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Abstract

As a cancer develops, its cells accrue new mutations, resulting in a heterogeneous, complex

genomic profile. We make use of this heterogeneity to derive simple, analytic estimates of

parameters driving carcinogenesis and reconstruct the timeline of selective events following

initiation of an individual cancer, where two longitudinal samples are available for sequenc-

ing. Using stochastic computer simulations of cancer growth, we show that we can accu-

rately estimate mutation rate, time before and after a driver event occurred, and growth

rates of both initiated cancer cells and subsequently appearing subclones. We demonstrate

that in order to obtain accurate estimates of mutation rate and timing of events, observed

mutation counts should be corrected to account for clonal mutations that occurred after the

founding of the tumor, as well as sequencing coverage. Chronic lymphocytic leukemia

(CLL), which often does not require treatment for years after diagnosis, presents an optimal

system to study the untreated, natural evolution of cancer cell populations. When we apply

our methodology to reconstruct the individual evolutionary histories of CLL patients, we find

that the parental leukemic clone typically appears within the first fifteen years of life.

Author summary

By the time a patient’s cancer is diagnosed, it has been growing undetected for years, or

even decades. A cancer’s initiation, development, and progression are driven by a

sequence of driver mutations, genetic alterations that confer a fitness advantage to the

cells containing them. As a cancer expands, it also accumulates many neutral mutations

that don’t confer a growth advantage. As a result, tumors are highly heterogeneous, made

up of different genetically distinct populations, or subclones, of cancer cells. Most cancers

will require immediate treatment upon diagnosis, making study of their natural progres-

sion over time difficult. However, the blood cancer chronic lymphocytic leukemia (CLL)

often does not require immediate treatment and is closely monitored for years, which

makes it ideal for studying cancer evolution before treatment radically alters the cancer’s

dynamics. We make use of the complex tumor heterogeneity to reconstruct the timing of

key driver events in the tumor’s development, showing that the initial leukemic clone
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often appears early in life. Additionally, we estimate mutation rate, subclone growth rates,

and fitness advantage provided by driver mutations.

Introduction

When a cell accrues a sequence of driver mutations—genetic alterations that provide a prolif-

erative advantage relative to surrounding cells—it can begin to divide uncontrollably and

eventually develop the complex features of a cancer [1–3]. Thousands of specific driver muta-

tions have been implicated in carcinogenesis, with individual tumors harboring from few to

dozens of drivers, depending on the cancer type [4]. Mutations that don’t have a significant

effect on cellular fitness also arise, both before and after tumor initiation [5]. These neutral

mutations, or “passengers”, can reach detectable frequencies by random genetic drift or the

positive selection of a driver mutation in the same cell [6–9]. Mutational burden detectable by

bulk sequencing reveals tens to thousands of passengers per tumor [10, 11].

Genome sequencing technologies have revealed the heterogeneous, informative genetic

profiles produced by the evolutionary process driving carcinogenesis [12, 13]. These genetic

profiles have been used to obtain insight into specific features of the carcinogenic process

operating in individual patients. For example, the molecular clock feature of passenger muta-

tions has been employed to measure timing of early events in tumor formation, as well as iden-

tify stages of tumorigenesis and metastasis [14–22]. Other studies have estimated mutation

rates [5, 23, 24], selective growth advantages of cancer subclones [25–28], and the effect of spa-

tial structure on cancer evolution [29–31]. We note that previous approaches typically only

estimate one or a few parameters of cancer evolution. In addition, many state-of-the-art meth-

ods make use of computationally expensive approaches [24, 30, 32] or simplifying assump-

tions, such as approximating tumor expansion as deterministic or ignoring cell death [27, 32].

Our approach relies on analytic formulas and sampling, which for realistic numbers of sub-

clones and time points is efficient, and does not require simulation of tumor growth or com-

putationally expensive model fitting.

Mathematical models of cancer progression, especially when used in conjunction with

experimental and clinical data, can provide important insights into the evolutionary history of

cancer [9, 19, 33–37]. Branching processes—a type of a stochastic process—can be used to

model how different populations of dividing, dying, and mutating cells in a tumor evolve over

time [38]. Their theory and applications have been well developed to model the multistage

nature of cancer development [25, 29, 35, 38–40]. Here we use a branching process model of

carcinogenesis to derive a comprehensive reconstruction of an individual tumor’s evolution.

Tumors can grow for many years, even decades, before they reach detectable size [16]. Typi-

cally, tumor samples used for sequencing would be obtained at the end of the tumor’s natural,

untreated progression. More recently, longitudinal sequencing, where a tumor is sequenced at

multiple times during its development, has provided better resolution of tumor growth

dynamics and evolution in various cancer types [27, 41–44]. Chronic lymphocytic leukemia

(CLL) is an ideal system for studying cancer evolution because it can be monitored, via periph-

eral blood samples, without treatment until disease progression [45].

We establish that two longitudinal bulk sequencing and tumor size measurements are suffi-

cient to reconstruct virtually all parameters (mutation rate, growth rates, times of appearance

of driver mutations, and time since the driver mutation) of cancer evolution in individual

patients. Our analytic approach yields simple formulas for the parameters; thus, estimation of

the parameters governing cancer growth is not computationally intensive, regardless of tumor
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size. Our framework makes possible a personalized, high-resolution reconstruction of a can-

cer’s timeline of selective events and quantitative characterization of the evolutionary dynam-

ics of the subclones making up the cancer cell population.

Results

Model

We consider a multi-type branching process of tumor expansion (Fig 1A). Tumor growth is

started with a single initiated cell at time 0. Initiated tumor cells divide with rate b and die

with rate d. These cells already have the driver mutations necessary for expansion, so we

assume b> d. The population of initiated cells can go extinct due to stochastic fluctuations,

or survive stochastic drift and start growing (on average) exponentially with net growth rate

r = b − d. We will focus only on those populations that survived stochastic drift.

Fig 1. Stochastic branching process model of tumor evolution. (a) Stochastic branching process model for tumor expansion. Initiated tumor cells

(blue) divide with birth rate b, die with death rate d, and accrue passenger mutations with mutation rate u. Type-1 cells, which carry the driver mutation,

divide with birth rate b1, die with death rate d1, and accrue passenger mutations with mutation rate u. (b) The initiated tumor, or type-0, (blue)

population growth is initiated from a single cell. A driver mutation occurs in a single type-0 cell at time t1, starting the type-1 population (red). The tumor

sample is collected and bulk sequenced at times t1 + t and t1 + t + Δ, where the driver fraction is α1 and α2, respectively. Tumor size (in number of cells) is

M1 and M2 at first and second sample collection dates. (c) By the time the tumor is observed, it has a high level of genetic heterogeneity due to the

mutations that have accrued in both type-0 (blue) and type-1 populations (red). Each yellow star represents a different passenger mutation.

https://doi.org/10.1371/journal.pcbi.1010677.g001
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At some time t1 > 0 a new driver mutation occurs in a single initiated tumor cell, starting a

new independent birth-death process, with birth rate b1 and death rate d1 (Fig 1B). Net growth

rate of cells with the new driver is r1 = b1 − d1. The new driver increases the rate of growth, i.e.,

r1 > r. We define the driver’s selective growth advantage by g = (r1/r − 1). In addition, both

populations of cells (with and without the driver) accrue passenger mutations with rate u
(Fig 1C).

After the driver mutation occurs, an additional time t passes before the tumor is observed.

Type-0 cells are original initiated tumor and type-1 cells contain the driver mutation. In Mate-

rials and methods we also analyze the more general case of two nested or sibling driver muta-

tions, as well as the fully generalized case of any clonal structure that might arise during tumor

expansion.

Parameter estimates from two longitudinal measurements

We demonstrate that with two longitudinal bulk sequencing measurements, it is possible to

accurately estimate net growth rates, time of appearance of a driver mutation, time between a

driver mutation and observation, and mutation rate in the tumor. The tumor is first sequenced

at time of observation, t1 + t, where both time of driver mutation, t1, and time from driver

mutation to observation, t, are yet unknown (Fig 1B). A second bulk sequencing is performed

at t1 + t + Δ, a known Δ time units after the tumor is first observed (Fig 1B). Later, we apply

our method to the CLL data from Ref. [27], where the average size of Δ for all the pre-treat-

ment samples sequenced is 1.8 years (0.6–4.9 years). In general, we expect that in the case of

smaller Δ values measurement errors would have a larger effect on the estimated growth rates,

due to an expected smaller change in cancer cell count and subclonal structure during a

smaller time interval. From the bulk sequencing data, the fraction of cells carrying the driver

mutation, α1 and α2, can be measured at the time points t1 + t and t1 + t + Δ, respectively. We

denote total number of cells in the tumor at the two bulk sequencing time points as M1 and

M2. For liquid cancers, cell counts of the relevant cancer cell population serve as indicators of

cancer progression. In the case of CLL, white blood cell (WBC) count is useful as a measure of

tumor burden in peripheral blood, as it is routinely taken and includes the cancerous cell pop-

ulation. More precise estimates of tumor burden would include absolute lymphocyte count

(ALC) and number of B lymphocytes. Both ALC and WBC counts can suffer from inaccuracies

due to the prevalence of smudge cells in CLL, often resulting in an underestimate of these

counts [46].

