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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits

in communication, and social skills, as well as repetitive and/or restrictive interests and

behaviors. The severity of ASD varies from mild to severe, drastically interfering with the

quality of life of affected individuals. The current occurrence of ASD in the United States is

about 1 in 44 children. The precise pathophysiology of ASD is still unknown, but it is believed

that ASD is heterogeneous and can arise due to genetic etiology. Although various genes

have been implicated in predisposition to ASD, metabotropic glutamate receptor 5

(mGluR5) is one of the most common downstream targets, which may be involved in autism.

mGluR5 signaling has been shown to play a crucial role in neurodevelopment and neural

transmission making it a very attractive target for understanding the pathogenesis of ASD.

In the present study, we determined the effect of genetic ablation of mGluR5 (Grm5) on an

ASD-like phenotype using a rat model to better understand the role of mGluR5 signaling in

behavior patterns and clinical manifestations of ASD. We observed that mGluR5 Ko rats

exhibited exaggerated self-grooming and increased marble burying, as well as deficits in

social novelty. Our results suggest that mGluR5 Ko rats demonstrate an ASD-like pheno-

type, specifically impaired social interaction as well as repetitive and anxiety-like behavior,

which are correlates of behavior symptoms observed in individuals with ASD. The mGluR5

Ko rat model characterized in this study may be explored to understand the molecular mech-

anisms underlying ASD and for developing effective therapeutic modalities.

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits

in behavior and communication [1–4]. The current occurrence of ASD in the United States is

about 1 in 44 children [5]. There are three core symptoms of ASD: impaired social behavior,
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stereotypic/repetitive behaviors, and sensory/communication deficits [1, 6–8]. The commonly

observed behavioral disturbances also include aberrant sensitivity to sensory stimulations,

hyperactivity, and possible self-injury [1].

ASD is a complex disorder, and a wide arsenal of factors have been involved in the patho-

physiology of this neurodevelopmental disorder. Therefore, a multidisciplinary approach is

the key to understand its etiology and for the design of rational interventions. Studies in ani-

mal models are aimed at simulating the core phenotypes associated with ASD to identify the

mechanisms that underscore the entire spectrum of the disorder [9–15]. Due to the lack of

suitable ASD models, the exact mechanisms by which ASD develops are still unknown. Rat

models may be more appropriate than mice for understanding ASD pathogenesis, as rats

exhibit complex social behavior especially during development [16–21]. Mouse play behavior

during development is less conspicuous and comprises few interaction elements. In contrast,

normal young rats are playfully aggressive creatures, wrestling, boxing, and pinning their sib-

lings down by the neck unlike mice. This is important since ASD is a developmental disorder

and modeling the impaired social behavior during development is critical in clinically relevant

animal models of ASD. In addition, as compared to mice, rats use a rich acoustic communica-

tion system [22–27]. All these findings suggest that the rat may be a more suitable animal

model as compared to mice for understanding the molecular mechanisms underlying ASD

etiology.

Although the exact etiology of ASD remains an enigma, at least 30% of cases have an under-

lying genetic etiology [28–35]. The most common gene variants involved in ASD include

SHANK3, MECP2, NLGN3, NRXN1 and FMR1 [36–50], some of which are regulated by the

metabotropic glutamate receptor (mGluR) pathway, especially mGluR5, thus making it a very

attractive target for understanding the pathogenesis of ASD [51]. mGluR5 is a seven-trans-

membrane spanning G-protein coupled receptor (GPCR) located in the postsynaptic mem-

brane of excitatory synapses, neuronal nuclear membranes, glia, and oligodendrocytes [52–

56]. mGluR5 is important for neuronal-glial communication and in neuronal homeostasis

including the control of glutamate release and uptake by astrocytes [57]. mGluR5 signal tran-

scription events occur either via phospholipase-C (PLC) to act ultimately on the mitogen acti-

vated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK), or via

phosphoinositide-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) [58].

