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Abstract

Treatments often come with thresholds, e.g. we are given statins if our cholesterol is above

a certain threshold. But which statin administration threshold maximizes our quality of life

adjusted years? More generally, which threshold would optimize the average expected

outcome? Regression discontinuity approaches are used to measure the local average

treatment effect (LATE) and more recently also the Marginal Threshold Treatment Effect

(MTTE), which shows how marginal changes in the threshold can affect the LATE. We

extend this idea to define the problem of optimizing a policy threshold, i.e. selecting a thresh-

old that optimizes the cumulative effect of the treatment on the treated. We present an esti-

mator of the optimal threshold based on a constrained optimization framework. We show

how to use machine learning (Gaussian process regression) for non-linear estimation. We

also extend the estimation to a conservative threshold that is unlikely to produce harm, and

we show how to include policy cost constraints. We apply these results to estimate an opti-

mal tip-maximizing threshold for tip suggestions in taxi cabs Haggag (2014).

1 Introduction

Many real world optimization problems come in the form of a set of thresholds that need to be

chosen. We give scholarships and access to better schools to students whose grades exceed cer-

tain thresholds [1], give drugs to patients whose lab tests exceed given values [2–4], give loans

to people whose credit scores exceed some value [5], and show ads to unsuspecting web users

whose likelihood to click on our ad exceeds a certain value [6]. In such cases, the decision

maker faces an optimization problem: which level of the threshold will maximize the relevant

welfare criterion? Threshold optimization has received little attention in the econometrics lit-

erature. We focus on Regression discontinuity (RD) designs where a threshold sharply defines

treatment assignment.

RD designs are quasi-experimental designs that allow for local effect estimation [1]. In an

RD design, an intervention is applied based on a cut-off on a running variable: units with a

running variable value below the cutoff are assigned to the control condition, and units with a

running variable value above the cutoff are assigned to the treatment condition (or vice versa).
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Assuming that the average properties of units just above and just below the threshold are simi-

lar, this allows estimation of the effect of the intervention at the threshold (Local Average

Treatment Effect, LATE). These approaches are often implemented using local polynomial

regression [7] and rely on continuity assumptions near the threshold (see [8] for a review of

assumptions and methods). Alternative approaches are based on viewing RD design as a local

randomization procedure [9, 10]. Regardless of the approach, the validity of this estimation

weakens as we move to units away from the threshold, and the treatment effect estimation

is only valid for a very specific subpopulation with running variable values very close to the

threshold.

Recent works have gone beyond LATE estimation, trying to extend the validity of the effect

estimation away from the threshold. [11] use difference-in-difference type assumptions to esti-

mate the effect away from the threshold. [12] assume that the running variable is one of multi-

ple noisy measures of a latent factor, and show that this allows for non-parametric estimation

of the average effect away from the threshold. Angrist and Rokkanen [13] rely on the existence

of a set of covariates that break the dependence of the policy on the running variable, and

allow for extrapolation away from the threshold. [14] develop external validity tests based on

the independence between types of compliance and potential outcomes. [15, 16] use RD poli-

cies with multiple cut-offs to estimate causal effects for different levels of the score variable.

Works mentioned sofar try to extend the validity of a LATE estimate beyond the threshold

of the RD design. [17] also try to estimate how the LATE changes for small changes of the

threshold; hence they evaluate the effect of marginally moving the policy threshold. This is

called the Marginal Threshold Treatment effect (MTTE), and its estimation relies on some

smoothness assumptions on the threshold. Building on the idea of estimating the effect of

changing the threshold, we propose optimizing the threshold to maximize a welfare criterion

(e.g. expected earnings over the population). For optimization, we need to make assumptions

about the behavior of potential outcomes away from the threshold: first, we assume that linear

extrapolation of potential outcomes is valid in a neighborhood around the threshold. Viola-

tions of this assumption introduce biases, and a highly relevant literature discusses related

issues [18–20]. Our assumption is much stronger than continuity assumptions near the thresh-

old; however, similar assumptions are often already necessary for the RD design to have statis-

tical power. Second, we also assume that changing the threshold does not affect the treatment

effect conditional on the running variable. Under these assumptions, we can extrapolate

potential outcomes away from the threshold, and estimate the optimal threshold. While policy

optimization has been explored for observational causal inference (e.g., [21, 22]), to the best of

our knowledge, threshold optimization for RD designs has not been previously explored.

Our work contributes to the literature in the following ways: we introduce the welfare func-

tion in RD designs as an objective function for threshold optimization. We want to emphasize

here that we can design meaningful welfare functions, primarily by assuming that we care

about every individual being treated equally. We effectively want to maximize the population

density weighted individual welfare. We derive estimates for optimal thresholds using local lin-

ear regression and Gaussian process regression. We obtain strategies to improve the threshold,

including strategies that limit the risk of a negative local average treatment effect at the new

threshold. These techniques could be a crucial piece for policy improvement. Finally, we apply

the methods to estimate the tip-maximizing threshold for tip suggestions in taxi cabs [23].

Importantly, our calculations allow us to conceptualize RDD in new ways. We show that

finding a zero treatment effect (on the relevant outcome that we want to maximize) in an RDD

does not imply that the policy is ineffective but can indicate that the threshold is set optimally

if the MTTE also changes at the threshold: in the canonical case of a positive treatment effect

above the threshold, the LATE is zero for an optimally set threshold, and the treatment effect
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derivative is larger to the right of the optimal threshold than to the left of the optimal thresh-

old. Many real-world thresholds are set by experts at levels that are likely to be quite adequate,

so a zero treatment effect is a plausible outcome.