Equating expected values of the sizes of the type-0 and type-1 population at the two bulk

sequencing time points with the measured numbers of cells present in clones 0 and 1, we

obtain estimates of the net growth rates of the two subclones:

r ¼
1

D
log

ð1 � a2ÞM2

ð1 � a1ÞM1

� �

ð1Þ

r1 ¼
1

D
log

a2M2

a1M1

� �

: ð2Þ

From the growth rate estimates and subclone sizes, we can approximate the expected value of

the time a population in a branching process takes to reach an observed size [38]. This yields

an estimate of the time t from the appearance of driver mutation until observation:

t ¼
1

r1

log ðM1a1Þ: ð3Þ
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Using the bulk sequencing data from the second time point, γ, the number of subclonal pas-

sengers between the specified frequencies f1 and f2, can be measured. Using results from previ-

ous work [47], we derive the expected value of γ (Materials and methods), which can be used

to estimate the mutation rate u:

u ¼
f1f2rr1g

ðf2 � f1Þða2r þ r1ð1 � a2ÞÞ
: ð4Þ

The m passenger mutations that were present in the original type-1 cell when the driver muta-

tion occurred (Fig 1C) are present in all type-1 cells. m can be estimated from bulk sequencing

data and used to estimate time of appearance of the driver. We maximize the likelihood func-

tion P(m|t1) with respect to time of appearance of the driver, t1, (see Materials and methods) to

obtain the maximum likelihood estimate

t1 ¼
m
u
: ð5Þ

Using formulas (4) and (5), we can now estimate t1.

Estimates verified in simulated tumors

To assess the accuracy of the parameter estimates for several modes of tumor evolution, we

simulate tumor growth by performing a Monte Carlo simulation, which simulates the birth,

death, and accumulation of mutations in the individual cells that make up a tumor. This simu-

lation generates the mutation frequency and tumor size data used by the estimates (see Meth-

ods section for details of simulation). We simulate three different types of tumors (slow

growing, fast growing, and no cell death), with a high and a low mutation rate for each

(S1 Table).

In a simulation of a fast-growing tumor with a single subclonal driver mutation that confers

a strong selective growth advantage of 100%, we can accurately estimate growth rates, muta-

tion rate, time of driver event, and time since driver event (Fig 2A and 2B). Growth rates of

both initiated tumor and driver subclones can be estimated with a high degree of accuracy,

achieving mean percentage error (MPE) of 0.03% and -0.07% for the lower mutation rate

(u = 1) scenario. The mutation rate u and estimates for time of driver appearance, t1, and time

since driver, t, can also be estimated accurately, with MPEs of -0.9%, 3.8%, and -0.4%, respec-

tively. Estimates for u, t1, and t have a somewhat greater degree of variation compared to the

growth rate estimates, due to the inherent randomness of the number of mutations and time

to reach the observed size that occur in each realization of the stochastic process.

For the parameter regime with no cell death and the regime for a slow-growing tumor, we

again achieve high accuracies for the net growth rates (S1(A), S1(B), S2(A) and S2(B) Figs). In

the lower mutation rate (u = 1) scenario, parameter estimates for the mutation rate u and time

of driver appearance t1 can be accurately estimated for both regimes, with MPEs of -1.3% and

4.9% for the no cell death case, and MPEs of -3% and 3.7% for the slow-growing tumor.

We note that the estimator for t (time since driver event) is biased, with the extent depend-

ing on the ratio of birth rate to net growth rate, and the tumor size. The underlying cause of

the bias is due to a simplifying assumption in the estimator’s derivation (see Methods, “Deriva-

tion of estimates of evolutionary parameters”), and this bias decreases as tumor size increases

and as the ratio of growth and division rate gets closer to 1. For the three main modes of

growth in our study, we performed additional Monte Carlo simulations to precisely quantify

the effect of death:birth ratio and tumor size on the estimator’s accuracy (S5 Fig). For all three

modes of growth, we observe a monotonic decrease in error as tumor size increases to more
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clinically realistic sizes. For a tumor size of 109, all modes of growth have a MPE of less than

4%, so for a clinically realistic cancer size—1011 for the CLL dataset—we expect an even better

accuracy.

We also perform Monte Carlo simulations for the more complex cases of two nested and

two sibling driver subclones (see Methods for derivations of estimators) for the same three

modes of cancer growth used for the single driver subclone case above: fast growth (Fig 2C

and 2D), no cell death (S1(C) and S1(D) Fig), and slow growth (S2(C) and S2(D) Fig). For two

nested driver subclones, the second driver subclone also carries its parental subclone’s driver

mutation (S4(A) Fig). For two sibling driver subclones, the drivers occur in separate subclones

(S4(B) Fig). The growth rate estimates show good agreement with the ground truth values,

with MPEs close to 0. The mutation rate estimates also have good accuracy, with the absolute

values of their MPEs all�4%. As for the single subclone cases already discussed, the time

Fig 2. Accuracy of parameter inferences from simulated data. We simulated tumor growth by performing a Monte Carlo simulation, which simulates the

birth, death, and accumulation of mutations in the individual cells that make up a tumor, and generates the mutation frequency and tumor size data used by

the estimates. Simulations are of fast-growing tumors with (a) single driver subclone and mutation rate u = 1, (b) single driver subclone and u = 3, (c) two

nested driver subclones with u = 1, and (d) two sibling driver subclones with u = 1. Mean percent errors (MPEs) of estimates are shown in black above the

plots, and mean absolute percent errors (MAPEs) are shown in gray. Boxes contain 25th-75th quartiles, with median indicated by thick horizontal black line.

Whiskers of boxplots indicate 2.5 and 97.5 percentiles. Violins are smoothed density estimates of the percent error data points. Complete parameter values

and number of runs are included in S1 Table.

https://doi.org/10.1371/journal.pcbi.1010677.g002

PLOS COMPUTATIONAL BIOLOGY Inferring parameters of cancer evolution in chronic lymphocytic leukemia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010677 November 4, 2022 6 / 32

https://doi.org/10.1371/journal.pcbi.1010677.g002
https://doi.org/10.1371/journal.pcbi.1010677


estimates for the nested and sibling subclone simulations have a greater variance. The estimate

for t—time between the last driver mutation and diagnosis—shows good accuracy for the fast-

growing tumors, but larger errors for the no cell death and slow growth cases. For both the

nested and sibling simulations, the estimates for the times of driver mutations 1 and 2 (t1 and

t2, respectively) have MPEs less than 6%.

Correcting mutation counts observed from genome sequencing data

We note that in our estimate for the time of appearance of the driver, t1 (see formula (5)), used

for comparison to simulated data, we employed a correction to m, the number of mutations

that were present in the founder type-1 cell at t1. From sequencing data, these m mutations are

indistinguishable (Fig 3A) from mutations that occurred after t1 in type-1 cells and reached fix-

ation in the type-1 population [47]. Thus, the value of m observed from sequencing data, mobs,

Fig 3. Corrections for observed mutation counts. (a) If passenger mutations (circles with stars) that occur after the driver reach fixation in the driver

population (red), then they are indistinguishable from the passengers that were present in the first cell with the driver, which accrued in the type-0 population

(blue). The estimate of when the driver occurred needs to account for these mutations (circled). In (b), we compare percent errors of parameter estimates for

time from tumor initiation until appearance of a driver subclone, t1, with and without this correction (Eq (6)). Errors for estimate with correction are shown

in blue, and for estimate without correction (Eq. (5)) in orange. Errors are plotted as a kernel density estimate for Monte Carlo simulations of slow-growing

tumor with mutation rate u = 5. Mean percent errors (MPEs) and mean absolute percent errors (MAPEs) are listed. (c) Mutations present on two or fewer

variant reads (red) are filtered out in post-processing. Mutations with more than two variant reads (black) are included. The number of subclonal mutations

between frequencies f1 and f2, γ, which is used in the mutation rate estimate, must be corrected for mutations that are filtered out. In (d), the percent errors

for the observed (orange) and corrected (blue) γ (Eq (7)) are plotted as kernel density estimates. Observed mutations are those that passed post-processing,

i.e. those that have more than L = 2 mutant reads. True mutation frequencies were generated from 135 surviving runs of a Monte Carlo simulation of a fast-

growing tumor with mutation rate u = 1, from which sequencing reads were simulated with 200x average coverage (see Materials and methods). Percent

errors are calculated relative to the true γ measured from the true mutation frequencies.

https://doi.org/10.1371/journal.pcbi.1010677.g003
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will overestimate the true m. In Materials and methods we show that the expected value of

the number of passengers that occurred after t1 and reached fixation in the type-1 population

is u/r1. We subtract this correction factor from mobs:

m ¼ mobs � u=r1: ð6Þ

The correction for the mmutations present in the original type-1 cell (6) at time t1 improves

the accuracy of the estimate for time of appearance of driver mutation t1. For the fast-growing

tumor with mutation rate u = 1 (S3(A) Fig), the correction lowers the mean percent error

(MPE) of the t1 estimate from 14.0% to 3.8%. For the slow-growing tumor with mutation rate

u = 5 (Fig 3B), the correction lowers the MPE of the t1 estimate from 22.0% to 5.7% (Fig 3B).

Another issue arises from obtaining mutation count γ, number of mutations with frequency

between f1 and f2, from genome sequencing data. When sequencing data is post-processed by

filtering out mutations with L or fewer variant reads, low-frequency mutations will be difficult

to detect [35] (Fig 3C). For a sample with average sequencing coverage of R and tumor purity

p, mutations with mutant allele frequency below L/(pR) will typically not be observable. As a

result, since mutations with frequencies between f1 and f2 count towards γ, if f1� 2L/(pR), the

observed number of subclonal mutations between frequencies f1 and f2, γobs, will underesti-

mate the true value, γ. For cancers with low mutational burden, such as CLL, we set a relatively

low f1 (1%) to have sufficient resolution to infer mutation rate. Consequently, some mutations

with frequency above f1 will likely be filtered out, and we account for this by correcting for the

expected number of such subclonal mutations present at cancer cell frequencies (CCFs)

between f1 and 2L/(pR) (see Materials and methods):

g ¼ gobs

1

f1
�

1

f2
pR
2L
�

1

f2

0

B
B
@

1

C
C
A: ð7Þ

Before applying our methodology to patient sequencing data, we estimated the validity of

the above correction applied to observed simulated mutation counts. When we simulate

sequencing reads from simulated mutation frequencies (see Materials and methods) and post-

process by removing mutations with L = 2 or fewer variant reads, the adjustment we derived

for mutation count γ (7) is critical, even for average sequencing coverage of 200x (Fig 3D).

