 (26)
Right coronary artery 7 (30)

Data are presented as mean � SD for continuous variables and n (%) for cate-
gorical variables. Missing laboratory data were omitted from calculations.
ACE-I/ARB, angiotensin-converting enzyme inhibitor/angiotensin receptor
blocker; CAD, coronary artery disease; HDL, high-density lipoprotein; hs-CRP,
high sensitivity C-reactive protein; LDL, low-density lipoprotein; MMP-9, ma-
trix metalloproteinase-9.
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area of <65 μm (P ¼ .02), and higher percentage of total FC surface area
of<65 μm (P¼ .02) in progressing segments than in regressing segments
(Central Illustration).

No additional OCT features analyzed by either experienced readers or
automated algorithm were predictive of segment progression, including
the maximum or mean lipid arc, minimal lumen area, minimal lumen
diameter, or FC volume. The identification of TCFA and plaque type did
not differ between the groups (Table 2).
Reproducibility

The interobserver agreements between experienced readers in char-
acterizing OCT image features were of good or excellent reliability and
comparable to similar reported efforts.8,30 The intraclass correlation co-
efficient was 0.91 for minimal FC thickness, 0.77 for mean FC thickness,
0.82 for lipid arc, and 0.90 for identification of lipid plaque.
Discussion

The morphological features of coronary plaques play a critical role in
the propensity of an individual plaque to progress; therefore, an approach
focused on imaging-guided identification of these features may be worth
5

investigating. In assessing plaque progression and regression with IVUS-
derived plaque burden and identifying predictive features using baseline
OCT, we found that vessel segments with atherosclerotic progression had
significantly thinner FC, which illustrates the importance of FC thickness
as a predictor of stable plaque progression. To our knowledge, our study
is among the first to employ the complementary features24 of both mo-
dalities, OCT and IVUS, to better characterize lesion progression in stable
coronary disease, and serves as an early validation of the clinical utility of
a semiautomated FC measurement tool for this purpose.

Prior work largely centers on predicting unstable plaque vulnera-
bility; however, the data on the morphological features of stable
atherosclerotic progression are limited. Our investigation builds upon
prior OCT reports that corroborate findings by experienced readers with
a digitized, computational analysis.10–12 This novel automated tool
allowed us to volumetrically assess the true FC along entire lesion seg-
ments using more robust and detailed FC data than previously available,
and in doing so, illustrate the diffuse nature of FC thinning and the sig-
nificance of assessing this parameter beyond basic measures of its min-
imal thickness. The methodology employed in our study is in line with
prior efforts12 and may obviate the need for tedious manual image
analysis by offering a more comprehensive approach to predicting plaque
progression, and thereby, allowing for unique strategies to better corre-
late this progression with future cardiovascular events.

In evaluating patients with angiographically nonsignificant disease
similar to ours, Uemura et al31 found a greater incidence of TCFA and
lipid pools among coronary plaques that developed rapid progression
relative to those that failed to progress. However, this study defined
progression angiographically and failed to quantify FC thickness between
groups. The drawbacks of determining plaque progression and regression
using coronary angiography are well-described.32,33 Instead, IVUS is
widely considered the gold standard imaging modality for measuring
atheroma burden.34,35 The use of multilayer segmentation in deter-
mining IVUS volumes in our study combined automated segmentation
and subsequent computer-aided refinement, which allowed the user to
produce high-quality segmentation results of clinical images. The per-
formance of this approach is statistically indistinguishable from the in-
dependent standard for both luminal and external elastic membrane
surfaces,13–16 and it serves as the foundation on which the correctness of
all derived measurements are based, including plaque burden
quantification.

