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Abstract

Many genetic mutations adversely affect the structure and function of load-bearing soft tis-

sues, with clinical sequelae often responsible for disability or death. Parallel advances in

genetics and histomechanical characterization provide significant insight into these condi-

tions, but there remains a pressing need to integrate such information. We present a novel

genotype-to-biomechanical phenotype neural network (G2Φnet) for characterizing and clas-

sifying biomechanical properties of soft tissues, which serve as important functional read-

outs of tissue health or disease. We illustrate the utility of our approach by inferring the

nonlinear, genotype-dependent constitutive behavior of the aorta for four mouse models

involving defects or deficiencies in extracellular constituents. We show that G2Φnet can

infer the biomechanical response while simultaneously ascribing the associated genotype

by utilizing limited, noisy, and unstructured experimental data. More broadly, G2Φnet pro-

vides a powerful method and a paradigm shift for correlating genotype and biomechanical

phenotype quantitatively, promising a better understanding of their interplay in biological

tissues.

Author summary

We introduce G2Fnet, a novel scientific machine learning approach that enables both a

better quantification of macroscale biomechanical properties of tissues that are important

clinically and a direct association with an underlying genetic mutation. G2Fnet can cap-

ture the genotype-dependent biomechanical properties of soft tissues by utilizing limited,

noisy, and unstructured data from experiments. The learned constitutive relation is robust

to small data, and generalizable to unseen tissue. G2Fnet provides a powerful tool for

understanding relationships between genotype and biomechanical phenotype in biologi-

cal tissues, promising great potential in soft tissue mechanics, mechanobiology, and

related clinical applications.
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Introduction

Advances in genomics and medical genetics continue to uncover mutations that adversely

affect the vasculature, with prominent examples including Marfan syndrome, vascular Ehlers-

Danlos syndrome, and William’s syndrome. In many of these cases, mutation-related changes

in vascular composition and biomechanical properties play key roles in both disease initiation

and progression. Consequently, considerable attention continues to be devoted to comparing

histomechanical properties of vessels from affected humans and animal models against those

of age- and sex-matched healthy controls. Such information can provide insight into these dis-

eases and their overall consequences on the cardiovascular system.

Mouse models have emerged as particularly important in the study of genetically triggered

vascular diseases for multiple reasons, including the now routine genetic manipulations in

mice as well as their short gestational period, the availability of antibodies for biological assays,

and the feasibility of miniaturized instrumentation for both in vivo and ex vivo assessments.

Among others, we developed custom computer-controlled devices for biomechanically pheno-

typing murine arteries [1, 2] and identified protocols that ensure robust parameter estimations

[3–5]. Findings have revealed, for example, graduated decreases in elastic energy storage

capacity in cases of increasingly severe elastopathies and progressive increases in circumferen-

tial material stiffness in enlarging thoracic aortic aneurysms [6, 7]. Although microstructurally

motivated, existing constitutive relations based on continuum biomechanics are phenomeno-

logical [8]. These models cannot directly relate the mechanical behavior with either the geno-

type or the precise microstructure of the arterial walls. They similarly cannot delineate or

predict contributions of the myriad proteins, glycoproteins, and glycosaminoglycans that

constitute the arterial wall in health and disease, and cannot characterize the genotype that

determines the constituents of the wall and associated biomechanical properties. With mea-

surements of genotypical and microstructural features abundantly available through advanced

experimentation, there is an unprecedented opportunity to develop novel approaches to cap-

ture better the relationship between genotype and biomechanical phenotype and to under-

stand further the interplay between biomechanical properties and genotype and/or

microstructural characteristics.

Recently, deep learning algorithms have been employed extensively in data-driven studies

of mechanical behavior, ranging from engineering materials to biological tissues. Some studies

focus on (constitutive-) model-based approaches, where the deep learning algorithm seeks to

identify optimal material parameters in an analytically expressed constitutive model [9–18]. By

utilizing preexisting constitutive models, such approaches have successfully characterized

material parameters in many problems. Nevertheless, such utilization limits the dimensionality

of the search space of the material behavior, hence affecting the approximation capability of

the model. In view of this, other studies adopt model-free approaches, where one seeks to iden-

tify a functional form for the constitutive relation directly from data [19–28]. Model-free deep

learning algorithms can often capture the mechanical properties of a material more accurately,