Without any correction, the observed γ has MPE of -53.3% compared to true γ, but with the

correction, the computed γ has MPE of -1.4%. When average coverage is 100x, this correction

becomes even more important, as many of the low-frequency mutations are discarded (S3(B)

Fig). Without any correction, the observed γ has MPE of -79.7%. With the correction the com-

puted γ has MPE of -3.4%. The accuracy of the γ measurement affects our estimate of the

mutation rate (4).

Estimating parameters for individual patients with CLL

We use our formulas to infer the patient-specific parameters of cancer evolution for four

patients with CLL whose growth patterns and clonal dynamics were analyzed in [27]. These

CLLs had peripheral WBC counts measured and whole exome sequencing (WES) performed

at least twice before treatment. We consider patients whose WBC counts were classified as

having an exponential-like growth pattern, with average γobs> 2, and with 3 or fewer macro-

scopic subclones (i.e. subclones with cancer cell fractions of 20% or greater for at least one pre-

treatment time point). Our framework is designed specifically to study naturally evolving
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cancer dynamics, unperturbed by treatment, which will drastically alter the cancer’s dynamics

and size. For calculation of the γobs mutations between frequencies f1 and f2, we set f1 = 1% due

to the difficulty of detecting low frequency variants<1% [48, 49]. We set f2 to 20% to minimize

overlap with potential driver mutations of the macroscopic subclones. The average γobs for the

four analyzed patients ranges from 2.5 to 19.3, with a median of 5.2. As in Ref. [27], we per-

form subclonal reconstruction for each patient using PhylogicNDT [43]. To obtain confidence

intervals for our parameter estimates, we utilize a sampling procedure to account for model

and measurement uncertainties, including uncertainties in subclone frequencies, fitted growth

curves, and the Poisson process for mutation accumulation (see Materials and methods). For

each patient’s tumor, we compute estimates of the growth rate of each clone, exome mutation

rate, the times that each subclone arose, and how long each subclone expanded before the

tumor was detected (Tables 1 and 2). We also estimate what time the cancer was clinically

detectable, by sampling from the distribution of fitted growth parameters and solving the

resulting root-finding problem for time to reach detectable size under our growth model (see

Materials and methods). For CLL specifically, we compute time of leukocytosis—an abnor-

mally high WBC count. We reconstruct these histories for tumors with various clonal

structures.

Table 1. Inferred parameters for CLL patients with exponential growth patterns, for which there are at least two

longitudinal bulk sequencing measurements before treatment. Estimates are computed from tumor size measure-

ments and mutation frequencies from whole exome sequencing. Mutation rates are for the exome only. The time esti-

mates are in terms of the patient’s age in years.

Parameter Pt. 3 Pt. 6 Pt. 9 Pt. 21

r (/yr) 0.51 0.68 0.28 0.79

r1 (/yr) 0.85 0.41 -0.40 1.52

r2 (/yr) 0.46 0.67

r3 (/yr) 1.09 0.63

u (mut/yr) 0.48 0.15 0.36 0.20

MRCA (yr) 14.6 2.8 4.9 6.4

t1 (yr) 33.5 35.4 18.8 19.6

t2 (yr) 46.7 21.3

t3 (yr) 45.9 24.8

age at diagnosis (yr) 63 58 54 35

age at leukocytosis (yr) 61.9 65.7 51.8 34.4

https://doi.org/10.1371/journal.pcbi.1010677.t001

Table 2. Confidence intervals for inferred parameters for CLL patients with exponential growth patterns, for which there are at least two longitudinal bulk sequenc-

ing measurements before treatment. Estimates are computed from tumor size measurements and mutation frequencies from whole exome sequencing. Mutation rates

are for the exome only. The time estimates are in terms of the patient’s age in years.

Parameter Pt. 3 Pt. 6 Pt. 9 Pt. 21

r (/yr) [0.20, 0.85] [0.15, 1.30] [0.17, 0.42] [0.30, 1.14]

r1 (/yr) [0.65, 1.04] [0.08, 0.73] [-0.45, -0.19] [1.01, 2.04]

r2 (/yr) [0.08, 0.85] [0.49, 0.94]

r3 (/yr) [0.65, 1.78] [0.39, 0.86]

u (mut/yr) [0.39, 0.59] [0.12, 0.19] [0.35, 0.37] [0.19, 0.23]

MRCA (yr) [1.4, 26.8] [0.1, 13.2] [1.2, 10.8] [0.3, 16.7]

t1 (yr) [24.1, 39.2] [21.7, 46.1] [8.8, 35.1] [10.8, 24.0]

t2 (yr) [25.6, 57.5] [7.7, 31.7]

t3 (yr) [31.3, 54.6] [10.3, 37.6]

age at leukocytosis (yr) [60.3, 62.4] [64.2, 67.1] [51.6,51.9] [32.8,34.6]

https://doi.org/10.1371/journal.pcbi.1010677.t002
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Patients 3 and 21 are examples of a CLL with a single subclone (Fig 4). For Patient 3, Clone

0, the most recent common ancestor (MRCA) of this patient’s CLL, was initiated when the

patient was 14.6 [1.4, 26.8] years old (median and [95% confidence interval] of estimate).

Clone 0 grew with a net growth rate of 0.51 [0.20, 0.85] per year. Approximately two decades

later, Clone 1 was initiated when the patient was 33.5 [24.1, 39.2] years old. Clone 1 expanded

with a growth rate of 0.85 [0.65, 1.04] per year (corresponding to a selective growth advantage

of 68.7% over Clone 0), and the patient was diagnosed approximately three decades later at

age 63.

For patient 21, we estimate that the parental clone (MRCA, Clone 0) of this patient’s CLL

was initiated when the patient was 6.4 [0.3, 16.7] years old, and grew with a net growth rate of

0.79 [0.30, 1.14] per year. Clone 1 appeared when the patient was 19.6 [10.8, 24.0] years old,

and grew more quickly than Clone 0, with a selective growth advantage of�90% over Clone

0). Clone 1 contained a FGFR1 mutation, which might have been acting as a driver of the

increased net proliferation. Clone 1 then grew for�15 years before the patient was diagnosed

at age 35.

Patients 6 and 9 present more complex clonal structures (Fig 4). Clone 0, the parental clone

of the CLL of Patient 9, arose when the patient was 4.9 [1.2, 10.8] years old, and had a growth

rate of 0.28 [0.17, 0.42] per year. Clone 1 arose when the patient was 18.8 [8.8, 35.1] years old.

Interestingly, during clinical observation between diagnosis and treatment, Clone 1 was

declining in size, with a growth rate of -0.40 [-0.45, -0.19] per year. In line with recent findings

[50], we found that sometimes the estimated growth rate during the period of observation,

such as the negative growth rate of Clone 1, is smaller than the minimal possible growth rate

necessary to reach the observed clone size. In that case, for calculating mutation rate, time of

the driver(s), time of detectability, and time between driver(s) and diagnosis we use the mini-

mal growth rate. Clone 2, containing a KRAS mutation, had the largest net growth rate of the

three clones (0.67 [0.49, 0.94] per year), corresponding to a selective growth advantage of

140.9% over the parental clone. Clone 2 arose when the patient was 21.3 [7.7, 31.7] years old.

We estimate that the CLL of Patient 6 was initiated when the patient was 2.8 [0.1, 13.2]

years old. The leukemic parental clone, Clone 0, then grew at a rate of 0.68 [0.15, 1.30] per

year. Approximately 33 years after the appearance of Clone 0, when the patient was 35.4 [21.7,

46.1] years old, the first subclone, Clone 1 appeared. Clone 3 arose from within Clone 1 when

the patient was 45.9 [31.3, 54.6] years old. Clone 3 harbored a driver mutation in ASXL1 and

had selective growth advantage of 60.8% over Clone 0. The patient was diagnosed at age 58,

eventually needing treatment 12.0 years after diagnosis.

The average mutation rate in the four CLL patients we analyze is 0.30 mutations/year. This

rate is over the exome, which accounts for�1% of the human genome. Our average estimated

mutation rate in CLL exomes is similar to the measured rate of accumulation of mutations in

human tissues of 40 mutations per year over the entire genome [51]. Other recent work has

estimated a mutation rate of 17 mutations per year in human haematopoietic stem cell/multi-

potent progenitors [52]. Our estimated mutation rates during CLL progression are on par or

higher than the recent estimates in healthy hematopoietic cells [52], in line with the expecta-

tion that mutation rates may be increased in cancer. The estimated times of appearance of CLL

subclones are very long, on the order of 10 years or more. This finding is in agreement with

results from Gruber et al. [27], who find few new CLL subclones over years to a decade of evo-

lution. We observe that CLL initiation occurred early in most patients, within the first fifteen

years of their lives, consistent with recent work in other cancer types [19, 36]. We find that

CLL patients reach leukocytosis an average of 1.5 years before the first timepoint at which can-

cer genome sequencing was performed. For three of the patients, our estimated time of leuko-

cytosis was before diagnosis, on average 1.3 years prior to diagnosis.
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Fig 4. Reconstructing the timeline of CLL evolution in patients. We applied our methodology to estimate subclonal

growth rates, mutation rates and evolutionary timelines in CLL tumors from Ref. [27]. Vertical height of a clone represents

its log10-scaled size. Mutations were clustered into clones and phylogenetic trees were inferred using PhylogicNDT [43]. Tree

edges are colored by clone number and are labeled with driver mutations, if any. For each patient, we show estimates for

patient age at CLL initiation and times of appearance of CLL subclones. Dashed white line indicates when the patient was

diagnosed. Solid black arrows indicate times of bulk sequencing measurements.

https://doi.org/10.1371/journal.pcbi.1010677.g004
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Discussion

We use a stochastic branching process model to reconstruct the timing of driver events and

quantify the evolutionary dynamics of different subclonal populations of cancer cells. We esti-

mate growth rates of tumor subclones, selective growth advantage of individual driver muta-

tions, mutation rate in the tumor, time between tumor initiation and appearance of a

subclonal driver mutation, and time between driver mutation and tumor observation.

Together, this allows us to estimate the age of the patient at tumor initiation, as well as the age

at appearance of a subclonal driver.