Further, the use of a single TCFA definition by Uemura et al31 based
on postmortem datamakes it challenging to translate the findings in vivo,
as a number of studies have since reported discrepancies between the
pathologically determined cap threshold and in vivo critical FC thickness,
presumably because of tissue shrinkage during pathological fixation and
processing as well as postmortem artery contraction.23,25,36 In our study,
FC thickness was quantified in an analysis inclusive of all frames within
the target segment to increase the accuracy of overall FC assessment, a
feature incapable with single-frame measurement.24 The nonsignificant
trend of TCFA of <100 μm favoring progressing relative to regressing
segments and similar incidence of TCFA of<65 μm between groups, may
in part be due to the absolute infrequency of TCFA in coronary arterial
segments,10 particularly in early atherosclerotic, stable disease.20,37

Despite the thinner FC in progressing segments, the total FC volume
between groups was similar, which may be explained by the greater
cumulative surface area of FC in progressing segments than in regressing
segments.

Prior studies have identified a relationship between plaque progres-
sion and large baseline plaque burden, yet these investigations focused
on unstable, culprit plaques dissimilar to ours.3,4 Notably, we found that
progressing segments demonstrated smaller baseline plaque burden and
area, a finding consistent with a recent analysis by Bourantas et al9 that
revealed that in nonculprit sites among patients admitted with a
myocardial infarction, plaque regression was greater in segments with
increased baseline plaque burden. With all study subjects on statin
therapy, the established effects of statins on FC thickness and reducing



Table 2. Intravascular imaging features of stable coronary plaque progression.

Variable Progressing (n ¼ 23) Regressing (n ¼ 23) Odds ratio (95% CI) P value

Intravascular ultrasound

Baseline
Plaque burden, % 39 (33, 59) 53 (45, 58) - .04
Plaque area, mm2 6.5 (4.8, 9.7) 9 (7.3, 10.9) - .01
Eccentricity 0.8 (0.73, 0.87) 0.78 (0.57, 0.86) - ns
EEM size, mm2 15.8 (13.3, 18.7) 16.2 (13.1, 22) - ns
LAPS �0.8 (�1.4, 0.5) 0.3 (�0.96, 2) - ns

Follow-up -
Plaque burden, % 45 (38, 58) 47 (39, 54) - ns
Plaque area, mm2 7.2 (5.3, 9.3) 7.5 (6.4, 8.4) - ns
Eccentricity 0.81 (0.62, 0.87) 0.77 (0.64, 0.88) - ns
EEM size, mm2 16.6 (12.8, 18.9) 15.2 (12.8, 21.4) - ns
LAPS �0.61 (�1.5, 0.5) �0.28 (�1.3, 0.83) - ns

Δ Baseline follow-up -
Plaque burden, % 2.9 (1.1, 5) �4.9 (�7.5, �1.9) - <.001
Plaque area, mm2 0.53 (0.17, 1.3) �1.1 (�1.7, �0.5) - <.001
Eccentricity 0.004 (�0.01, 0.03) 0.02 (�0.02, 0.07) - ns
EEM size, mm2 0.12 (�0.15, 0.89) �0.52 (�0.85, 0.08) - .003
LAPS �0.02 (�0.43, 0.33) �0.23 (�1.5, 0.33) - .05
Plaque area, mm2 - <.001
Eccentricity - ns
EEM size, mm2 - .003
LAPS - .05