but suffer from learning that can disobey physical principles. To address this issue, namely,

identifying appropriate basic assumptions for the material behavior and respecting fundamen-

tal physical principles (e.g., material symmetry, material stability, and thermodynamic consis-

tency), some studies inject physical principles into the deep learning algorithm to limit the

search to a physically admissible space [22, 26–28].
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In the classical approach before the deep learning era, one sought analytically to identify a

robust constitutive relation for multiple samples for one type of material under specific condi-

tions of interest (e.g., temperature), noting that the class-behavior is specified by a functional

expression while the sample-behavior is described by the material parameters. In other words,

practically applicable constitutive models are those that are not only capable of fitting the

mechanical behavior of existing samples, but all samples from the same material (or class) as

well. From a deep learning perspective, we seek a constitutive relation that can be transferred

and generalized across specimens within a material class. To this end, a recent study [22] has

shown that a single neural network can fit the mechanical properties for multiple samples

from a class of material. However, predicting the material response for a sample at a certain

deformation state still requires considerable data at neighboring deformation states, which

demonstrates a weak generalizability of the learned constitutive model. Further studies are

needed for deep learning realistic constitutive models that are comparable in terms of gener-

alizability to those built analytically, which are not subject-specific.

In this paper, we propose a genotype-to-biomechanical phenotype neural network

(G2Fnet), a generalizable, model-free neural operator architecture for capturing the bio-

mechanical properties of soft tissues and identifying correlations with genetic mutations. To

demonstrate the utility of G2Fnet, we seek to model biaxial mechanical data for the descend-

ing thoracic aortas (DTAs) from four different genotypes of mice related to elastopathies (i.e.,

compromised elastic fibers within the wall). The workflow is summarized in Fig 1. We firstly

collect data characterizing the biomechanical behavior, then construct and train the G2Fnet

with the biomechanical data and genotype. The trained network captures genotype-specific

constitutive relations at three levels (Fig 1): murine aortas in general, aortas from a particular

genotype, and a specific sample of the aortas. In the following, we first summarize the biaxial

tests and the architecture of G2Fnet, and then present results of G2Fnet, followed by a

discussion.

Results

Biomechanical data

The testing procedure is summarized in the top panel of Fig 1. Biaxial (circumferential and

axial) mechanical data were collected for DTAs from 28 mice from four different genotypes:

wild-type (WT, 8 samples), Fbn1mgR/mgR (8 samples), Fbln5-/- (5 samples), and Eln-/- hBAC (7

samples; see Materials and methods for experimental details). These genotypes are well-known

mouse models of interest that change structural constituents of the arterial wall, hence result-

ing in distinct biomechanical properties. In the biomechanical testing, briefly, arteries were

mounted between glass micropipets, mechanically preconditioned, then tested using a seven-

step protocol consisting of (1) three distension cycles from 10 to 140 mmHg at a fixed axial

stretch corresponding to 95%, 100%, and 105% of the in vivo value, and (2) four axial extension

cycles at constant pressures of 10, 60, 100, and 140 mmHg. A representative experimental data

set is shown in Fig 2A, 2B, 2D and 2E. Given the geometry and applied loads, circumferential

(σθ) and axial (σz) Cauchy stress are calculated as visualized in Fig 2C and 2F as a function of

both circumferential (λθ) and axial (λz) stretch, where we adopt the common assumptions of

(pseudo)elasticity, incompressibility, and homogeneity of the material behavior (see [3] for

detailed methods and discussions). Complete data for all four genotypes are included in

S1 Fig.

Because the stress-stretch data distribute nonuniformly and are distinct for different

specimens within each group, we preprocessed these data so that the stress (σz, σθ) is available

on a fixed set of m ×m (m = 31 herein) uniform, structured stretch states in the domain (λz,
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λθ) 2 [1.00, 1.65]2. This preprocessing is accomplished by fitting the raw data consistent with

physical principles (e.g., convexity) and reasonable assumptions (nonlinear and anisotropic)

regarding the shape of the stress-stretch relationship, which is explained in Materials and

Methods. Due to significant changes of stress over the stretch domain (over two orders of mag-

nitude), we define a log-transformed, normalized value of stress ~s i (i = z, θ) according to

~s i ¼ lnð
si

s0

þ 1:0Þ; ð1Þ

where σ0 = 1 kPa. In the following sections, unless otherwise noted, we simplify the notation of

~s to be σ to avoid multiple accents.