mGluR5 has been shown to play an important role in the pathophysiology of ASD by regu-

lating the function of a number of proteins involved in synaptic transmission, including

Shank3 [51]. As a proof of this concept, pharmacological enhancement of mGluR5 has been

shown to rescue behavioral deficits in SHANK3 knockout (Ko) mice [59]. mGluR5 and

Shank3 interact with each other primarily through homer proteins [51]. In addition, the gene

expression of mGluR5 was significantly decreased in ASD patients versus control human sub-

jects in a post-mortem brain stereological investigation [60]. The intensity of the staining of

mGluR5-positive neurons was also significantly decreased in ASD versus control subjects [60].

The single nucleotide polymorphisms in Grm5, the gene that encodes mGluR5, have been

found to be a predictive genetic classifier for ASD [61]. The mGluR5 antagonists administered

to wild-type (WT) rats have been shown to impair social interaction, which is a core clinical

deficit in ASD [62]. Further, reduced mGluR5 expression has been observed in Mecp2 Ko mice

as well as in the motor cortex of autopsy samples from Rett syndrome (RS) patients [63]. RS is

a neurodevelopmental disorder that results from de novo mutations in the MECP2 gene and

shares many symptomatic, as well as pathological commonalities with ASD [64, 65]. Addition-

ally, treatment of Mecp2-deficient mice with mGluR5 positive allosteric modulator (PAM),

VU0462807, improves behavior defects [63]. These basic science and clinical studies employ-

ing ASD individuals strongly lay the foundation for the usefulness and relevance of mGluR5
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Ko rats as suitable models of ASD. The availability of a preclinical mGluR5 rat model that is a

downstream target molecule for some of the genes implicated in ASD will provide a unique

tool to understand the underlying molecular mechanisms behind the etiology of ASD. This

model will help us to comprehend the neurodevelopmental changes that underlie the behav-

ioral deficits observed in ASD and will open the doors for evaluating the efficacy of future ther-

apeutic interventions.

Methods

Animals

Heterozygous breeders of mGluR5 Ko rats on Sprague Dawley background were obtained

from the Envigo company (Indianapolis, IN, USA). The model was generated by a biallelic

deletion of the metabotropic glutamate receptor 5 (mGluR5 or Grm5). All experimental ani-

mals were obtained from heterozygous crossings. Male and female rats were used in these

experiments. In total, 36 rats [19 WT (9 males, 10 females) and 16 Ko (8 males and 8 females)

animals] were subjected to a comprehensive battery of ASD-associated behavior tests at 12

weeks of age. Animals were group housed in a room with 12-hr light /12-hr dark Light/Dark

cycle. Food and water were provided ad libitum. To control potential litter effect, one animal

each of WT and Ko per litter was randomly selected for behavior phenotyping. This experi-

mental design allows the use of standard statistical methods, such as t tests for analysis [66, 67].

The rest of the animals were used in additional different experiments. The animals for this

study were derived from 19 pregnant dams as heterozygous breeding scheme was used provid-

ing both WT and Ko rats. Genotyping was performed by Transnetyx company (Cordova, TN,

USA) using custom designed probes having primer sequence, mGluR5 F CTTCATGAGGGTT
GTACCTTCC; mGluR5 R GTGTGCACAGCTGAGACATAAG. Behavioral analyses were con-

ducted by the trained observers that were blinded to the rat genotype. The study protocol was

approved by the Animal Care and Use Committee of the University of Miami and was in full

compliance with the NIH guidelines for the care and use of laboratory animals.