The rest of the paper is organized as follows: Section 2 briefly discusses the framework of

sharp regression discontinuity designs, and Section 3 discusses recent results in the literature

on the derivatives of LATEs. Our contribution begins with section 4, which defines the prob-

lem of optimizing policy thresholds in sharp and fuzzy RDDs and proposes methods of thresh-

old optimization with local linear regression (Section 4.1) and Gaussian process regression

(Section 4.2). Section 5 addresses risk aversion by discussing a modification of the threshold

optimization problem so that the new threshold is unlikely to yield a negative LATE. In Section

7, threshold optimization is used to propose a new threshold for default tip suggestion in cab

fares, that would maximize tip percentage. In Section 8 we summarize results and discuss pit-

falls and future work.

2 Regression discontinuity designs

We first briefly discuss the framework of RD designs and how they can be used to obtain

LATE estimates. For each unit i there are two potential outcomes, Yi(1) and Yi(0), correspond-

ing to treatment and control, respectively. Let Ti denote the assignment for unit i, i.e. Ti = 1 if

unit i is treated and 0 otherwise. In sharp RD designs, the assignment variable T is a determin-

istic piecewise function of a running variable X: Ti = I(Xi� c). For each unit, only one of the

outcomes is observed (they are either treated or control):

yi ¼ TiYið0Þ þ ð1 � TiÞYið1Þ:

Let μ1(x)≔ E[Y(1)|X = x] and μ0(x)≔ E[Y(0)|X = x] be the conditional expectation of the out-

come for treatment and control, respectively. The following assumption is necessary for identi-

fying the LATE:

Assumption 1 (Continuity). μ1,0 are continuous in a small neighborhood around c.
Under the monotonicity of the conditional Average Treatment Effects (ATEs) around c, the

RD design allows the identification of π(c) = E[Y(1) − Y(0)|X = c)], as follows:

pðcÞ ¼ lim
x!cþ

E½YijXi ¼ x� � lim
x!c�

E½YijXi ¼ x� ¼ lim
x!cþ

m1ðcÞ � lim
x!c�

m0ðcÞ ¼ m1ðcÞ � m0ðcÞ:

Thus, the LATE π(c) is identifiable using a parametric or non-parametric estimator for μ1,0, as

μ1(c) − μ0(c). Treatment assignment arbitrarily close to the threshold is considered random

enough so that treated units right above the threshold are valid counterfactuals for non-treated

units just below the threshold.

Typically, μ1,0 are estimated by applying a locally linear regression (LLR) model on data in a

bandwidth h around c. The choice of the bandwidth is important, as an overly broad band-

width will induce biases when the relationship between running variable and outcome are

nonlinear. In practice, researchers may try different thresholds and test how the chosen band-

width affects the obtained estimates [8]. For example, for LLR estimates, [24] propose a

method for selecting an asymptotically optimal bandwidth in terms of the bias in the estimated

LATE. Ideally, the chosen bandwidth must be narrow enough for the observations to be close

enough to the cutoff to avoid large biases, and wide enough to provide adequate power.

Fuzzy RD designs (FRDD) handle settings where the threshold affects treatment assign-

ment, but not deterministically. Let Ti be a binary variable indicating whether unit i has

received treatment, and T? = I(X� c). As with the potential outcomes Y(t), the potential treat-

ment status T(t?), indicates what an individual’s treatment status would be if T? = t? Let f(x)≔
P(Ti|Xi = x) be the probability that unit i with running variable x is treated. The probability of
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treatment changes discontinuously at the threshold, albeit not determinstically: limx!c− f(x) 6¼

limx!c+ f(x), 0< f(x)< 1.

For every individual, we only observe one of the potential treatments T(0), T(1). Individuals

can be classified based on their behavior towards treatment as: (a) compliers: T(0)< T(1), (b)

defiers: T(0)> T(1) (c) always-takers: T(0) = T(1) = 1, and (d) never-takers: T(0) = T(1) = 0.

LATE at the threshold c is the effect of treatment on compliers: πf(c) = E[Y(1) − Y(0)|X = c,
T(0)< T(1)]. LATE identification then requires that, moving the threshold from c to c + � will

not create any defiers, and that there is at least one complier:

Assumption 2 (Strong Monotonicity). T(0)� T(1). P(T(0)> T(1)|X = x) is strictly positive
at X = c.

[25] show that under the additional assumption of local independence, the running variable

can be viewed as an instrumental variable, that affects the outcome only through treatment

assignment at the threshold.

Assumption 3 (Local Independence). Y(0) − Y(1) is independent of T in a neighborhood of
X = c.

Under Assumptions 1, 2 and 3, the LATE at X = c can be identified as

pf ðcÞ ¼
limx!cþE½YijXi ¼ x� � limx!c� E½YijXi ¼ x�
limx!cþE½TijXi ¼ x� � limx!c� E½TijXi ¼ x�

¼
limx!cþm1ðxÞ � limx!c� m0ðxÞ
limx!cþ f ðxÞ � limx!c� f ðxÞ

¼
m1ðcÞ � m0ðcÞ

limx!cþ f ðxÞ � limx!c� f ðxÞ

ð2:1Þ

The local independence assumption implies that the treatment effect does not depend on

the running variable directly or indirectly through confounding. This is often problematic in

empirical applications, and does not allow the exploitation of derivative changes near the

threshold employed in some recent work [18]. [26] shows that Eq (2.1) holds if we replace the

local independence assumption with a continuity of selection into a type of individual:

Assumption 4 (Local Smoothness). The conditional means E[Y(t)|T(0) < T(1), X = x] and
E[Y(t)|T(0) = T(1) = t, X = x], as well as the probabilities P(T(0)< T(1)|X = x), P(T(0) = T(1)|X
= x), t = 0, 1 are continuous in x in a neighborhood of x = c.

Assumption 4 can replace Assumptions 1 and 3 to obtain Eq (2.1). See [26] for a discussion

on the behavioral assumptions that can lead to each of these assumptions. Importantly,

removing the local independence assumption allows us to exploit changes of slope near the

threshold.

