Skip to main content
. 2022 Nov 16;17(11):e0276250. doi: 10.1371/journal.pone.0276250

Table 2. Comparing performance between the baselines and the proposed method based on various evaluation metrics and corresponding standard deviations.

F32_R50 and F32_M denotes FCN32_ResNet50 and FCN32_MobileNet while EMV, EECE, EMCE), and EMVEM denotes Ensemble (Majority Voting (MV), EMV), Ensemble (Weighted Voting (ECE), EECE), Ensemble (Weighted Voting (MCE), EMCE), and Ensemble (Majority Voting + ECE + MCE (MVEM), EMVEM).

DL Accuracy (%) Sensitivity (%) Specificity (%) F1score (%) ECE (%) MCE (%)
UNet 95.4±2.5 90.7±3.9 88.9±4.5 93.4±3.0 3.2±1.3 39.7±18.8
PSPNet 95.0±2.0 89.1±3.9 88.2±4.3 92.5±2.9 4.6±1.2 40.6±14.9
FCN32 95.8±2.4 92.3±4.5 91.0±5.0 94.0±3.5 2.5±2.1 37.6±19.1
F32_R50 96.0±2.5 92.3±5.5 91.4±5.9 94.3±3.8 2.3±2.3 29.8±20.3
F32_M 95.2±2.3 91.0±4.7 90.1±5.6 93.1±3.3 4.1±1.6 38.2±19.9
EMV 98.8±0.6 94.1±3.0 92.9±3.6 96.6±1.7 2.4±1.2 28.1±14.1
EECE 99.1±0.5 95.4±2.9 94.3±2.9 97.1±1.5 2.3±1.2 24.7±12.4
EMCE 98.7±0.7 93.9±3.7 92.6±3.7 96.3±1.9 2.4±1.2 28.9±14.6
EMVEM 99.2±0.4 97.7±2.3 95.4±2.3 98.4±0.8 2.1±1.1 20.1±10.1