Open field (OF)

Rats were brought to the testing room at least 30 minutes before the test. Each animal was vid-

eotaped for 10 minutes undisturbed after a 20-minute habituation time in their own cage (46

cm length × 23.5 cm wide × 20 cm high). The dimension of the open field (OF) chamber was

85 x 50 x 50 cm. Animals were placed in the middle of the arena at the start of the test. They

remained in the arena for 10 minutes and their positions were tracked using Ethovision Ver-

sion 11.5 (Noldus Information Technology, Netherlands). The center region was defined as an

area that covered 42.35% of the total arena (artificial dimension: 60 x 30 cm inside vs. 85 x 50

cm total arena). Time spent in the center (center duration, in sec) and in the periphery of the

arena (periphery duration, in sec) as well as the proportion of time spent in the perimeter of

the box was used as an index of anxiety [68–70]. We also determined the total distance traveled

(in cm) as an index of locomotor activity. In addition, the rearing frequency was used as a mea-

sure of exploratory behavior and anxiety [71, 72].

Self-grooming

After a 20-minute habituation period, animals were videotaped undisturbed for 10 minutes.

The number of bouts of grooming sessions and the time spent in grooming was determined by

two trained observers who were blinded to the experimental conditions. Self-grooming behav-

iors included wiping the nose, face, head, and ears with forepaws, as well as licking the body,
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anogenital area and tail [68, 73, 74]. The influence of rat odors was prevented by thoroughly

cleaning the cage at the beginning of each trial.

Social interaction test

The social interaction test was performed using a three-chamber compartment comprising of

three phases. In the first phase, the test animal was introduced to the middle compartment of

the three- chambered apparatus and was allowed 5 minutes to freely explore left and right

chambers each containing an empty Plexiglas cage. In the second phase, a non-familiar wild-

type rat matched for sex and age (“stranger rat”) was placed in the cage in the right compart-

ment. The test rat was placed in the middle chamber with closed connecting doors. The experi-

ment started when the operator opened the doors, and the rat behavior was recorded over 10

minutes. Sociability was assessed by recording the time spent in the “stranger rat” chamber (in

seconds), and in the empty cage chamber (in seconds) [70, 73, 75, 76].

Immediately following the second phase of the test, a novel wild-type rat matched for sex

and age (“novel rat”) was placed in the cage in the left chamber while the “stranger rat” (from

the second phase of the test) became familiar (“familiar rat”) to the test animal in this third

phase. The search for social novelty was assessed by recording the time spent in the “familiar

rat” chamber (in seconds) and in the “novel rat” chamber (in seconds) [70, 73, 75, 76].

Marble-burying test (MBT)

MBT was used to measure repetitive and anxiety-related behaviors [77, 78]. The test rat was

left undisturbed for one hour in the testing room in its home-cage for acclimation. In five cm

high fresh bedding, 20 marbles (previously washed with 90% alcohol) were placed equally dis-

tant in the testing area. After the acclimation period, the test animal was allowed to bury mar-

bles freely for 30 minutes. At the end of the test, the number of marbles buried was counted.

Marbles were considered buried if more than two-thirds of their height was covered with the

bedding. The marbles were thoroughly cleaned after each experiment followed by replacement

of new bedding in the testing chamber. Experiments were also video-recorded, and animal’s

cumulative time spent digging was manually scored with a stopwatch by two trained observers

who were blinded to the experimental conditions.

Statistical analysis

Statistical analyses were conducted with XLSTAT and GraphPad Prism version 28. Quantita-

tive variables were compared using a Student’s t-test. A Mann-Whitney’s test was performed

for nonparametric samples. The threshold of statistical significance was set with a p< 0.05.

Results

Exaggerated self-grooming behavior in mGluR5 Ko rats

Excessive self-grooming has been observed in preclinical animal models of ASD representing

repetitive behaviors and as expression of anxiety [79, 80]. We observed that the Ko rats self-

groomed significantly more frequently and for longer durations compared to the WT animals

(p< 0.01) (Fig 1A and 1B). The mean grooming frequency was 3.31 ± 1.35 for the Ko rats

compared to 1.16 ± 0.89 for the WT rats. Average grooming time was 15.25 ± 8.37 seconds

and 7.42 ± 2.25 seconds in the Ko and WT rats, respectively. However, there was no statistically

significant difference in grooming frequency and grooming time between Ko males and Ko
females (p> 0.05).
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Increased rearing frequency in mGluR5 Ko rats