3 Effect derivatives in RD designs

RD designs allow the unbiased estimation of the LATE at the predefined threshold under weak

assumptions, and therefore have strong internal validity. Researchers are often interested in

the external validity of the LATE and the effects of marginal threshold changes in the LATE.

[17] show how to estimate the derivatives of the LATE under similarly weak conditions.

Specifically, let S(x, c) = E[Y(1) − Y(0)|X = x, C = c] be the average treatment effect of the

sharp RD policy applied at threshold c on individuals with running variable x. Thus, the effect

depends both on the value of the running variable X and on the implemented threshold C. For

a constant threshold C = c, π(X) = S(X, c) shows how the treatment effect changes for different

values of the running variable X. Respectively, τ(C) = S(C, C) shows how the LATE changes for

different thresholds C. Notice that in the previous section, π(x) and πf(x) implicitly condition
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on C = c. In this section, we view treatment outcome as a function of both the value of the run-

ning variable and the value of the threshold.

[17] define the Treatment Effect Derivative (TED) as p0ðcÞ ¼ @SðX;cÞ
@X jX¼c, and the Marginal

Threshold Treatment Effect (MTTE) as t0ðcÞ ¼ @SðC;CÞ
@C jC¼c. Thus, TED shows how the LATE

varies for marginal changes in the running variable (and a given threshold), and the MTTE

shows how the LATE varies for small changes in the threshold.

For fuzzy designs, let Sf(x, c) = E[Y(1) − Y(0)|X = c, C = c, T(0) < T(1)] be the average treat-

ment effect of the fuzzy RD design policy applied at threshold c on complier individuals with

running variable x. TED and MTTE are similarly defined as p0f ðcÞ ¼
@Sf ðX;cÞ
@X jX¼c, and the Mar-

ginal Threshold Treatment Effect (MTTE) as t0f ðcÞ ¼
@Sf ðC;CÞ

@C jC¼c.

The authors provide conditions under which the TED and MTTE are identifiable. Specifi-

cally, non-parametric identifiability of TED for sharp RD designs is possible under the follow-

ing assumption:

Assumption 5 (Sharp RD TED). E[Y(t)|X = x] is continuously differentiable in x in a neigh-
borhood of x = c for t = 0, 1.

Assumption 5 differs from Assumption 1 required for LATE identification in that it

requires continuous differentiability at x = c, instead of continuity. However, most LATE esti-

mators (parametric or non-parametric) require continuous differentiability at x = c. Under

Assumption 1,

p0ðcÞ ¼ m0
1
ðxÞ � m0

0
ðxÞ: ð3:1Þ

For fuzzy RD designs, the function πf(x) additionally conditions on compliers, i.e. T(0)<

T (1). The corresponding assumption for TED identifiability is the following:

Assumption 6 (Fuzzy RD TED). The conditional means E[Y(t)|T(0) < T(1), X = x] and
E[Y(t)|T(0) = T(1) = t, X = x], as well as the probabilities P(T(0)< T(1)|X = x), P(T(0) = T(1)|X
= x), t = 0, 1 are continuously differentiable in x in a neighborhood of x = c.

Again, this assumption requires continuous differentiability at x = c, instead of just continu-

ity (Assumption 4), which is required for LATE estimation. However, while not explicitly

required for identification, the majority of parametric and non-parametric models used for

estimation are continuously differentiable. Let pf(c) be the ratio of compliers at X = c. Under

Assumptions 2 and 6, the TED for fuzzy RD designs is:

p0f ðcÞ ¼
m0

1
ðxÞ � m0

0
ðxÞ

pf ðcÞ
�

p0f ðcÞpf ðcÞ
pf ðcÞ

: ð3:2Þ

Eq (3.1) can be viewed as a special case of Eq (3.2), where p(c) = 1 and p0(c) = 0. Eqs (3.1) and

(3.2) can be used to identify the treatment effect derivative, which indicates how the effect

would change for individuals with a slightly different value of the running variable. A large

TED brings into question the external validity of the LATE estimator, since it implies that a

small change in the running variable could have a large impact on the treatment effect.

TED captures the sensitivity of the LATE estimator to small changes in the running variable

for a fixed threshold. MTTE answers the question: How would the LATE change for a small

change in the implemented threshold? Naturally, since all of our samples come from a single

RD design with a fixed threshold, additional assumptions are required to estimate MTTE: One

has to make an assumption about how changing the threshold would affect potential out-

comes. One common assumption is the policy invariance assumption [27], which states

that an individual’s outcome only depends on the treatment assigned to the agent, and not
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independently on the policy. We use a weaker version of the policy invariance assumption,

assuming mean independence instead of independence:

Assumption 7 (Policy Invariance). The potential outcomes for both treated and untreated
are mean-independent of the threshold given the running variable:

E½YiðtÞjXi;C� ¼ E½YiðtÞjXi� t ¼ 0; 1:

This assumption may be unrealistic in many policies, in particular if the threshold is moved

a lot. For example, if the threshold test score for acceptance at an elite school becomes lower,

this may affect the treatment effect of admission for higher test score students due to peer

effects. Additional examples are discussed in [27]. However, there are domains where the pol-

icy invariance assumption is more plausible: for example, the treatment effect of receiving a

statin for patients with high cholesterol is not likely to change if patients with lower cholesterol

also take the same statin. Moreover, to allow MTTE estimation, the policy invariance assump-

tion only needs to hold locally at the threshold c.
Under (the local version of) Assumption 7, the MTTE is equal to the TED for sharp

RD designs. Specifically, t0ðcÞ ¼ p0ðcÞ þ @SðX;CÞ
@C

�
�
X¼c;C¼c

. Local policy invariance implies

@SðX;CÞ
@C

�
�
X¼c;C¼c ¼ 0, hence, τ0(c) = π0(c). Similarly, for fuzzy designs t0f ðcÞ ¼ p

0
f ðcÞþ

@Sf ðX;CÞ
@C

�
�
X¼c;C¼c,

and
@Sf ðX;CÞ

@C

�
�
X¼c;C¼c

¼ 0, thus t0f ðcÞ ¼ p
0
f ðcÞ. Thus, under local policy invariance, we can estimate

how marginal changes of the threshold would affect the LATE at the (new) threshold.