Previous work has computed relative order of driver events [18, 21, 53], while other studies

have given estimates for scaled mutation rates and time of events [24, 32]. However, we present

estimates for absolute, unscaled mutation rates and times, which are easily interpretable and

don’t implicitly depend on unknown parameters. We assume that mutations accrue with time,

which simplifies derivations and is supported by recent experimental data that shows that

non-dividing cells may accrue mutations at a similar rate as dividing cells [54]. Other potential

assumptions regarding mutation accumulation include mutations occurring at cell division

[55] or assuming mutation rate is proportional to the copy number state [56]. For example,

recent work reported that some mutational signatures in human cancers are generated during

mitosis [55]. Other work has shown that the rate of accumulation of somatic single nucleotide

variants is proportional to copy number [56]. We further assume that all cancer subpopula-

tions have the same passenger mutation rate. In the case that mutations occur predominantly

at cell division, assuming that the rate of cell division is comparable across all tumor subclones,

our estimates would still be valid. In the case of a subclone that has an elevated mutation rate

(e.g. due to a chromosomal amplification, mutation in a DNA repair pathway gene or an

increased cell division rate), we would underestimate the mutation rate and overestimate the

time of driver mutation(s) in that subclone. In the other subclones, the opposite would be true.

For individual CLLs that underwent bulk sequencing at two time points [27], we infer

growth rates of individual subclones, mutation rate in the tumor, the times when cancer sub-

clones began growing, the time between driver mutations and the patient’s diagnosis, and time

when the cancer is clinically observable. Our inferences are limited by the relatively low num-

ber of mutations present in CLL, as well as sequencing coverage [27], so we set a minimum

passenger mutation count when selecting specific cases to analyze. The accuracy of estimates

presented here is expected to be higher with whole genome sequencing available, with higher

sequencing coverage, or in cancer types with more mutations, with some important limita-

tions. Exponential growth—the mean behavior of our branching process model—has been

well documented in vivo [27, 57–59], but tumors can also often exhibit sigmoidal growth (e.g.

logistic, Gompertz models), where initial exponential growth is followed by a deceleration in

growth [58, 60–63]. Our estimators should only be used for cancers exhibiting exponential

growth; for other modes of growth, such as the logistic-growing class of CLL patients in

Ref. [27], the parameter estimates would have to be derived specifically for the particular mode

of growth observed. Exponential growth is the simplest common cancer growth pattern, and

yet, estimating the exponential growth rates requires at least two longitudinal timepoints. To

fit all parameters for patients with more complex growth dynamics, additional longitudinal

samples will be needed; this type of analysis would be further limited due to the scarcity of lon-

gitudinal pre-treatment samples in many cancer types. In the case of solid tumors, the number

of cells can be estimated from measurements of tumor volume [64], however multiple biopsies

would potentially be needed to fully account for the existing genetic heterogeneity. Further-

more, a solid tumor’s spatial structure, mode of evolution, and biopsy collection influence how

well selection and mutation spectra can be observed [30, 31, 65]. Recent modeling and
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computational work, in combination with careful multi-region sequencing and single cell

sequencing, have begun to disentangle these confounding factors [26, 29, 30].

Our model and derivations assume a fixed mutation rate u after transformation and fixed

growth rates of cancer subclones, similar to previous approaches [24, 30, 35]. Some individual

cancer subclones (such as Clone 1 from Pt. 9) not only do not grow exponentially, they actually

decline in absolute cell numbers, even if the overall tumor is undergoing expansion. This phe-

nomenon has been previously observed [27, 66], and could be caused by the declining sub-

clone getting outcompeted by more fit subclones. Sudden genomic instability events, or a

change in cancer mutation and/or growth rate over time could also introduce errors into our

parameter inferences. Recent sequencing data points to mutational processes that change over

time during cancer evolution [20, 67]; incorporating possible changes in the mutation and/or

growth rate into the model would require much higher density of sequencing and clinical data

[37], as would employing a more complex growth model (e.g. boundary-driven or sigmoidal

growth).

Materials and methods

Branching process model of tumor evolution

We employ a continuous, multi-type branching process model of cancer evolution. For the

case of a single driver subclone, there are two cell types, type-0 and type-1. Tumor expansion

is initiated by a single type-0, or initiated tumor cell. Type-0 cells divide with rate b and die

with rate d, yielding a net growth rate of r = b − d. At time t1, a single driver mutation is intro-

duced into a randomly selected cell in the type-0 population, founding a new type-1 popula-

tion of cells. This type-1 population undergoes its own independent branching process. They

divide with rate b1, die with rate d1, and have net growth rate r1 = b1 − d1. If the driver muta-

tion gives type-1 cells a selective growth advantage over the type-0 population, then r1 > r.
With the ratios of the growth rates denoted as s = r1/r, the growth advantage can be quantified

as g = (s − 1) � 100%. In the case of neutral evolution, g = 0. If there is a selective advantage,

g> 0. Neutral mutations, or passengers, have no effect on the cell’s fitness, and accrue accord-

ing to a Poisson process with rate u. We assume an infinite alleles model such that there is

no back mutation and an infinite sites model such that every new passenger mutation is

unique. Only surviving populations are considered. All derivations below will condition on

survival. The type-0 and type-1 populations at time t will be denoted as X0(t) and X1(t),
respectively.

Measurements sufficient to determine evolutionary history

Here we derive estimates for parameters describing the carcinogenic process for a single driver

subclone, using measurements taken from two time points late in the tumor’s development.

We require sequencing of the tumor at the two time points, when the tumor is first observed at

the unknown time t1 + t and a specified Δ later, at t1 + t + Δ. From these two bulk sequencing

measurements, we obtain measurements of α1 and α2, the fraction of cells carrying the driver

mutation at t1 + t and t1 + t + Δ, respectively. In addition, from the bulk sequencing at t1 + t +

Δ, we obtain measurements of m, the number of mutations present in the founder type-1 cell,

as well as γ, the number of mutations with frequency between the specified f1 and f2. The total

population size at these times, M1 and M2, is also measured.
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Expected value of γ, number subclonal mutations

For a population consisting of a single clone with birth and death rates b and d, the expected

number of subclonal mutations present at a frequency larger than f is shown to be [47]

�uð1 � f Þ
ð1 � dÞf

ð8Þ

where δ = d/b and �u is the probability that a daughter cell gains a new passenger mutation at

cell division. In this paper, we allow mutations to occur at any point in time and consider the

absolute mutation rate per cell, u, which is equal to �ub. Then the expected number of subclonal

mutations between f1 and f2, Eg, is

Eg ¼
uð1 � f1Þ
bð1 � dÞf1

�
uð1 � f2Þ
bð1 � dÞf2

ð9Þ

¼
u
r
ð1=f1 � 1=f2Þ ð10Þ

where r = b − d> 0.

Now we derive Eg in the case of clones 0 through k, each clone with growth rate ri> 0 and

fraction aci . Each clone i has aci
u
ri
ð1=f1 � 1=f2Þ expected subclonal passengers between frequen-

cies f1 and f2. Thus, the total expected number of passengers with frequencies between f1 and f2
is

Eg ¼ ð1=f1 � 1=f2Þ
Xk

i¼0

uaci
ri
: ð11Þ

For the simplest case we consider, a tumor with a single driver mutation occurring in the

initiated tumor population, there is a type-0 population with growth rate r and a type-1 popu-

lation with growth rate r1. Eq (11) reduces to

Eg ¼
ua
r1

þ
uð1 � aÞ

r

� �
1

f1
�

1

f2

� �

ð12Þ

where α is the fraction of cells having the driver mutation.

Derivation of estimates of evolutionary parameters for single driver

subclone

With the cancer bulk sequenced at the two time points t1 + t and t1 + t + Δ, we are able to

derive estimates for t1, t, r, r1, and u. First we solve for r and r1, based on the estimated cell

counts at t1 + t and t1 + t + Δ. The observed type-i cell count is equated to the expected value of

the type-i population size, conditioned on survival. For a birth-death process started with a sin-

gle type-i cell at time 0, we have E½XiðtÞ� ¼ erit . That process has extinction probability di/bi
[38]. Then,

E½XiðtÞ� ¼ E½E½XiðtÞjIXiðtÞ>0�� ð13Þ

� E½XiðtÞjXiðtÞ ¼ 0�ðdi=biÞ þ E½XiðtÞjXiðtÞ > 0�ð1 � di=biÞ ð14Þ

¼ E½XiðtÞjXiðtÞ > 0�ð1 � di=biÞ ð15Þ
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where IXiðtÞ>0 is a random variable and indicator function defined as

IXiðtÞ>0 ¼
0 if XiðtÞ ¼ 0

1 if XiðtÞ > 0
:

(

Thus, from (15), for large enough time t,

E½XiðtÞjXiðtÞ > 0� �
1

1 � di=bi
erit ¼

bi
ri
erit: ð16Þ

It then follows that for the type-0 population,

E½X0ðt1 þ tÞjX0ðt1 þ tÞ > 0� ¼
b
r
erðt1þtÞ ¼ ð1 � a1ÞM1

ð17Þ

E½X0ðt1 þ t þ DÞjX0ðt1 þ t þ DÞ > 0� ¼
b
r
erðt1þtþDÞ ¼ ð1 � a2ÞM2: ð18Þ

Proceeding similarly for the type-1 population, we obtain

r1 ¼
1

D
log

a2M2

a1M1

� �

ð19Þ

r ¼
1

D
log

ð1 � a2ÞM2

ð1 � a1ÞM1

� �

: ð20Þ

The expected value of the first time a population of type-1 cells in a branching process reaches

the observed size α1M1 is [38]

Et ¼
1

r1

log
a1M1r1

b1

� �

�
1

r1

Z 1

0

e� z log zdz ð21Þ

¼
1

r1

log
a1M1r1

b1

� �

þ
0:5772

r1

ð22Þ

¼
1

r1

log ða1M1Þ þ log ðr1=b1Þ þ 0:5772ð Þ ð23Þ

�
1

r1

log ða1M1Þ: ð24Þ

The last approximation is justified because for realistic cell counts, the first term in (23)

dominates the other two, which is also evident in simulation studies (S5 Fig). For example, if

r1 ¼
1

2
b1, then the second term log(r1/b1) = −0.69, compared to the first term log(α1M1) =

19.11. Even if r1 is as low as 0.1b1, the second term is -2.30. In this case, the percent error of the

approximation (24) is 7.3%. In general, the accuracy increases with increased tumor size.