Rearing frequency is the frequency with which the rodent stands on its hind legs in the open

field, which might be a direct measure of anxiety [71, 72, 81, 82]. We observed that the fre-

quency of rearing was significantly higher in the Ko group than in the WT rats (Ko:

Mean = 36.50, SD = 6.48; WT: Mean = 18.84, SD = 4.18; p< 0.001) (Fig 2). We did not find

any statistically significant difference in rearing frequency between Ko males and Ko females

(p> 0.05).

Fig 1. mGluR5 Ko rats show exaggerated self-grooming. The Ko rats groomed significantly more frequently (A) and

for longer durations (B) compared to the WT animals. ��p< 0.01 Ko versus WT animals.

https://doi.org/10.1371/journal.pone.0275937.g001

Fig 2. Rearing frequency is increased in mGluR5 Ko rats. The frequency of rearing was significantly higher in the Ko
group than in the WT rats suggesting anxiety-like phenotype. ���p< 0.001 Ko versus WT animals.

https://doi.org/10.1371/journal.pone.0275937.g002
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Increased marble-burying behavior and digging time in mGluR5 Ko rats

The MBT allows in assessing anxiety-like, and repetitive behaviors. The effect of genetic abla-

tion of mGluR5 (or Grm5) on MBT in a rat model is still not known. Therefore, we subjected

WT and Ko rats to MBT. We determined the number of marbles buried as well as the total dig-

ging time in Ko and WT rats. We observed that the Ko rats significantly buried more marbles

compared to the WT animals (Ko: Mean = 17.21, SD = 0.52; WT: Mean = 7.91, SD = 0.48;

p< 0.001) (Fig 3A). In addition, the total digging time was significantly higher in Ko rats com-

pared to WT animals (Ko: Mean = 169.95, SD = 9.48; WT: Mean = 35.41, SD = 8.33; p< 0.001)

(Fig 3B). These results suggest that the Ko rats exhibit repetitive behavior and are more anx-

ious than the WT animals, which are the hallmarks of ASD-like phenotype. However, there

was no statistically significant difference between Ko males and Ko females (p> 0.05).

Open field test

The open-field test is used to measure locomotor activity and anxious behavior of animal mod-

els. We observed that there was no significant difference in the total distance travelled between

the Ko and WT rats (Ko: Mean = 44.26, SD = 11.91; WT: Mean = 42.38, SD = 9.19; p = 0.60)

(Fig 4). These results suggest that were no significant differences in the locomotor activity of

Ko and WT rats. We then determined time spent in the center and periphery by the Ko and

WT rats (Fig 5A and 5B). There was no statistical difference between the Ko and WT rats in

time spent in periphery and center (p> 0.05).

mGluR5 Ko rats exhibit deficits in sociability and social novelty

Using the three-chamber test, we assessed the sociability and social novelty behaviors (Figs 6A

and 7A). We observed that there was a statistically significant difference in sociability between

Ko and WT rats. The WT rats spent significantly more time in the stranger rat chamber com-

pared to the empty chamber (Fig 6B) (p< 0.001). On the contrary, the Ko rats showed no pref-

erence for stranger rat and empty (p> 0.05). These findings indicate that Ko rats show deficits

in sociability. However, there was no statistically significant difference in sociability between

Ko males and Ko females (p> 0.05).