4 Threshold optimization

The sign of the MTTE shows whether a marginal increase (decrease) of the threshold is likely

to increase or decrease of the corresponding LATE. In many applications, we are interested in

optimizing this threshold, i.e., we want to identify the threshold that maximizes the benefit of

the interventions on the treated population. Let p(c) be the density of observations (individu-

als) at x, and that x ranges from 0 to xmax. For sharp designs, we define the welfare function as

the cumulative average treatment effect over all treated units:

WðtÞ ¼
Z xmax

t
Sðx; tÞpðxÞdx;

where t is the threshold at which the intervention is applied. Following the notation in Section

3, S(x, t) denotes the average treatment effect of individuals with a running variable of x when

the policy is implemented at threshold t.
Without loss of generality, we assume the desired treatment effect is positive, hence we

want to find the threshold that maximizes W(t). Assuming there are no spillover effects from

the treated to the untreated, maximizing the welfare function corresponds to finding the

threshold c� such that:

c� ¼ arg max
t

Z xmax

t
Sðx; tÞpðxÞdx: ð4:1Þ

Under the policy invariance assumption, S(x, t) = π(x)8t, therefore the problem in Eq (4.1)

becomes:

c� ¼ arg max
t

Z xmax

t
pðxÞpðxÞdx: ð4:2Þ

Assuming that π(x), p(x) are continuous, and that p(x) is strictly positive in x, the first deriva-

tive of the welfare function is W0(x) = −π(x)p(x), and the threshold that maximizes the welfare
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function satisfies π(x) = 0. Thus, the optimal threshold occurs at a value of the running variable
where the LATE is zero. Finding the optimal threshold is equivalent to finding the roots of

π(x). The sign of the derivative left and right of the root indicates if the root corresponds to a

local maximum or minimum. Eq (4.2) can then be solved analytically or numerically, given an

estimate of the function π(x).

RD designs allow the estimation of π(x) only at x = c, since the identification of LATE is

based on the assumption that treatment assignment is “as good as random” in an infinitesi-

mally small neighborhood around c. Thus, the continuity of functions μ1,0 at the threshold

suffices to allow estimation of π(x) locally at c, but not elsewhere. In practice, however, a func-

tional form for m̂1;0 is obtained using the data in a bandwidth c − h< X� c + h. Our approach

is to use these estimates to extrapolate within this bandwidth. Notice that in this setting, we are

using the bandwidth as a range where extrapolation of π(x) is valid. Thus, the local optimizer

is the solution to the following bound constrained optimization problem, i.e.:

c� ¼ arg max
t

Z cþh

t
pðxÞpðxÞdx; c � h � t � cþ h: ð4:3Þ

In addition to the policy invariance assumption in [c − h, c + h], we assume the follwoing:

Assumption 8 (Sharp optimization). π(x), p(x) are continuous in [c − h, c + h]. p(x)> 0 in
[c − h, c + h].

Under Assumptions 7 and 8, it is straightforward to show that c� is a root of π(x), or lies on

the border of the bandwidth.

For fuzzy RD designs, the welfare function is equal to the cumulative treatment effect on

compliers:

Wf ðtÞ ¼
Z xmax

t
Sf ðx; tÞpf ðxÞpðxÞdx ð4:4Þ

Similar to the sharp RDD, we are interested in finding the optimal threshold c� in the interval

[c − h, c + h]:

c� ¼ arg max
t

Z cþh

t
Sf ðx; tÞpf ðxÞpðxÞdx; c � h � t � cþ h: ð4:5Þ

Under the policy invariance assumption, Eq (4.5) becomes

c� ¼ arg max
t

Z cþh

t
pf ðxÞpf ðxÞpðxÞdx; c � h � t � cþ h: ð4:6Þ

Similar to the sharp RD, we make the following additional assumptions:

Assumption 9 (Fuzzy optimization). πf(x), p(x), pf(x) are continuous in [c − h, c + h]. pf(x),

p(x)> 0 in [c − h, c + h].

Under assumptions 7, 9, the optimal threshold is a root of the treatment effect function,

πf(x) = 0. If πf(x) does not have a root in [c − h, c + h], then the local optimum lies on one of

the borders of the interval.

The global optima of Eqs (4.2) and (4.4) could lie outside the bandwidth around the imple-

mented threshold, and can be very different from the local optima in the within-bandwidth

versions in Eqs (4.3) and (4.6). However, we cannot safely extrapolate π(x) away from the

bandwidth, without losing the benefits of the RD design, or without additional assumptions.

Moreover, we argue that policy thresholds are typically implemented based on some prior evi-

dence on the benefits/cost of the policy. We therefore expect that the global optimum should

lie close to the implemented policy thresholds. Furthermore, we view policy design and
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optimization as an iterative process. In this process, the prediction of an improved outcome

results in moving the threshold within a small neighborhood of the existing threshold (in anal-

ogy to trust region methods used in machine learning [28]); in turn, researchers can collect

new data from the new policy, extending the data support for π(x) and allowing for further

extrapolation.