Optical coherence tomographya

Quantitative index
MLA, mm2 4.5 (4, 6.4) 5 (3.8, 7) 0.9 (0.7-1.2) ns
MLD, mm 2.3 (1.9, 2.7) 2.1 (2, 2.7) 0.8 (0.3-2.5) ns
% area stenosis 37 (20, 54) 37 (14, 48) 2.4 (0.2-37.2) ns
Mean lipid arc, � 102 (35, 194) 101 (0, 163) 1 (1-1) ns
Maximum lipid arc, � 150 (97, 290) 140 (0, 219) 1 (1-1) ns
Mean calcium arc, � 0 (0, 8) 9 (0, 39) 1 (1-1) ns
Maximum calcium arc, � 0 (0, 38) 40 (0, 84) 1 (1-1) ns
Reference lumen area, mm2 7.9 (6.8, 9.6) 7.5 (4.9, 11.4) 1 (0.9-1.2) ns
Reference mean diameter, mm 3.2 (2.9, 3.5) 3.1 (2.5, 3.8) 1.2 (0.5-3.4) ns
Minimal FCT, μmb 90 (80, 150) 100 (70, 130) 0.3 (0.02-3.5) ns
Mean FCT, μmb 250 (200, 290) 260 (240, 320) 0.1 (0.01-0.7) .01
TCFA <65 μm 3 (13) 3 (13) 1.8 (0.4-13.3) ns
TCFA <100 μm 12 (51) 8 (34) 1.4 (0.8-3.3) ns

Plaque type (N ¼ 575 frames)
Lipid 334 (58) 315 (55) 1 (0.9-1.3) ns
Calcified 48 (8) 51 (9) 1 (1-1) ns
Fibrocalcific 83 (14) 69 (12) 1 (1-1.1) ns
No plaque 110 (19) 140 (24) 1 (1-1) ns

Multivariable logistic regression of predictive imaging featuresc

Baseline plaque burden, % - - 0.71 (0.36-1.4) .32
Average FCT, μmb - - 0.13 (0.02-0.998) .05

Semiautomated volumetric FC analysis (N ¼ 17 pairs)d

Mean FCT, μm 243 � 57 294 � 79 - .005
Minimal FCT, μm 56 � 50 96 � 73 - .008
Frames with FCT <65 μm, % 13 � 18 6 � 12 - .01
Frames with FCT <100 μm, % 36 � 28 20 � 27 - <.001
Frames with FCT <200 μm, % 82 � 24 65 � 34 - .04
Total FC SA <65 μm, mm2 0.03 � 0.05 0.01 � 0.02 - .02
Total FC SA <100 μm, mm2 0.3 � 0.4 0.2 � 0.3 - .04
Total FC SA <200 μm, mm2 4.9 � 4.7 3.2 � 4.4 - ns
Total FC SA <65 μm, % 0.2 � 0.3 0.2 � 0.6 - .02
Total FC SA <100 μm, % 2 � 3 1 � 3 - .03
Total FC SA <200 μm, % 28 � 21 17 � 22 - ns
FC volume, mm3 3.8 � 2.4 4.6 � 3.8 - ns
Mean lipid arc 134 � 63 135 � 87 - ns
Maximum lipid arc 197 � 81 184 � 94 - ns

Data are presented as median (25th, 75th percentile) for continuous variables, n (%) for categorical variables, and mean � SD for features by automated FC analysis.
Lipid arcs, FCT, and TCFA, as well as calcium arcs were only calculated in patients with identifiable lipid or calcium plaques, respectively. Of 23 paired samples, 17 pairs
had analyzable lipid plaque. TCFA denotes the number of segments with at least 1 TCFA of <65 μm or <100 μm.
EEM, external elastic membrane; FC, fibrous cap; FCT, fibrous cap thickness; LAPS, Liverpool Active Plaque Score; MLA, minimal lumen area; MLD, minimal lumen
diameter; ns, nonsignificant; SA, surface area; TCFA, thin-cap fibroatheroma.