Fig 3. mGluR5 Ko rats show marble burying phenotype related with ASD-like phenotype. A. The Ko rats

significantly buried more marbles compared to the WT animals. B. The total digging time was significantly higher in

the Ko rats compared to the WT animals. ���p< 0.001 Ko versus WT animals.

https://doi.org/10.1371/journal.pone.0275937.g003
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During the third phase of the three-chambers test assessing the search for social novelty, a

novel rat age and sex-matched (“novel rat”) was inserted in the cage of the left chamber while

the “familiar rat” remained in the right chamber (Fig 7A). The WT rats spent more time in the

novel rat chamber compared to time spent in the familiar rat chamber (p< 0.001). On the

other hand, Ko rats showed no preference and there was no statistically significant difference

in time spent in familiar and novel rat chambers (p> 0.05) (Fig 7B). These results suggest the

Fig 4. mGluR5 Ko rats do not show impaired locomotion. There was no significant difference in locomotor activity

of the Ko rats compared to the WT animals. p> 0.05 Ko versus WT animals. ns: non-significant.

https://doi.org/10.1371/journal.pone.0275937.g004

Fig 5. Perimeter preference in open-field test. The mGluR5 Ko rats do not show differences in time spent in center

(A), and in perimeter (B) compared to WT animals. p> 0.05 Ko versus WT animals. ns: non-significant.

https://doi.org/10.1371/journal.pone.0275937.g005
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reluctance to social novelty of Ko rats as compared to WT animals. However, there was no sta-

tistically significant difference in social reluctance between Ko males and Ko females

(p> 0.05).

Discussion

Metabotropic glutamate receptor mediated signaling, especially through mGluR5, has been

hypothesized to play a crucial role in the pathophysiology of ASD. In support of this concept,

the pharmacological enhancement of mGluR5 ameliorates behavioral deficits in preclinical

animal models of ASD [59]. As mGluR5 can play an important role in predisposition to ASD,

it is worthwhile to examine the effects of genetic deletion of mGluR5 (or Grm5) on ASD-asso-

ciated behavioral manifestations. In the present study, we subjected mGluR5 Ko rats to a bat-

tery of ASD-associated behavior phenotypes such as repetitive behavior, anxiety-like

phenotype, social preference, locomotor activity and digging behavior. We observed that Ko
rats several behavior deficits congruent with an ASD-like phenotype, suggesting the critical

role of mGluR5 signaling in determining increased susceptibility to autism.

Fig 6. Three chamber sociability test. A) Schematic representation of three-chamber sociability test. B) The mGluR5

Ko rats do not exhibit sociability as there was no statistically significant difference between time spent with the stranger

rat over the empty cage (p> 0.05). On the other hand, WT rats preferred spending time with the stranger rat

compared to the empty cage (���p< 0.001). ns: non-significant.

https://doi.org/10.1371/journal.pone.0275937.g006

Fig 7. mGluR5 Ko rats exhibit no preference for social novelty. A) Schematic representation of social-novelty test.

B) WT rats showed the preference for social novelty as they spent significantly more time with novel rat compared to

the familiar rat (���p< 0.001). On the other hand, the mGluR5 Ko rats showed no preference and there was no

statistically significant difference in total time spent with the novel rat over the familiar rat suggesting reluctance to

social novelty (p> 0.05). ns: non-significant.

https://doi.org/10.1371/journal.pone.0275937.g007
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Aberrant self-grooming has been associated with ASD-like phenotype in animal models

representing stereotyped repetitive behavior [74, 78, 83]. Self-grooming behaviors in rats often

include licking the body, paws/legs, genital area, and tail, as well as using their paws to wipe

the face, ears, and head [73, 84]. Although self-grooming is a typical animal or rodent behavior

performed for seconds to minutes, it is often flagged as abnormal when done more frequently

or for an extended amount of time [85]. A number of studies have associated exaggerated self-

grooming with ASD-like phenotype. The valproic acid (VPA)-exposed rat offspring have been

shown to spend significantly more time self-grooming than control rats, suggesting ASD-

related stereotyped behavior [73, 85]. Furthermore, di-(2-ethylhexyl) phthalate (DEHP) expo-

sure has been shown to result in autism-like behavior, illustrated in part by the increased self-

grooming time, which is comparable to the elevated duration observed in VPA rats [86]. Our

results are in agreement with these studies as we observed that the Ko rats self-groomed signifi-

cantly more frequently and for longer durations than the WT animals, thus exhibiting ASD-

like phenotype.