Importantly, the threshold optimization approach presented here also allows a new inter-

pretation to RDD estimates. Typically, a zero LATE is considered to imply an ineffective

intervention. If LATE is zero for all values of the running variable, then the intervention is

ineffective, and changing the threshold will not help (the MTTE is zero). However, a zero

LATE can indicate an intervention for which utility is maximized: zero LATE accompanied by
a non-zero MTTE at the threshold is consistent with the threshold being set optimally to maxi-
mize outcomes.

4.1 Estimation with local linear regression

In the previous section, we defined the problem of threshold optimization, and showed that

the optimal threshold corresponds to a zero LATE (π(x) = 0). To identify the optimal thresh-

old, we need to estimate π(x) = μ1(x) − μ0(x) in a neighborhood of c and identify the threshold

that leads to the optimal value of the welfare function within this neighborhood.

Typically, μ1,0 are estimated using locally linear regression (LLR), which has been shown

to have desirable bias properties at the threshold [7]. In the case of a rectangular kernel, this

approach is equivalent to taking standard OLS estimates on both sides of the threshold. Differ-

ent kernels could be used, but typically have little impact on the estimated effect [8]. Thus, we

will focus on LLR with a rectangular kernel.

For a given bandwidth h, the regression model below the threshold is

Yð0Þ ¼ a0 þ b0ðX � cÞ þ ε; � h � X � c < 0

while the regression model above the threshold is

Yð1Þ ¼ a1 þ b1ðX � cÞ þ ε; 0 � X � c � h;

where ε follows a zero mean Gaussian distribution with standard deviation σ. Using OLS esti-

mates for α0,1, β0,1, the treatment effect is a linear function of the running variable:

p̂ðxÞ ¼ m̂1ðxÞ � m̂0ðxÞ ¼ â1 � â0 þ ðb̂1 � b̂0Þðx � cÞ:

At the threshold c, we have the RDD treatment effect estimate which is equal to the difference

of intercepts p̂ðcÞ ¼ â1 � â0. The utility function has one global extremum at p̂ðxÞ ¼ 0, thus

ĉ� ¼ c �
â1 � â0

b̂1 � b̂0

: ð4:7Þ

There are a range of different scenarios that matter for the threshold optimization prob-

lem in the context of LLR (Fig 1). Intuitively, we know that if the LATE is positive, we need

to move the threshold to the left in order to treat more units, and if the LATE is negative we

need to move it to the right. In Fig 1, we focus on cases where the LATE is positive, and vary

the treatment effect derivative. The canonical case has a positive TED difference and a posi-

tive LATE (left panels in Fig 1). (Note that, if the TED were not higher right than left, the

two lines would fail to cross.) However, there can be exceptions. For example, the LATE

may be nonzero while the TED difference is zero. This may suggest that the treatment is

always better (or worse) than the control and the threshold optimization problem becomes
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locally undefined (middle panels in Fig 1). Further, there may be some counterintuitive π
where the LATE and the TED difference have opposite signs, indicating that the treatment

stops being effective (or even becomes harmful) for large values of the running variable

(right panels in Fig 1). In this paper we will generally analyze the canonical case in the left

panels of Fig 1.

Within the bandwidth, if the treatment effect has a root c0 on the left of our observed thresh-

old c (Fig 1, left column), then this root is the global maximum of the utility function. This is

the canonical case where the LATE is zero at the optimal threshold c� and positive to the right

of c�, and we further have β1 > β0, i.e. the treatment effect derivative is greater above c� than

below c�. This shows that a zero LATE does not demonstrate that a policy is ineffective: a

zero LATE with an increase in the treatment effect derivative is the sign of an optimally set

threshold.

If the treatment effect does not have a root c0 on the left of threshold c (Fig 1, middle and

right columns), the model suggests that the threshold should be moved to the left boundary

(or even beyond). This yields a less trustworthy estimate, since we have less faith in the model-

ing assumptions as we move further and further away from the threshold. We later discuss

more conservative estimates for threshold updating.

Fig 1. Optimizing the threshold for locally linear regression (LLR) models. (top panel) Possible LLR models for outcome vs running

variable. The discontinuity at c corresponds to the LATE π(c). (middle panel) Treatment effect π(x) as a function of the running variable; the

colored area corresponds to the utility. (bottom panel) Utility as a function of the chosen threshold, for uniform density of observations. The

constrained optimization problem has one global optimal, either where π(x) crosses the x-axis (left column) or at the left boundary (middle,

right column).

https://doi.org/10.1371/journal.pone.0276755.g001
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4.2 Non-linear estimation with Gaussian process regression

If we do not want to assume that the relationship between the running variable and the out-

come is linear close to the threshold, we can use other strategies. For example, controlling for a

higher-order local polynomial in the running variable has been popular. However, this method

produces estimates that are particularly sensitive to the choice of polynomial degree [29].

Gaussian processes (GPs) refer to a class of approaches that offer an alternative way of setting

up the nonlinear regression problem.

Recently, Branson et al. [30] proposed using Gaussian process regression (GPR) to model

the conditional expectations E[Y(1)|X = x] and E[Y(0)|X = x] and estimate the LATE at the

threshold c in RD designs. The authors show that GPR produces consistent estimates for

LATE and can outperform state-of-the-art LLR methods, especially in terms of coverage.

GPR derives from the Bayesian idea that we should start with a prior belief over the func-

tions we may encounter. Such a belief could for example be that smoother functions are more

probable than less smooth ones. More specifically, we are interested in the function f that maps

the running variable to the outcomes, so we need a prior belief p(f) about the possible func-

tions y = f(x), where y can denote either of the potential outcomes y0 or y1. Then, given a data

set D = {(x1, y1), . . ., (xN, yN)} of observations we can calculate the posterior probability over

functions f:

pðf jDÞ ¼ pðf Þ
pðDjf Þ
pðDÞ

Thus, instead of inducing a probability distribution over parameters as in a linear regression,

the dataset will induce a probability distribution over functions themselves.