Genotype-to-biomechanical phenotype neural network (G2Fnet)

Inspired by the encoder-decoder [29–32] and DeepONet [33–43] architectures, we design a

new neural network architecture, G2Fnet, for characterization and classification of soft bio-

logical tissues involving genotype and biomechanical phenotype. G2Fnet comprises three sub-

networks (Fig 3): a branch encoder (with trainable parameters ξBE), a branch decoder (ξBD),

Fig 1. Overview of the workflow in G2Fnet with experimental measurements informing the deep learning model. We use

biaxial tests to measure the biomechanical properties of the descending thoracic aorta (DTA) from mice with different

mutations that affect the elastic fibers. Through the experimental measurements, circumferential (σθ) and axial (σz) stress are

determined for different combinations of circumferential (λθ) and axial (λz) stretch. We then use the experimental results to

train our deep learning model to capture the aortic constitutive relation in a hierarchical way: general mechanical behavior

across multiple genotypes, behavior for a certain genotype, and behavior for a certain sample of a certain genotype. We view

genotypes as material classes that possess distinct biomechanical properties. Illustrative data are shown in Fig 2. The detailed

architecture of our deep learning model is explained in Fig 3.

https://doi.org/10.1371/journal.pcbi.1010660.g001
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and a trunk net (ξTN), where naming of the branch and trunk is inherited from the original

DeepONet paper. We adopt a two-step strategy to use G2Fnet. The first step is the learning
stage (Fig 3A), in which G2Fnet seeks to capture the genotype-dependent stress-stretch rela-

tion through training. The branch encoder takes the stress-stretch curves as inputs and com-

presses them into the sample feature (denoted as η, with dη dimensions) in the latent space.

This sample feature, together with genotype as the class feature (denoted as ζ, with dζ dimen-

sions) fed at the latent space, serves as the input of the branch decoder. The branch encoder

and branch decoder work together to identify the minimally necessary parameters for describ-

ing the material properties. The trunk net, on the other hand, takes an arbitrary stretch state

(λθ, λz) as input. The final output of G2Fnet is the stress prediction ðŝy; ŝzÞ for stretch (λθ, λz),
which is calculated from the inner product of outputs from the branch decoder and the trunk

net. We train G2Fnet by minimizing the mismatch between the stresses from the input (of the

branch encoder) and the output (of the branch decoder and trunk net). After training, the lat-

ter two subnetworks together serve as the approximation of the stress-stretch relationship:

ðŝy; ŝzÞ ¼ NN ξBD;ξTNðly; lz; ζ; ηÞ; ð2Þ

where ξBD and ξTN determine the functional form, and the class feature (genotype) ζ and the

sample feature η serve as “material parameters” of the learned constitutive relation. Note that

we do not assume any form of correlation between genotypes. We simply view them as mate-

rial classes that possess distinct biomechanical properties, technically through a one-hot

Fig 2. Illustrative experimental biomechanical data used for deep learning. (A,D) Data from distension experiments at three

constant levels of axial stretch (λz), relative to the in vivo value of axial stretch λz,iv. (B,E) Data from axial extension experiments

at four constant pressures (P). Symbols and whiskers indicate means ± standard errors across these 8 wild-type (WT) control

samples. (C,F) Circumferential (σθ, C) and axial (σz, F) stress as a function of λθ and λz for one representative WT sample.

https://doi.org/10.1371/journal.pcbi.1010660.g002
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encoding into ζ. The sample feature η is not mechanically or biologically interpretable due to

the unsupervised nature of the encoder-decoder structure.

The second step is the inference stage (Fig 3B), where we use the learned stress-stretch rela-

tionship Eq 2 to infer the stress-stretch relation and genotype for new aorta samples, based on

limited and scattered measurements of stress and stretch. There are two main differences

regarding the setup of G2Fnet in this step: (1) the branch encoder is not used, and (2) the (pre-

viously) trainable parameters of the branch decoder ξBD and the trunk net ξTN are no longer

trainable, while class feature ζ and sample feature η are trainable. Similar to a best-fit proce-

dure where one estimates values of material parameters from experimental measurements,

G2Fnet looks for ζ and η that match the stress-stretch measurements optimally. After this

step, G2Fnet is expected to reconstruct the entire functional stress-stretch relation (according

to Eq 2) and simultaneously predict the source genotype (according to the updated value of ζ).