Marble burying test is commonly used to determine the repetitive and anxiety-like pheno-

type, which is one of the most important hallmarks of ASD. Both the number of the marbles

buried, as well as the amount of time the animal spends exploring the marbles or digging are

often studied, similar to the type of analyses performed in our study. We observed that Ko rats

buried more marbles and spent more time in digging the marbles compared to WT animals

showing repetitive and anxiety-like behavior. On par with these findings, increased marble

burying has been observed in various ASD animal models. The loss of Tsc2 in Purkinje cells

and deficiency of cyclooxygenase-2 (COX2) have been associated with ASD-like phenotype in

rodent models [76, 87, 88]. Similarly, in a VPA induced ASD model, increased marble burying

was observed that correlated with repetitive and anxiety-like behavior, mimicking clinical

manifestations of ASD in human subjects [89].

An important parameter in the open-field test is the total distance travelled. If there are no

differences in total distance traversed between different strains, it facilitates making valid com-

parisons for various behavior tests, as locomotor activity is no longer a confounding variable

in the data analysis. The significant differences in locomotor activity may skew the data by pre-

venting analyses for time spent in certain designated zones of the maze as differences may be

due to inactivity instead of due to the genotype effect. In the present study, we observed no sta-

tistically significant difference in the locomotor activity of the Ko and WT rats. Therefore, we

determined whether there are differences in the time spent in the center and periphery zones

between the Ko and WT rats in the open-field test. However, we observed no significant differ-

ences in the time spent in the different zones. These results are in agreement with previous

findings where no perimeter preference was observed in other animal models of ASD [76]. It

is possible that the brain regions involved in this perimeter preference are not affected follow-

ing the genetic ablation of mGluR5 (Grm5), which needs to be explored in future studies.

Impairments in social behavior is one of the characteristic hallmarks that is observed in

individuals with ASD. mGluR5 signaling has been shown to play an important role in social

interaction. As a proof of this concept, the mGluR5 positive allosteric modulator (PAM)

CDPPB has been demonstrated to ameliorate social interaction deficits in the Shank2, Shank3,

and Sarm1 Ko mouse models of ASD [59, 90, 91]. In addition, mGluR5 PAM [3-cyano-N-

(1,3-diphenyl-1H-pyrazol-5-yl) benzamide] (CDPPB) attenuated social behavior deficits in

Sarm1 knock-out mouse model of ASD and prevented ASD-like alterations in rats exposed to

cannabinoid during the prenatal period [91, 92]. These improvements in social behavior were

attributed to the enhancement of mGluR5 levels. Our results are in agreement with these stud-

ies as mGluR5 Ko rats exhibited sociability deficits as well as impaired social behavior thus

emphasizing the importance of mGluR5signaling in normal brain functioning.
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In addition, our findings are in agreement with the data obtained from mGluR5 Ko mice. It

has been shown that mGluR5 ko mice show impairments in social interaction and altered mar-

ble burying activity compared to WT controls [93]. However, no statistically significant differ-

ences were observed in self-grooming pattern and rotarod performance in mGluR5 Ko mice.

Interestingly, mGluR5 Ko mice showed altered locomotor activity which may have con-

founded behavioral measurements. We do not observe such alteration in locomotor activity of

Ko rats compared to WT animals thus suggesting this rat model can be used to understand the

molecular underpinnings of ASD as well as testing the efficacy of future novel therapeutics for

autism.

In summary, our findings suggest that mGluR5 Ko rats display ASD-like phenotype. Our

results highlight the crucial role of mGluR5 signaling in ASD-associated behavior deficits. One

of the limitations of our study is the constitutive deletion of mGluR5 expression. Future studies

using conditional Ko rats with deletion of mGluR5 only in the brain or specific areas of the

brain can shed further light on the role of mGluR5 signaling in the pathophysiology of ASD.
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