We now need to specify a prior over functions f (note that the functions are random vari-

ables in this context) of the running variable X, and GPs derive from the use of Gaussian pri-

ors. Thus p(f) is a GP if for any subset of values of the running variable xi� � �xk, the joint

distribution of the corresponding outcome functions f(xi), � � �f(xk) is a multivariate Gaussian.

GPs are parameterized by the mean of the GP μ(x) and its covariance function or Kernel K(x,

x0). For pairs of xi, xj we thus have

pðf ðxi; xjÞÞ ¼ Nðm;SÞ

where

m ¼
mðxiÞ

mðxjÞ

" #

and

S ¼
Kðxi; xiÞ Kðxi; xjÞ

Kðxj; xiÞ Kðxj; xjÞ

" #

For the canonical choice of m(x) = 0 and a K that increases with distance, this induces a prior

over functions f that have varying smoothness aspects [31].

A very popular choice is the squared exponential kernel:

Kðxi; xjÞ≔ s2
f exp �

kðxi � xjÞk
2

2‘
2

 !

The parameters of the squared exponential kernel are the variance s2
f , which formalizes how
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much the function varies around each mean, and the spatial scale ℓ, which formalizes how

quickly the function can change when xi and xj get further apart. The larger ℓ the lower the

probability of non-smooth functions. Once mean and kernel functions are defined, we can

fully define the Bayesian model:

yi ¼ f ðxiÞ þ εi

where f� GP(0, K), εi � Nð0; s2
i Þ

The likelihood of a GP is Gaussian, so the posterior is also a GP. We can, therefore use the

properties of the multivariate Gaussian distribution to make predictions for the value of the

outcome y� at any covariate location x�:

pðy�jx�;DÞ ¼
Z

pðyjx�; f ;DÞpðf jDÞdf

In the context of RD designs, GPs can be used to describe the potential outcomes as a function

of the running variables [30]:

Yið0Þ ¼ m0ðxiÞ þ εi0; εi0 � Nð0; s2

0
Þ

Yið1Þ ¼ m1ðxiÞ þ εi1; εi1 � Nð0; s2

1
Þ:

The conditional expectations μ0(xi), μ1(xi) are assumed to be independent. Thus, a separate

model can be fit independently on each side of the threshold. Using the same kernel in both

priors corresponds to assuming equal covariance matrices for treatment and control, and is

similar in nature with fitting LLR with different slopes and intercepts but with the same band-

width. The LATE is then the difference of the corresponding posteriors:

p̂ðcÞ ¼ m1ðcÞjx; y � m0ðcÞjx; y:

To identify the optimal threshold for the utility function, we need to extrapolate the poste-

rior functions to obtain an estimate of LATE at any covariate value x:

p̂ðxÞ ¼ m1ðxÞjx; y � m0ðxÞjx; y;

and then numerically solve the optimization problem (i.e. find a root for p̂ðxÞ near c).
GP extrapolation is also called Kriging and we know much of the properties of this estima-

tor [32, 33]. GPs implement many intuitions that we have about functions in many real world

situations, such as smoothness of the function.

5 Risk averse threshold optimization

In many cases, we are risk averse. Moving the threshold to the value that maximizes the

expected utility implies moving to an expected zero local average treatment effect with some

uncertainty. However, we may not want to risk a negative LATE. More specifically, we may be

unwilling to accept a new threshold if its LATE has considerable probability of being negative.

After all, that would mean that there are a range of values of the running variable where the

treatment is actually harmful. Such a risk-averse objective may be particularly relevant in

domains in which the use of RDD approaches is not yet established, e.g. in medicine [34].

In this case, we want to move to a threshold that is into the right direction (i.e. towards

maximizing the utility function) but guarantees, with some confidence, that it will not produce

harm, i.e. it will not result in a negative LATE. A natural way of implementing this, would be

to use a threshold cα which corresponds to the value for which the lower bound of the one-

PLOS ONE Regression discontinuity threshold optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0276755 November 16, 2022 11 / 19

https://doi.org/10.1371/journal.pone.0276755


sided (100 − α)-confidence interval for p̂ðxÞ is equal to 0. If sp̂ðxÞ is the standard deviation of

p̂ðxÞ as a function of the threshold, this threshold satisfies

p̂ðxÞ � ZaspðxÞ ¼ 0; ð5:1Þ

where Zα is the critical value of the one tailed Z-test at level α. Based on the estimation proce-

dure for p̂ðxÞ, we can obtain standard errors and confidence or credible intervals. Note that

one may also want to use robust estimates, see [18]. The threshold for which Eq (5.1) holds can

then be solved numerically.

Being risk averse results in smaller threshold changes. Fig 2 shows an example. Fig 2(a)

shows 100 data points simulated from the model shown in Fig 1(left column) and the corre-

sponding fitted LLR models left and right. Coloured vertical lines indicate the predicted opti-

mal threshold for various confidence levels.

For smaller sample sizes or large variances, it is possible that the threshold cannot be

moved at all. However, if we have a LATE estimate that is significantly larger than zero at level

α, we can always lower the threshold to a value that results in a non-zero LATE with (100 −
α)% probability and a larger utility value.