With the measurement of γ, the number of subclonal passengers with frequency between f1
and f2, we can estimate the mutation rate u. In the previous section we derive the expected

value of γ as

Eg ¼
ua
r1

þ
uð1 � aÞ

r

� �
1

f1
�

1

f2

� �

: ð25Þ
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Using the estimates of r and r1 from (19) and (20), and the measured value of γ from the

second bulk sequencing, Eq (25) can be solved for the mutation rate u,

u ¼
f1f2rr1g

ðf2 � f1Þða2r þ r1ð1 � a2ÞÞ
: ð26Þ

When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk

sequencing at two or more time points, we average the mutation rate calculated at each of

these time points. (26) is applied for each time point with the respective CCFs and observed γ
values for each time point.

To derive the maximum likelihood estimates of t1, we consider the likelihood function P(m|

t1). The number of passenger mutations present in the founder type-1 cell that appeared at

time t1 is a Poisson process with rate u. Thus,

Pðmjt1Þ /
ðut1Þ

me� ut1
m!

: ð27Þ

Maximizing the logarithm of the likelihood function with respect to t1 yields a MLE for t1 in

terms of estimated or measured quantities:

t1 ¼ m=u: ð28Þ

Estimating number of unobserved subclonal mutations from sequencing

data

When sequencing data is post-processed by filtering out any mutations with L or fewer variant

reads, the number of mutations between f1 and f2 will likely be underestimated if 2L/(Rp) > f1,

where R is average sequencing coverage and p is tumor purity. Define γobs as the observed

number of mutations between frequencies f1 and f2, after post-processing has been performed

that filtered out any mutations with L or fewer variant reads. The expected number of subclo-

nal mutations between frequencies f1 and x is given by

gðxÞ ¼ cð1=f1 � 1=xÞ ð29Þ

where c is a constant that will vary depending on the patient and sample. It can be fit on the

sequencing data by noting

gobs ¼ gðf2Þ � gð2L=ðRpÞÞ ð30Þ

¼ cðRp=ð2LÞ � 1=f2Þ: ð31Þ

Therefore, c can be estimated from the sequencing data as

c ¼
gobs

Rp=ð2LÞ � 1=f2
: ð32Þ

Then, we can estimate γ as

g ¼ gobs

1

f1
�

1

f2
Rp
2L
�

1

f2

0

B
B
@

1

C
C
A: ð33Þ
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Number of passengers reaching fixation after t1
We estimate the number of passengers that occurred after t1 and reached fixation in the type-1

population in order to adjust the mobs mutation count. From [47], when mutations occur at

cell division, the expected number of clonal passengers is d�u=ð1 � dÞ. �u is the probability that

a daughter cell gains a new passenger mutation at cell division, so the mutation rate is

u ¼ �ub1. For the type-1 population, δ = d1/b1 < 1. When mutations accrue over time, and not

only at divisions, the expected number of clonal passengers is thus

�u=ð1 � dÞ ¼ u=r1: ð34Þ

Similarly, for a clone i, the expected number of passengers that occur after time ti and reach

fixation is

u=ri ð35Þ

where ri = bi − di> 0.

Simulation of tumor evolution and sequencing data

To assess the accuracy of the analytic results, we perform a continuous time Monte Carlo sim-

ulation to model tumor evolution and collection of sequencing data with an implementation

of the Gillespie algorithm [68]. Simulations are written in C/C++.

The type-j population has division rate bj, death rate dj, and mutation rate u. Mutations can

occur at any point of the cell cycle, not just during division. zn is the number of type-j cells

with passenger n as their most recent passenger mutation. The type-0 population is initiated

with a single cell at time 0, and the type-j population for k� j> 0 is initiated with a single cell

at time tj. Let a be the vector recording the ancestor of new mutations. Element ai is the subclo-

nal ancestor of the ith passenger mutation. For each j 2 0, 1, . . ., k, repeat 1–4 while time is less

than tk + t + Δ.

1. Set Γ = Nj(bj + dj + u). Time increment to next event time is randomly sampled from Exp

[Γ].

• If j< k, if time is greater than or equal to tj+1 for first time, randomly select type-j sub-

clone i to have driver mutation, remove one cell from type-j population count, and set

Nj+1 = 1. Record the true value of mj+1, the number of passenger mutations present in the

founder type-(j + 1) cell.

2. Randomly select cell, with most recent passenger mutation i, to have the event.

3. Determine which type of event and update population and mutation frequencies. Sample Y
from Uniform[0, Γ] to determine event type:

1. y 2 (0, bj)! birth. Nj þ¼ 1, zi þ¼ 1.

2. y 2 (bj, bj + dj)! death. Nj � ¼ 1, zi � ¼ 1.

3. y 2 (bj + dj, bj + dj + u)! passenger mutation. Suppose it’s the pth passenger, zi � ¼ 1,

zp = 1. Update ancestor: ap = i.

4. For j = 0, if time is less than t1 and population goes extinct, restart simulation. For j� 1, if

time is greater than tj and population goes extinct, restart type-j simulation at tj with a single

cell.
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5. Reindex to remove extinct passenger mutations, and traverse back through ancestor vector

a to sum total number of cells with each passenger.

Measurements are taken at bulk sequencing times tk + t and tk + t + Δ. If time is greater

than or equal to tk + t, we measure M1 ¼
Pk

j¼0
Nj and CCF of clone j as Nj/M1. Then an addi-

tional bulk sequencing measurement is taken at the final time tk + t + Δ, where we measure

M2 ¼
Pk

j¼0
Nj and the CCF of clone j as Nj/M2. At tk + t + Δ, we measure γ, the number of

mutations with frequency between f1 and f2.

To measure mj,obs, the observed number of passengers in the founder type-j cell, we count

the number of passengers present in all type-j cells. We also save the true value of mj.

For when we calculate a percent error of corrected and observed γ values in Fig 3D and S3

(B) Fig, we simulate sequencing data by sampling from the mutation frequencies obtained in

the Monte Carlo simulation, outlined above, using the approach of [35]. Define average

sequencing coverage as R, number of cells at time of sequencing as M, Zi as the number of cells

with mutation i, Ri as read coverage, and χi as the true mutation frequency from Monte Carlo

simulation. For each saved Monte Carlo simulation run, repeat the following 100 times:

1. Generate read coverage: Ri� Binomial[M, R/M].

2. Generate number of cells carrying mutation i: Zi� Binomial[Ri, χi/2].

3. Post-processing. If there are L = 2 or fewer variant reads, discard mutation.

4. Measure γobs, the observed number of subclonal mutations between frequencies f1 and f2:

γobs = ∑i I(f1� 2Zi/R� f2, Zi> L).

5. Calculate the truth, γtrue, from the true mutation frequencies: γtrue = ∑i I(f1� χi� f2).

Parameter values for simulations

For the simulations we consider three parameter sets corresponding to three modes of tumor

evolution: a fast-growing tumor, slow-growing tumor, and tumor with no cell death, each with

multiple mutation rates. We simulate three clonal structures: single driver subclone, two

nested driver subclones, and two sibling driver subclones. All parameter values are listed in S1

Table. Mutation rate parameter values lie within observed genome wide point mutation rates

per day [69]. For simulation of parental clone and subclone, the fast-growing tumor dynamics

are from [34]. The slower growing tumor parameter regime has a reduced net growth of

r = 0.025, compared to the fast-growing tumor’s net growth rate of r = 0.07.

Subclonal reconstruction of CLL sequencing data

The sequencing data from all CLLs analyzed is from Ref. [27], Supplementary Tables 2–4. As

in that publication, we use PhylogicNDT [43] to perform subclonal reconstruction. We run

the Cluster and BuildTree modules of PhylogicNDT on the longitudinal mutation data from

Supplementary Table 3 of [27], using mutation alternate/reference counts, copy number, and

tumor purity at all pre-treatment time points. Then for each patient, PhylogicNDT outputs a

clonal reconstruction, which includes a phylogenetic tree of the subclones and posterior distri-

butions of subclone CCFs. Additionally, it clusters mutations and assigns them to clones. We

directly use subclone assignments and posteriors generated from PhylogicNDT. In our analy-

sis we focus on estimating timing and growth rates of macroscopic subclones whose CCFs are

greater than 20% for at least one pre-treatment time point.
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Accounting for uncertainties in subclone frequencies and growth rates

Our estimates for parameters of cancer evolution require as input the information on the num-

ber of subclonal populations in the tumor, their CCFs and their phylogenetic relationships. In

order to obtain this information, we use PhylogicNDT [43], which performs subclonal recon-

struction of longitudinal cancer sequencing data. The uncertainty in subclone CCFs reported

by PhylogicNDT affects our estimates for subclone growth rates, which in turn affect the esti-

mates of mutation rate and time t between driver(s) and diagnosis. We account for this uncer-

tainty by drawing from the CCF posterior distributions that are output by PhylogicNDT.

Using these sampled CCF values, we then calculate growth rates, mutation rate u, and time t
between driver(s) and diagnosis, thereby generating confidence intervals for these parameters

due to CCF uncertainty.

To estimate subclonal growth rates, we fit an exponential growth curve to subclonal sizes

measured at two or more time points. This regression yields fitted values for each clone’s

growth rate and age. To account for uncertainty in the curve fit (in the case of more than two

longitudinal samples), we sample the growth rates and age of clone from a bivariate normal

distribution with mean equal to the fitted parameters and variance equal to the covariance

matrix of the fitted parameters. When the estimated growth rate during the period of observa-

tion—including negative growth rates—is smaller than the minimal possible growth rate nec-

essary to reach the observed clone size, we use the minimal growth rate for calculating

mutation rate, time of the driver(s), time between driver(s) and diagnosis, and time of

detectability.