a Experienced-reader analysis. Exact conditional logistic regression models were used to estimate the odds of experiencing plaque progression as a function of
univariable clinical measures.
b Odds ratio per 100 μm increase in FCT.
c Multivariable analysis using the 2-predictor model because of the limited size of the matched sample.
d Optical coherence tomography–based segment-level analysis.
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Central Illustration. Carpet map character-
ization of FC thickness in progressing vs
regressing segment of a single representative
patient. The top panel illustrates the extraction
of cap thicknesses from our automated FC
assessment tool. The middle panel demonstrates
color-coded gradations of FCT displayed longi-
tudinally (y-axis) and circumferentially (x-axis)
on an unwrapped vessel wall. The shadowed
areas represent nonmeasurable regions caused
by guidewire shadow, residual blood, and
exclusion regions without lipid pool. The bottom
panel highlights the clustering of these cap
thicknesses between groups, with the vertical
dot line indicating the average FCT for each
group. FC, fibrous cap; FCT, fibrous cap
thickness.
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atheroma size may help explain our findings.8,12,34,38,39 The beneficial
effects of statins are consistently greater in lesions with larger plaque
burden, with the greatest degree of progression in those with the least
amount of baseline plaque.34,35,38 The findings of our multivariable
analysis suggest that the impact of plaque burden on atherosclerotic
evolution is at least partly dependent on FC thickness; statin therapy may
have preferentially benefited regressing segments because of a larger
baseline plaque burden and area and/or thicker FC.

The relationship between thinner FC and plaque progression may be
due to subclinical plaque rupture and healing, mediated by repeated
breaks in FC. Healed ruptures are frequent among stable plaque with
mild-moderate luminal narrowing, particularly among those with healed
prior myocardial infarction; 70% of our patient population experienced a
prior myocardial infarction.40,41 Nonetheless, further prospective studies
are needed to elucidate the precise mechanisms of progression at the
level of individual plaques, and to assess the implications of individual
plaque stabilization on cardiovascular outcomes.

In determining FC thickness using OCT, Yonetsu et al25 found that in
95% of ruptured plaques, the thinnest and most representative cap
thicknesses were<80 μm and<188 μm, respectively, suggesting a higher
critical threshold in vivo than that long-established by postmortem data
7

and illustrating the diffuse nature of thinning along entire caps of
lipid-rich plaques. These findings along with those of our automated
analysis, which demonstrated increased FC surface area of <65 μm and
<100 μm in progressing segments, challenge the use of a single FC
threshold to assess for TCFA or concerning plaque progression and
instead support an approach focused on complete FC analysis along
entire lipid plaques. This is made possible by our automated tool, which
simultaneously allows for efficient correction of segmentation errors
using a 3-dimensional, regional approach in lieu of tedious and variable
frame-based manual retracing.28,29

The main contribution of our novel tool is its inherent volumetric
approach to OCT image analysis and determined quantitative indices.
Although conventional manual analyses typically rely on expert-traced
boundaries of coronary wall layers in a small number of OCT image
frames, our method analyzes all image frames in the pullback. As a result,
the measurements of wall morphology are volumetric, integrating
indices that are evaluated from a number of adjacent image frames rather
than from a single measurement. Moreover, our method detects wall
layer surfaces rather than individual frame-based borders, as opposed to
alternative approaches that identify frame-based boundaries of wall
layers separately for each frame without considering their axial context.
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The spatial frame-to-frame context is fully incorporated in the process of
surface segmentation, avoiding frame-to-frame jumps and thus offering
another level of spatial correctness.
Limitations

Several study limitations are worth noting. First, the present study
included a relatively small sample size from a single center. Second, the
analyzed vessels represented predominantly early-stage atherosclerosis;
therefore, the findings may not apply to more advanced disease,
including those with heavy calcification, as they were excluded. Finally,
this was not a true natural history study because all patients received
statin therapy before enrollment and throughout the study period.
Conclusions

Using combined OCT and IVUS imaging, a novel semiautomated FC
measurement tool confirmed the significant association between thinner
FC and stable coronary plaque progression along entire vessel segments,
suggesting a future role in predicting the progression of stable athero-
sclerotic disease. Our findings illustrate the diffuse nature of FC thinning
and the significance of assessing this parameter beyond rudimentary
measures of its minimal thickness, in turn challenging the use of a single
critical FC thickness threshold. The reproducibility and efficiency of our
approach in measuring FC thickness offers promising applicability in
large-volume studies and may ultimately obviate the practice of tedious
manual OCT image analysis.
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