6 Threshold optimization with costs constraints

Most policies result in a cost per subject treated. Assume that treatment of each subject costs a

fixed amount z. In the case of the linear regression (section 4.1), the optimal threshold is no

longer for p̂ðxÞ ¼ 0, but for p̂ðxÞ ¼ z, reflecting the condition that marginal cost equals

Fig 2. An example of conservative threshold estimation for a risk-averse policy, for 100 data points simulated

from the model in Fig 1 (left). Using the (100 − α)%-confidence intervals for π(x), we can calculate conservative

optimal thresholds c?
a
, that improve the utility of the intervention, but guarantee with a probability of (100 − α)% that

the LATE pðc?
a
Þ will be non-negative.

https://doi.org/10.1371/journal.pone.0276755.g002
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marginal benefit. This yields

ĉ� ¼ c �
ðâ1 � zÞ � â0

b̂1 � b̂0

: ð6:1Þ

Typically, policy implementations are subject to additional constraints related to the budget

for the intervention, so that the treatment cost for all treated subjects cannot exceed a given

budget B. In that case, for an N-sized population (including treated and controls), finding the

optimal threshold corresponds to the following constrained optimization problem:

maximize
t

c� ¼ arg max
t

Z cþh

t
pðxÞpðxÞdx;

such that N
Z xmax

c�
pðxÞdx � B;

ð6:2Þ

Without additional assumptions about the population density p(x), Problem (6.2) is a non-

linear constrained optimization problem with non-linear constraints. The problem can be

solved numerically, using any parametric or non-parametric density estimator for p(x).

Other types of constraints are also possible. For example, a prescribed drug may have

adverse effects that are also related to the running variable. Depending on the problem-specific

cost constraints, the constrained threshold optimization problem can be solved analytically or

numerically.

7 Case study

We use our approaches on an example from the economics literature, to show how we can esti-

mate the optimal threshold for an intervention. We use the sharp RD design from [23], who

study the effect of default options in consumer choices. The authors use data from all New

York City yellow cab rides in 2009; summary statistics for the data can be found in Table 1.

During this period, customers of a specific credit card machine company (vendor) were

offered different default tip suggestions based on the the cab fare. Specifically, the default tip

suggestions for fares under $15 were $2, $3, and $4. For fares over $15, the tip suggestions

were percentages of the fare amount: 20%, 25%, and 30%. At the $15 discontinuity, this change

of policy corresponds to an increase of the suggested amounts by respectively $1, $.75 and $.5.

Assuming that features that affect tips vary smoothly with the ride fare, the average difference

of tips right and left of the margin can be interpreted as a result of policy change, i.e. higher

default tip suggestions at the margin.

Table 1. Summary statistics for the data used in the case study. Standard deviations are in parenthesis. The sample is

limited to rides without tolls, taxes, or surcharges (January 1,2009-January 31, 2009; 6 am-4 pm on Monday-Friday and

6 am-8 pm on Saturday and Sunday), as described in [23]. Data were downloaded from https://www.aeaweb.org/aej/

app/data/0603/2013-0098_data.zip.

Summary statistics

T = 0 (Fare < $15) T = 1 (Fare > $15)

Fare 8.727 18.419

(6.506) (6.888)

Tip amount as percentage of fare 21.1853 17.054

(177.050) (80.416)

Num. observations 453371 54269

https://doi.org/10.1371/journal.pone.0276755.t001
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[23] used local linear regression with a bandwidth of $10 around the discontinuity, and

found that the local average treatment effect for cab fares of $15 was an increase of approxi-

mately $0.30 in tip amounts. This constitutes an increase in the average tip at the margin of

more than 10%.

Optimizing the threshold in this case study can allow us to maximize the average tipping

over all customers that receive the increased tipping suggestions. The positive effect at the

discontinuity suggests that the policy threshold should be moved to the left, i.e. people with

lower cab fares should also receive percentage tip suggestions. The original data set consists of

13,820,784 data points. To make the problem tractable, we used the data from all rides in Janu-

ary of 2009 with the specified vendor, resulting in 453,371 rides that cost $5—$15, and 54,269

rides that cost $15—$25. We used both local linear regression (LLR) and Gaussian Process

regression (GPR) to model the conditional expectations μ1(x) and μ0(x) left and right of the

threshold.

We used LLR with the bandwidth selection method of [24] a uniform kernel. The optimal

bandwidth selected by this method was 4.54. LLR with a uniform kernel were estimated on

both sides of the threshold. The optimal threshold c? was calculated using Eq (4.1) at $11.11

(see Fig 3).

The overall gain for drivers from switching to the optimal threshold corresponds to the

expected gain in tip percentage:

Z c

c?
ðm̂1ðxÞ � m̂0ðxÞÞpðxÞdx:

Using the discretization bin of $0.40 in the interval [c?, c], we calculate p(xi), the frequency

Fig 3. Using local linear regression to predict the optimal threshold for changing default tip suggestions in taxi

cabs. Each dot is the average within a discrete fare amount ($0.40 intervals). Dot size is proportional to the number of

observations in that interval. Policy for default tip suggestions changes for $15 rides. Imbens-Kalyanaraman (IK)

bandwidth was estimated at $4.54 around the threshold. LLR models were fit left and right of the threshold with in the

IK bandwidth. The optimal threshold is at $11.11, and the conservative threshold for significance level α = 0.05 is at

$11.72.

https://doi.org/10.1371/journal.pone.0276755.g003
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of observations in each bin, where xi are the discretized values of the running variable. The

expected increase in tip percentage is then the finite sum
P

iðm̂1ðxÞ � m̂0ðxÞÞpðxiÞ ¼ 0:90 per-

centage points. This corresponds to an expected gain of
P

iðm̂1ðxÞ � m̂0ðxÞÞpðxiÞxi ¼ $0:12

perride. Thus, the method suggests that, by choosing the optimal threshold of $11.11 for

switching default tip suggestions, taxi drivers would have earned, in total, an additional

$11,011 over 89, 805 rides with rates within [$11.11, $15] in the month of January.