Estimating time of cancer detectability

The time a cancer is detectable is the time at which the cancer exceeds the minimum observ-

able size. For the CLL data, we estimate the time that the patients first exhibited an abnormally

high WBC count, or leukocytosis, characterized by a WBC count of 11,500/μL [70], or approx-

imately 5.75 x 1010 total WBCs, assuming a total blood volume of 5 L. In the previous section,

we describe how we fit the growth dynamics for the CLL data and obtain a distribution of the

fitted growth parameters. Here, we sample from the distribution of the fitted parameters

10,000 times (using the minimal growth rate in the case of a growth rate too low to give rise to

the observed WBC count), and numerically solve for the time at which the total WBC count

was equal to 5.75 x 1010. i.e., we numerically find the root with respect to ti of

f ðŷ i; tiÞ � 5:75 x 1010 ¼ 0 ð36Þ

where ti is the ith estimated time out of 10,000 estimates, f(�) is the exponential function

describing the mean cancer growth, and ŷ i is the ith random sample from the fitted growth

parameters (intercept and growth rate).

Accounting for model uncertainty

The largest source of model uncertainty is the Poisson process for how mutations accumulate,

which is used to estimate the time t1 of the driver mutation. In the fast-growing tumor simula-

tion experiments, the time t1 had the largest error and variation (Fig 2). The estimate for t1
depends on the m mutations present in all cells in the driver subclone. The observed m is a sin-

gle random sample from a Poisson distribution. To account for the uncertainty in t1 arising

from m in the CLLs analyzed, we sample t1 from the posterior distributions P(t1|m). This

source of model uncertainty due to the Poisson process will be most significant for cancers like

CLL with a smaller number of mutations.
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The time t between driver mutation and diagnosis is a random variable due to the stochasti-

city of cancer cell growth, and will naturally have a certain amount of variation. Time between

driver event and diagnosis in a branching process follows a Gumbel distribution [38] and will

have a constant variance. The mean, however, will increase with the logarithm of the cancer

cell counts, which for the CLLs analyzed are� 1011. The simulations of cancer evolution grow

to smaller tumor sizes (� 105) and, as a result, the estimate for t has a significant amount of

uncertainty (Fig 2). However, for time scales necessary to generate a tumor, the estimate for t
will be quite accurate. For commonly observed tumor sizes, the stochastic fluctuations in the

time for the cancer to reach that size will be smaller relative to the magnitude of the time. For a

cancer with cell count� 1011, the standard deviation of the time t will be less than 5% of its

expected value.

Tumor with two nested driver subclones

Here we consider the case where there are two nested driver subclones (S4(A) Fig). “Nested”

means that all cells carrying the second driver mutation also carry the first. Type-0, or initiated

tumor, cells have birth rate b0, death rate d0, and net growth rate r0 = b0 − d0. Type-1 cells,

which only have the first driver, have birth rate b1, death rate d1, and net growth rate r1 = b1 −
d1. Type-2 cells, which carry both drivers, have birth rate b2, death rate d2, and net growth rate

r2 = b2 − d2. The first driver occurred in a type-0 cell at time t1. The second driver occurred in

a type-1 cell at t2 ¼ t1 þ t02. The mutation rate u is the same for all subclones.

At times t1 þ t02 þ t and t1 þ t02 þ t þ D, the tumor is bulk sequenced. The bulk sequencing

allows the measurement of the fraction of cells with driver 1 at time t1 þ t02 þ t, α1; the fraction

of cells with driver 2 at t1 þ t02 þ t, α2; fraction of cells with driver 1 at time t1 þ t02 þ t þ D, β1;

the fraction of cells with driver 2 at t1 þ t02 þ t þ D, β2; and the observed number of subclonal

passenger mutations between frequencies f1 and f2, γobs. Note that the fraction of the popula-

tion that is a type-1 cell at the two times is α1 − α2 and β1 − β2. The fraction of type-0 cells at

the two bulk sequencing time points are 1 − α1 and 1 − β1. The total number of cells at bulk

sequencing time points are M1 and M2. We then equate the estimated cell counts to the

expected value of the type-i population size Xi, conditioned on survival.

E½Xiðt1 þ t02 þ tÞjXiðt1 þ t02 þ tÞ > 0� ¼

b0

r0

er0ðt1þt02þtÞ i ¼ 0

b1

r1

er1ðt02þtÞ i ¼ 1

b2

r2

er2t i ¼ 2

8
>>>>>>><

>>>>>>>:

ð37Þ

¼

ð1 � a1ÞM1 i ¼ 0

ða1 � a2ÞM1 i ¼ 1

a2M1 i ¼ 2

8
><

>:
ð38Þ

E½Xiðt1 þ t02 þ t þ DÞjXiðt1 þ t02 þ t þ DÞ > 0� ¼

b0

r0

er0ðt1þt02þtþDÞ i ¼ 0

b1

r1

er1ðt02þtþDÞ i ¼ 1

b2

r2

er2ðtþDÞ i ¼ 2

8
>>>>>>><

>>>>>>>:

ð39Þ
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¼

ð1 � b1ÞM2 i ¼ 0

ðb1 � b2ÞM2 i ¼ 1

b2M2 i ¼ 2

8
><

>:
ð40Þ

Solving the above equations for ri, we obtain the growth rate estimates:

r0 ¼
1

D
log

ð1 � b1ÞM2

ð1 � a1ÞM1

� �

ð41Þ

r1 ¼
1

D
log

ðb1 � b2ÞM2

ða1 � a2ÞM1

� �

ð42Þ

r2 ¼
1

D
log

b2M2

a2M1

� �

: ð43Þ

The expected value of the first time a population of type-2 cells in a branching process reaches

the observed size α2M1 [38],

Et ¼
1

r2

log
a2M1r2

b2

� �

�
1

r2

Z 1

0

e� z log zdz ð44Þ

¼
1

r2

log
a2M1r2

b2

� �

þ
0:5772

r2

ð45Þ

�
1

r2

log ða2M1Þ ð46Þ

where the approximation in (46) is justified as for (24).

By (11),

Eg ¼ u
1 � b1

r0

þ
b1 � b2

r1

þ
b2

r2

� �
1

f1
�

1

f2

� �

: ð47Þ

Using the estimates for r0, r1, and r2 from (41)–(43), and setting (47) equal to the value of γ
obtained from (33) and the second bulk sequencing, u can be estimated:

u ¼
f1f2g

ðf2 � f1Þ
1 � b1

r0

þ
b1 � b2

r1

þ
b2

r2

� � :
ð48Þ

When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk

sequencing at two or more time points, we average the mutation rate calculated at each of

these time points. (48) is applied for each time point with the respective CCFs and observed γ
values for each time point.

Every type-1 cell carries the m1 passenger mutations that were present in the original type-1

cell when the first driver mutation occurred at t1. Similarly, every type-2 cell carries the m2 pas-

sengers that were present in the founder type-2 cell when the second driver mutation occurred

at t2. Note, none of the m1 mutations are counted towards m2. Now we consider the likelihood
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function

Pðm1;m2jt1; t02Þ: ð49Þ

Pðm1;m2jt1; t02Þ / Pðm1jt1ÞPðm2jt02Þ ð50Þ

/
ðut1Þ

m1e� ut1
m1!

ðut0
2
Þ
m2e� ut02
m2!

ð51Þ

Now, maximizing the logarithm of (51) with respect to t1 and t0
2
,

t1 ¼
m1

u
ð52Þ

t0
2
¼
m2

u
: ð53Þ

The number of passengers present in the founder type-i cell cannot be directly observed,

but we can measure mi obs, the number of passengers present in all type-i cells. An expected

u/r1 passengers occurring after t1 in type-1 cells and reaching fixation in the type-1 subclone

will be incorrectly included in m1 obs, rather than in m2 obs (see Methods). Similarly, an

expected u/r2 passengers occurring after t2 in type-2 cells and reaching fixation in the type-2

subclone will be incorrectly included in m2 obs. Thus,

m1 ¼ m1 obs � u=r1 ð54Þ

m2 ¼ m2 obs � u=r2 þ u=r1: ð55Þ

Tumor with two sibling driver subclones

Here we consider a tumor with two “sibling” driver mutations (S4(B) Fig). Sibling driver

mutations are drivers that occur in separate subclones. In this case, cells are either initiated

tumor cell (type-0), carry driver 1 (type-1), or carry driver 2 (type-2). No cells contain both

drivers. Driver 1 occurred in a type-0 cell at time t1. Driver 2 occurred in a type-0 cell at t2.

Type-0 cells have birth rate b0, death rate d0, and net growth rate r0 = b0 − d0. Type-1 cells,

which carry driver 1, have birth rate b1, death rate d1, and net growth rate r1 = b1 − d1. Type-2

cells, which carry driver 2, have birth rate b2, death rate d2, and net growth rate r2 = b2 − d2.

The mutation rate u is the same for all subclones.

Suppose time τi elapses between driver mutation i and tumor observation. Bulk sequencing

of the tumor is performed at t1 + τ1 (or equivalently t2 + τ2), and a known Δ later. Sequencing

the tumor allows the measurement of the fraction of cells with driver 1 at the first sequencing,

α1; the fraction of cells with driver 2 at the first sequencing, α2; fraction of cells with driver 1 at

the second sequencing, β1; the fraction of cells with driver 2 at the second sequencing, β2; and

the number of subclonal passenger mutations between frequencies f1 and f2, γ. The fraction of

type-0 cells at the two bulk sequencing time points are 1 − α1 − α2 and 1 − β1 − β2. The total

number of cells at the two sequencing time points are M1 and M2.