Our relatively small dataset (28 specimens across four genotypes) makes it arduous to build

a suitable deep learning model, which typically demands big data. To address this issue, we

introduced multiple techniques to improve model performance with limited data. The most

Fig 3. Architecture of G2Fnet. (A) The learning stage. For each aortic sample, we input stress-stretch measurements

into the branch encoder, which compresses the input into the sample feature η in the latent space. The genotype (class

feature ζ) serves as additional input to the latent space. The branch encoder takes the combination of class and sample

features as inputs. The trunk net takes an arbitrary stretch state (λθ, λz) as inputs. The inner product of the outputs

from the branch decoder and the trunk net is the predicted stress ðŝy; ŝzÞ at a given stretch state (λθ, λz). The trainable

parameters for this stage include the weights and biases of the three sub-networks. (B) The inference stage. The branch

decoder and trunk net serve together as an approximation of the stress-stretch relationship parameterized by the class

feature ζ (genotype) and sample feature η. The weights and biases of the two sub-networks are fixed to be their values

upon completion of the learning stage, while the class and sample features are trainable. (C) The inference stage using

ensemble. With K copies of the trained model, their branch decoders (B.D.) and trunk nets (T.N.) are integrated into a

single mega-model for inferring new samples. Input to the trunk net (λθ, λz) and class feature ζ are shared across model

copies. The stress prediction ðŝy; ŝzÞ is the mean value across K copies.

https://doi.org/10.1371/journal.pcbi.1010660.g003
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important technique is ensemble learning [44]. We find that the different random initializa-

tions for G2Fnet influence its performance, especially genotype prediction. Such sensitivity is

possibly caused by the nature of smallness in our problem—small data and small dimension of

the latent space. To eliminate such unwanted fluctuations of model performance, we adopted

the ensemble learning method (Fig 3C). We firstly obtain multiple copies of G2Fnet in the

learning stage (Fig 3A) by (1) training K1 independent copies with different random seeds and

(2) saving the trained models after K2 different numbers of epochs in the late stage of the train-

ing process. In the inference stage, these K = K1K2 copies are integrated into a mega-model

(Fig 3C), where the class feature ζ is shared across all copies and the sample feature η(i) (i 2
1, . . ., K) is independently defined per copy. The mega-model predicts the mean stress from all

copies as its output:

ðŝy; ŝzÞ ¼
1

K

XK

i¼1

ðŝyðiÞ; ŝzðiÞÞ

¼
1

K

XK

i¼1

NN ξBD
ðiÞ ;ξ

TN
ðiÞ
ðly; lz; ζ; ηðiÞÞ;

ð3Þ

where subscript (i) indicates the specific copy of the model. We explain the details of G2Fnet

including necessary techniques such as mixup regularization [45] in Materials and Methods

and S1 Appendix.

Learning genotype-dependent constitutive behavior

We firstly train G2Fnet to let it capture the constitutive relationship among various genotypes

(learning stage; Fig 3A). As explained in the foregoing section, we provide information on the

stress-strain relationship and genotype to G2Fnet, which seeks to minimize the mismatch

between the input and output relationship. After the learning stage, we preliminarily test

model efficacy by providing the same input information as training data from (an) unseen aor-

tic specimen(s) as test data and examine the reconstruction of the stress-strain relationship.

Note that the test here is not yet the inference stage for new specimens—we still utilize the

entire deep learning model including the branch encoder, and the model is still informed with

complete data on m ×m grid points from the stress-strain relationship through the branch

encoder. To accurately assess the model performance for our target problem with limited data,

we conduct 5-fold cross validation throughout this work.