We want to note though, that there may be a negative side effect of suggesting large tip

amounts: disgruntled customers, who may end up tipping less than predicted by our extrapola-

tion. This would push us to be a bit more conservative. The conservative optimal threshold

c?
0:05

satisfying Eq (5.1) for α = 0.05 was estimated using MATLAB’s default root finding func-

tion [35] at $11.72. The expected increase in tip percentage is 1.17 percentage points, corre-

sponding to an additional $0.16 per ride. The gain per ride is higher for the conservative

optimal threshold because we only include ranges of the running variable where the gain is

high enough to avoid the risk of a negative LATE. On the other hand, the overall additional

expected gain is lower with the conservative optimal threshold, at $10, 409 over 64, 489 rides

with rates within [$11.72, $15] in the month of January. (Fig 3). Table 2 shows bootstrap esti-

mates and standard errors for c? and c?
0:05

.

We also used GPR with the original bandwidth used by [23]. We used the double exponen-

tial kernel, with hyper-parameters optimized using cross-validation on each side of the thresh-

old. The optimal threshold was estimated using MATLAB’s default root finding function [35].

Optimization predicts that, to maximize average tipping across the bandwidth, the default tip

suggestions should switch to percentages for rides above c? = $12.05 (Fig 4). Due to the large

sample size, we were unable to perform exact inference and obtain standard errors for the fit,

and therefore do not include a conservative threshold prediction for Gaussian process regres-

sion. Moreover, due to the large sample size, we used subsampled bootstrap of 10,000 observa-

tions per repetition to compute bootstrap estimates and standard errors for LATE and c?. In

each sample, we again used the double exponential kernel, with hyper-parameters optimized

using cross-validation on both sides of the threshold. Results are shown in Table 2.

Overall, both methods produce similar results. Moreover, the conservative threshold is really

close to the unconstrained optimal threshold, due to the (unusually) large sample of the case

study. Both methods suggest that, to maximize average tipping within the bandwidth, the default

tip suggestions should switch to percentages for cab fares above $11.11 − $12.05 instead of $15.

8 Discussion and conclusion

Here we have shown how RD design can be exploited not only to estimate the local average

treatment effect, but also to optimize the threshold itself. We proposed threshold optimization

Table 2. Optimal thresholds using LLR and GPR. To estimate IK bandwidths and LLR coefficients, data were re-centered around the discontinuity c = 15. For both meth-

ods, bootstrap estimates were calculated over 100 bootstrap samples. Bootstrap standard errors are in parenthesis.

Optimal thresholds

IK bandwidth LATE c? c?
0:05

LLR All data 4.536 2.086 11.109 11.721

Bootstrap 4.280 2.058 10.829 11.596

(0.576) (0.112) (0.777) (0.502)

GPR All data 2.017 12.048

Bootstrap 1.492 14.172

(0.783) (2.458)

https://doi.org/10.1371/journal.pone.0276755.t002
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using local linear regression and Gaussian process regression, as well as conservative threshold

optimization for situations where we are risk averse.

Most importantly, we show that RD designs with zero (or not statistically significant) esti-

mates do not necessarily indicate ineffective policies. On the contrary, such interventions can

correspond to policies implemented at the optimal threshold that maximizes welfare.

Optimizing the policy implementation threshold requires the assumption of policy invari-

ance, i.e. that the LATE given the running variable does not depend on the threshold at which

the policy is implemented. While there are cases where the assumption is violated, it is often

satisfied in domains like medicine, where threshold optimization may be of great interest.

Given policy invariance, threshold optimization ultimately boils down to curve-fitting and

extrapolation, since we are trying to guess the value of the LATE for unobserved regions of the

running variable. Thus, any method is subject to modelling assumptions beyond the threshold.

Threshold optimization naturally implies that a meaningful welfare function exists and it is

adequately measured. For example, if we want just want to maximize expected earnings with-

out regard to any costs, our method can be applied straightforwardly as long as earnings data

is available. However, in other cases, we have to provide as an outcome a summary measure

that includes both costs and benefits. In many scenarios, e.g. educational policy [36], defining

the utility function to be maximized is hard, since benefits and costs accrue to different enti-

ties. Consider the problem of student lifetime earnings versus cost of education to the

Fig 4. Using Gaussian process regression to predict the optimal threshold for changing default tip suggestions in

taxi cabs. Each dot is the average within a discrete fare amount ($0.40 intervals). Dot size is proportional to the

number of observations in that interval. Policy for default tip suggestions changes for $15 rides. Gaussian process

regression was fit on the original bandwidth, using a double exponential kernel with parameters optimized using cross-

validation. The optimal threshold is at $12.05. Due to large sample size, we were unable to obtain standard errors and

estimate the conservative optimal threshold.

https://doi.org/10.1371/journal.pone.0276755.g004
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university: should a university persist in educating students with low GPAs? Even though an

RDD estimation shows that the earnings effects of allowing a few more students to stay

enrolled can be positive [37], should the university spend a dollar for every extra dollar these

students make? In such cases, constrained threshold optimization that abides to cost con-

straints could be explored. On the other hand, there are many domains where there is a con-

sensus on what outcome we should maximize. For example, maximizing quality of life

adjusted years is a standard goal in health care. In these cases, exploiting RD structure to opti-

mize policy thresholds can have a straightforward and significant impact on policy design.

While defining a meaningful welfare function can be difficult in some cases, specific welfare

functions are well accepted by the community of experts in many domains.

Interestingly, the optimization approach could be reversed. If we are, for example, inter-

ested in the motivations of a politician (or decision-making body), we might want to ask for

which social welfare function the actually chosen threshold is optimal. This might give evi-

dence, for example, about how much a politician weights the potential future earnings of dis-

advantaged students relative to the immediate cost of tax increases to fund public university

education.

Direct threshold optimization problems abound. In medicine, countless thresholds guide

physician behavior. These could all be optimized for outcomes. In finance, thresholds that

affect access to financial products by customers could be optimized. For internet companies,

the probability of someone clicking ads can be optimized. And, in public policy, the various

program thresholds could also be optimized. There are many domains where optimizing

thresholds in the context of an RDD seems highly promising.
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