PLOS COMPUTATIONAL BIOLOGY Inferring parameters of cancer evolution in chronic lymphocytic leukemia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010677 November 4, 2022 22 / 32

https://doi.org/10.1371/journal.pcbi.1010677


We then equate the estimated cell counts to the expected value of the type-i population size

Xi, conditioned on survival.

E½Xiðti þ tiÞjXiðti þ tiÞ > 0� ¼

b0

r0

er0ðt1þt1Þ i ¼ 0

bi
ri
eriðtiÞ i ¼ 1; 2

8
>>><

>>>:

ð56Þ

¼
ð1 � a1 � a2ÞM1 i ¼ 0

aiM1 i ¼ 1; 2

(

ð57Þ

E½Xiðti þ ti þ DÞjXiðti þ ti þ DÞ > 0� ¼

bi
ri
eriðt1þt1þDÞ i ¼ 0

bi
ri
eriðtiþDÞ i ¼ 1; 2

8
>>><

>>>:

ð58Þ

¼
ð1 � b1 � b2ÞM2 i ¼ 0

biM2 i ¼ 1; 2

(

ð59Þ

Solving the above equations for ri, we obtain

r0 ¼
1

D
log

ð1 � b1 � b2ÞM2

ð1 � a1 � a2ÞM1

� �

ð60Þ

ri ¼
1

D
log

biM2

aiM1

� �

i ¼ 1; 2 ð61Þ

The expected value of the first time a population of type-i cells in a branching process

reaches the observed size αiM1 is [38]

Eti ¼
1

ri
log

aiM1ri
bi

� �

�
1

ri

Z 1

0

e� z log zdz ð62Þ

¼
1

ri
log

aiM1ri
bi

� �

þ
0:5772

ri
ð63Þ

�
1

ri
log ðaiM1Þ i ¼ 1; 2 ð64Þ

where the approximation in (64) is justified as for (24).

By (11),

Eg ¼ u
1 � b1 � b2

r0

þ
b1

r1

þ
b2

r2

� �
1

f1
�

1

f2

� �

ð65Þ
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Using the estimates for r0, r1, and r2 from (60) and (61), and setting (65) equal to the value

of γ obtained from (33) and the second bulk sequencing, u can be estimated.

u ¼
f1f2g

ðf2 � f1Þ
1 � b1 � b2

r0

þ
b1

r1

þ
b2

r2

� �
ð66Þ

When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk

sequencing at two or more time points, we average the mutation rate calculated at each of

these time points. (66) is applied for each time point with the respective CCFs and observed γ
values for each time point.

Every type-1 cell carries the m1 passenger mutations that were present in the original type-1

cell when the first driver mutation occurred at t1. Similarly, every type-2 cell carries the m2 pas-

sengers that were present in the founder type-2 cell when the second driver mutation occurred

at t2. We assume that m1 and m2 don’t contain any shared mutations. In the CLL dataset we

use, this is true. We consider the likelihood function P(m1, m2|t1, t2)

Pðm1;m2jt1; t2Þ / Pðm1jt1ÞPðm2jt2Þ ð67Þ

/
ðut1Þ

m1e� ut1
m1!

ðut2Þ
m2e� ut2
m2!

: ð68Þ

Maximizing the logarithm of (68) with respect to t1 and t2 yields the maximum likelihood esti-

mates:

t1 ¼
m1

u
ð69Þ

t2 ¼
m2

u
: ð70Þ

Using the same approach as in the case of a single driver, we obtain the corrections for the

observed number of mutations present in all cells of each subclone:

m1 ¼ m1 obs � u=r1 ð71Þ

m2 ¼ m2 obs � u=r2: ð72Þ

Fully generalized estimates for any phylogeny of k drivers

Here we derive estimates for a completely general tumor phylogeny. Suppose a tumor has k
driver mutations. In this general case, define a type-i cell as a cell where its most recent driver

mutation was driver i. Note that a type-i cell can have between 0 and k − 1 other driver muta-

tions. A phylogenetic reconstruction of the k driver mutations is necessary for the completely

general case. From this phylogenetic tree, the ancestor of each subclone can be obtained.

Define the function a(i) as the ancestor of the type-i population. That is, if all driver mutations

contained in the type-i population are ordered, a(i) gives the driver mutation that occurred

prior to i. Define ti as the time between when driver i occurred and when the type-i cells’ previ-

ous driver mutation occurred. At time of observation, assume the type-i population has κi total

driver mutations, where 1� κi� k for all 1� i� k. Denote the time between the type-i’s κi, or

last, driver mutation and when the tumor is observed as τi. This is the time between the
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founder type-i cell’s birth and tumor observation. Then the tumor is first observed and bulk

sequenced at T1 � ð
Pki � 1

j¼0
tajðiÞÞ þ ti (equivalently τ0 for i = 0), where we denote aj as the jth

iterate of the function a:

a0ðiÞ � i ð73Þ

ajðiÞ � aðaj� 1ðiÞÞ 8j � 1: ð74Þ

The tumor is also bulk sequenced at T2 � ð
Pki� 1

j¼0
tajðiÞÞ þ ti þ D (equivalently τ0 + Δ for i = 0).

These assumptions allow for any subclone phylogeny, including combinations of the previ-

ously discussed sibling and nested subclone types.

The bulk sequencing allows the measurement of the fraction of cells with driver i at T1, αi;
the fraction of cells with driver i at time T2, βi; and the number of subclonal passenger muta-

tions between frequencies f1 and f2, γ. Again, the total number of cells at measurement times

T1 and T2 are M1 and M2. To write the type-i frequencies, aci and b
c
i , in terms of the driver fre-

quencies, we subtract the fraction of cells descending from type-i cells but gaining additional

driver mutation(s) after i, from the fraction of cells containing driver i:

aci ¼
ai �

Pk
j¼1
di;aðjÞaj 1 � i � k

1 �
Pk

j¼1
acj i ¼ 0

(

ð75Þ

b
c
i ¼

bi �
Pk

j¼1
di;aðjÞbj 1 � i � k

1 �
Pk

j¼1
b
c
j i ¼ 0

(

ð76Þ

where δi,a(j) is the Kronecker delta, defined as

di;aðjÞ ¼
0 if i 6¼ aðjÞ
1 if i ¼ aðjÞ

:

(

We equate the estimated cell counts at the first bulk sequencing time point to the expected

value of the type-i population size Xi, conditioned on survival.

E½XiðT1ÞjXiðT1Þ > 0� ¼
bi
ri
eriti

¼ aciM1

ð77Þ

And similarly, at the second bulk sequencing time point,

E½XiðT2ÞjXiðT2Þ > 0� ¼
bi
ri
eriðtiþDÞ ð78Þ

¼ b
c
iM2: ð79Þ

Solving the above equations for ri, we obtain

ri ¼
1

D
log

b
c
iM2

aciM1

� �

8i ¼ 0; 1; . . . ; k: ð80Þ
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By (11)

Eg ¼ u
Xk

i¼0

b
c
i

ri

 !
1

f1
�

1

f2

� �

: ð81Þ

Now, using the growth rate estimates ri and the subclone sizes, we can estimate each τi. The

expected value of the first time a population of type-i cells in a branching process reaches the

observed size aciM1 is [38]

Eti ¼
1

ri
log

aciM1ri
bi

� �

�
1

ri

Z 1

0

e� z log zdz ð82Þ

¼
1

ri
log

aciM1ri
bi

� �

þ
0:5772

ri
ð83Þ

�
1

ri
log ðaciM1Þ ð84Þ

where the approximation in (84) is justified as for (24).

Using the (k + 1) ri estimates from (80), and setting (81) equal to the value of γ obtained at

the second bulk sequencing from (33), u can be estimated:

u ¼
f1f2g

ðf2 � f1Þ
Pk

i¼0

b
c
i

ri

� � :
ð85Þ

When estimating mutation rate for the CLL patients from Ref. [27], for which there is bulk

sequencing at two or more time points, we average the mutation rate calculated at each of

these time points. (85) is applied for each time point with the respective CCFs and observed γ
values for each time point.

The number of passengers present in the original type i founder cell cannot be directly

observed, but we can measure mi, the number of clonal passengers present in the type i popula-

tion, only including passengers not present in other clones. We will assume that the mi don’t

contain any shared mutations, which is true for the CLL dataset we consider. The likelihood

function P(m1, . . ., mk|t1, . . ., tk) is proportional to

Yk

i¼1

PðmijtiÞ /
Yk

i¼1

ðutiÞ
mie� uti
mi!

: ð86Þ

Then, maximizing the logarithm of (86) with respect to t1, t2, . . ., tk,

ti ¼
mi

u
8i ¼ 1; . . . ; k: ð87Þ

The observed clonal passengers in the founder type-i cell will incorrectly include passengers

that reached fixation in the type-i population after driver mutation i occurred, instead of cor-

rectly being counted toward the descendant of clone i. As a result, we again correct for the

expected number of these passengers, u/ri. That is,

mi ¼ mi; obs � u=ri þ u=raðiÞ 8i ¼ 1; . . . ; k: ð88Þ
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Supporting information

S1 Fig. Percent errors (PEs) for case with no death. Accuracy of parameter inferences for

Monte Carlo simulation of tumor with no cell death for (a) single driver subclone with muta-

tion rate u = 1, (b) single driver subclone with u = 10, (c) two nested subclones with u = 1, and

(d) two sibling subclones with u = 1. Mean percent error (MPEs) are the black numbers above

the plots, and mean absolute percent errors (MAPEs) are the grey numbers below the MPEs.

Boxes contain 25th-75th quartiles, with median indicated by thick horizontal black line. Whis-

kers of boxplots indicate 2.5 and 97.5 percentiles. Violins are smoothed density estimates of

the percent error datapoints. Complete parameter values and number of runs are included in

S1 Table.

(PDF)

S2 Fig. Percent errors (PEs) for slow-growing tumor. Accuracy of parameter inferences for

surviving Monte Carlo simulation runs of slow-growing tumor for (a) single subclone with

mutation rate u = 1, (b) single subclone with u = 5, (c) two nested subclones with u = 1, and

(d) two sibling subclones with u = 1. Mean percent error (MPEs) are the black numbers above

the plots, and mean absolute percent errors (MAPEs) are the grey numbers below the MPEs.

Boxes contain 25th-75th quartiles, with median indicated by thick horizontal black line. Whis-

kers of boxplots indicate 2.5 and 97.5 percentiles. Violins are smoothed density estimates of

the percent error data points. Complete parameter values and number of runs are included in

S1 Table.

(PDF)

S3 Fig. Corrections for observed mutation counts. (a) We compare percent errors of param-

eter estimates for time from tumor initiating until appearance of a driver subclone, t1, with

and without the correction for passengers that occur after the driver and reach fixation in the

driver population (Eq (6), main text). Errors for estimate with correction are shown in blue,

and for estimate without correction (Eq (5), main text) in orange. Errors are plotted as a kernel

density estimate for Monte Carlo simulations of fast-growing tumor with mutation rate u = 1.

Mean percent errors (MPEs) and mean absolute percent errors (MAPEs) are listed. (b) The

percent errors for the observed (orange) and corrected (blue) number of subclonal mutations

between frequencies f1 and f2, γ, (Eq (7), main text) are plotted as kernel density estimates.

Observed mutations are those that passed post-processing, i.e. those that have more than L = 2

mutant reads. True mutation frequencies were generated from 135 surviving runs of a Monte

Carlo simulation of a fast-growing tumor with mutation rate u = 1, from which sequencing

reads were simulated with 100x average coverage (see Materials and methods). Percent errors

are calculated relative to the true γ measured from the true mutation frequencies.

(PDF)

S4 Fig. Model for tumor expansion with two driver mutations. (a) Two nested driver sub-

clones. Initiated tumor (type-0) cells in blue, cells with driver 1 (type-1) in red, and cells with

both drivers (type-2) in orange. A driver mutation occurs in a type-0 cell at t1. A second driver

mutation occurs in a type-1 cell at t1 þ t02. Tumor is bulk sequenced at t1 þ t02 þ t and

t1 þ t02 þ t þ D. (b) Two sibling driver subclones. Type-0 cells (in blue). A driver mutation

occurs in a type-0 cell at t1. A second driver mutation occurs in a different type-0 cell at t2.

Tumor is bulk sequenced at t1 + τ1 (or, equivalently t2 + τ2) and t1 + τ1 + Δ (equivalently t2 +

τ2 + Δ).

(PDF)
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S5 Fig. Accuracy for t estimate increases with tumor size. A Monte Carlo simulation of a

birth-death process was performed for (a) fast-growing, (b) slow-growing, and (c) no cell

death parameter regimes. For each of the 100 surviving simulated tumors, the percent error of

the t estimate (Eq (3)) was calculated when the tumor first reached the specified tumor sizes.

Means are indicated by red points and lines, ± one standard deviation is shown by the red

region, and individual data points for each simulation run are shown as the grey points (with

horizontal jitter for visibility).

(PDF)

S1 Table. Parameter values. Parameter values and number of surviving runs for Monte Carlo

simulations. For all simulations f1 = 0.01, f2 = 0.20, L = 2.

(XLSX)

S1 Methods. Unbiasedness of growth rate.

(PDF)
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21. Sundermann LK, Wintersinger J, Rätsch G, Stoye J, Morris Q. Reconstructing tumor evolutionary histo-

ries and clone trees in polynomial-time with SubMARine. PLOS Computational Biology. 2021; 17(1):

e1008400. https://doi.org/10.1371/journal.pcbi.1008400 PMID: 33465079

22. PCAWG Evolution and Heterogeneity Working Group, PCAWG Consortium, Rubanova Y, Shi R, Harri-

gan CF, Li R, et al. Reconstructing evolutionary trajectories of mutation signature activities in cancer

using TrackSig. Nature Communications. 2020; 11(1):731. https://doi.org/10.1038/s41467-020-14352-

7 PMID: 32024834

23. Tomasetti C, Bozic I. The (not so) immortal strand hypothesis. Stem Cell Research. 2015; 14(2):238–

241. https://doi.org/10.1016/j.scr.2015.01.005 PMID: 25700960

24. Werner B, Case J, Williams MJ, Chkhaidze K, Temko D, Fernández-Mateos J, et al. Measuring single

cell divisions in human tissues from multi-region sequencing data. Nature Communications. 2020;

11(1):1–9. https://doi.org/10.1038/s41467-020-14844-6 PMID: 32098957

25. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, et al. Accumulation of driver and passenger muta-

tions during tumor progression. Proceedings of the National Academy of Sciences of the United States

of America. 2010; 107(43):18545–18550. https://doi.org/10.1073/pnas.1010978107 PMID: 20876136

26. Sun R, Hu Z, Sottoriva A, Graham TA, Harpak A, Ma Z, et al. Between-region genetic divergence

reflects the mode and tempo of tumor evolution. Nature Genetics. 2017; 49(7):1015–1024. https://doi.

org/10.1038/ng.3891 PMID: 28581503

27. Gruber M, Bozic I, Leshchiner I, Livitz D, Stevenson K, Rassenti L, et al. Growth dynamics in naturally

progressing chronic lymphocytic leukaemia. Nature. 2019; 570(7762):474–479. https://doi.org/10.1038/

s41586-019-1252-x PMID: 31142838

28. Salichos L, Meyerson W, Warrell J, Gerstein M. Estimating growth patterns and driver effects in tumor

evolution from individual samples. Nature Communications. 2020; 11(1):1–14. https://doi.org/10.1038/

s41467-020-14407-9 PMID: 32024824

PLOS COMPUTATIONAL BIOLOGY Inferring parameters of cancer evolution in chronic lymphocytic leukemia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010677 November 4, 2022 29 / 32

https://doi.org/10.1126/science.1235122
http://www.ncbi.nlm.nih.gov/pubmed/23539594
https://doi.org/10.1038/nature12213
http://www.ncbi.nlm.nih.gov/pubmed/23770567
https://doi.org/10.1038/nrc2013
http://www.ncbi.nlm.nih.gov/pubmed/17109012
https://doi.org/10.1111/j.1752-4571.2008.00063.x
https://doi.org/10.1111/j.1752-4571.2008.00063.x
http://www.ncbi.nlm.nih.gov/pubmed/25567847
https://doi.org/10.1073/pnas.97.3.1236
http://www.ncbi.nlm.nih.gov/pubmed/10655514
https://doi.org/10.1073/pnas.0712345105
http://www.ncbi.nlm.nih.gov/pubmed/18337506
https://doi.org/10.1038/nature09515
https://doi.org/10.1038/nature09515
http://www.ncbi.nlm.nih.gov/pubmed/20981102
https://doi.org/10.1073/pnas.1400179111
http://www.ncbi.nlm.nih.gov/pubmed/24753616
https://doi.org/10.1126/scitranslmed.aaa1408
http://www.ncbi.nlm.nih.gov/pubmed/25877892
https://doi.org/10.1016/j.cell.2018.02.020
http://www.ncbi.nlm.nih.gov/pubmed/29656891
https://doi.org/10.1038/s41586-019-1907-7
http://www.ncbi.nlm.nih.gov/pubmed/32025013
https://doi.org/10.1371/journal.pcbi.1008400
http://www.ncbi.nlm.nih.gov/pubmed/33465079
https://doi.org/10.1038/s41467-020-14352-7
https://doi.org/10.1038/s41467-020-14352-7
http://www.ncbi.nlm.nih.gov/pubmed/32024834
https://doi.org/10.1016/j.scr.2015.01.005
http://www.ncbi.nlm.nih.gov/pubmed/25700960
https://doi.org/10.1038/s41467-020-14844-6
http://www.ncbi.nlm.nih.gov/pubmed/32098957
https://doi.org/10.1073/pnas.1010978107
http://www.ncbi.nlm.nih.gov/pubmed/20876136
https://doi.org/10.1038/ng.3891
https://doi.org/10.1038/ng.3891
http://www.ncbi.nlm.nih.gov/pubmed/28581503
https://doi.org/10.1038/s41586-019-1252-x
https://doi.org/10.1038/s41586-019-1252-x
http://www.ncbi.nlm.nih.gov/pubmed/31142838
https://doi.org/10.1038/s41467-020-14407-9
https://doi.org/10.1038/s41467-020-14407-9
http://www.ncbi.nlm.nih.gov/pubmed/32024824
https://doi.org/10.1371/journal.pcbi.1010677


29. Noble R, Burri D, Le Sueur C, Lemant J, Viossat Y, Kather JN, et al. Spatial structure governs the mode

of tumour evolution. Nature Ecology & Evolution. 2021. https://doi.org/10.1038/s41559-021-01615-9

PMID: 34949822

30. Chkhaidze K, Heide T, Werner B, Williams MJ, Huang W, Caravagna G, et al. Spatially constrained

tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data. PLOS

Computational Biology. 2019; 15(7):e1007243. https://doi.org/10.1371/journal.pcbi.1007243 PMID:

31356595

31. Fu X, Zhao Y, Lopez JI, Rowan A, Au L, Fendler A, et al. Spatial patterns of tumour growth impact clonal

diversification in a computational model and the TRACERx Renal study. Nature Ecology & Evolution.

2021.

32. Williams MJ, Werner B, Heide T, Curtis C, Barnes CP, Sottoriva A, et al. Quantification of subclonal

selection in cancer from bulk sequencing data. Nature Genetics. 2018; 50(6):895. https://doi.org/10.

1038/s41588-018-0128-6 PMID: 29808029

33. Avanzini S, Kurtz DM, Chabon JJ, Moding EJ, Hori SS, Gambhir SS, et al. A mathematical model of

ctDNA shedding predicts tumor detection size. Science Advances. 2020; 6(50):eabc4308. https://doi.

org/10.1126/sciadv.abc4308 PMID: 33310847

34. Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, et al. Evolutionary dynamics of cancer in

response to targeted combination therapy. eLife. 2013; 2:e00747. https://doi.org/10.7554/eLife.00747

PMID: 23805382
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