We display results in Fig 4 for dη = 2, i.e., two-dimensional sample feature. To build ensem-

bles and examine variations in model performance caused by random initialization in

G2Fnet, we run G2Fnet with 67 random seeds, which produce similar but not identical results

for the reconstructed stress-strain relationship. The mean prediction of the stresses and its

comparison with the true stresses for a typical test sample aorta are shown in Fig 4A. The pre-

dicted and true values of stress σi (i = z, θ) are in kPa, while their difference is displayed by the

relative error of the normalized stress ~si. The mean prediction of σθ and σz matches well with

the respective true values (with relative L2 error of ~sy and ~sz being roughly 4.5% and 4.4%,

respectively), indicating that G2Fnet learned to reconstruct the stress-stretch relationship. We

found some fluctuations, however, in prediction across different random seeds with a relative

magnitude around 10%. Such a seemingly large fluctuation is reasonable because of (i) the

sample feature as a bottleneck of the encoder-decoder with merely two dimensions, and (ii)

the limited number (24) of training samples. In Fig 4B, we show the evolution of the recon-

struction loss for both training and testing data, including the mean value and standard devia-

tion calculated for all testing data (from five-fold cross validation) and all random seeds. After
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training around 13K epochs, the mean test loss reached a plateau of Oð10� 3Þ and did not

decrease further as training proceeded, which indicates that G2Fnet was sufficiently trained.

We stop the training at 20K epochs to ensure that individual models are generally well trained.

Fig 4C visualizes a two-dimensional latent space of the sample feature for a typical train-test

split, where the data points refer to those from the raw training data, training data from mixup

regularization, and test data. Mixup data points generally “interpolate” the raw data points,

thus the training data are more densely distributed around the origin and G2Fnet is antici-

pated to be better regularized. Test points, on the other hand, are also located roughly in the

same range as the training data, indicating that G2Fnet should be capable of reconstructing

the stress pattern for test data as accurately as for training data. With such a distributed value

of sample feature, G2Fnet is expected to capture variations of mechanical behavior among

individual samples, in addition to among different genotypes for which the class feature has

been provided explicitly to the branch decoder.

Fig 4. Results of G2Fnet training. The dimension of sample feature is dη = 2. (A) Reconstruction of the stress-stretch

relationship (σz and σθ as functions of λz and λθ) for a typical test sample averaged over model predictions across

random seeds. Model prediction (output of the branch decoder and trunk net), ground truth value (input of the

branch encoder), and their difference are shown. The predicted and true values of the stress are displayed by their

respective physical values (σi where i = z, θ; in kPa), while their difference is displayed as the relative (Rel.) error of the

normalized stress ~s i. (B) The reconstruction loss in the learning stage for training data and test data over all random

seeds, all training/testing samples. Both the mean value and the standard deviation (Std.) are shown. (C) Visualization

of the latent space of sample information with dimension (Dim.) dη = 2 for a typical train-test split.

https://doi.org/10.1371/journal.pcbi.1010660.g004
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Sample inference for genotype classification and stress reconstruction

From the results of the learning stage in the foregoing section, we have demonstrated the capa-

bility of G2Fnet to capture the genotype-specific, sample-specific constitutive behavior. The

actual performance can only be tested, however, by using the learned parameterized stress-

strain relationship captured by the branch decoder and the trunk net (see Eq 2 and Fig 3B) to

fit new samples, where stress data fðsðiÞz ; s
ðiÞ
y Þg

m0

i¼1
are provided only at limited stretch states

fðl
ðiÞ
z ; l

ðiÞ
y
Þg

m0

i¼1
(m0 <<m2). In light of this, we designed two cases to evaluate the performance

of the learned constitutive relation: (Setup 1: preprocessed structured data) stress is provided

to the model on a 3 × 3 structured grid of stretch states from the preprocessed data; (Setup 2:

raw unstructured data) stress is provided to the model on 22 stretch states in the real experi-

mental measurements. For both setups, as the “material parameters” ζ and η are updated to fit

the provided data, we expect the model to concurrently reconstruct the entire stress-stretch

relationship and identify the source genotype. This test mimics the practical scenario, where

one has a limited number of measurement points that are obtained possibly at a set of unstruc-

tured stretch states. For Setup 1, stress data sparsely cover the stretch domain (λθ, λz) 2 [1.00,

1.65]2, hence we examine the performance of the reconstructed stress-stretch relationship

mainly in terms of interpolation capability. In Setup 2, with the raw data available only in cer-

tain region of the stretch domain, we aim to test model performance in terms of extrapolation

capability.

Results for Setup 1 (preprocessed structured data) are in Fig 5. Fig 5A compares the recon-

structed (predicted) and the true stress-stretch relationship for a typical test sample from a

10-seed ensemble mega-model with dη = 4. The stress data are available to the model only on

3 × 3 grid points of the stretch state as marked by x’s in the figure. Notably, the measurements

are placed to sparsely cover the boundary of the stretch domain (λθ, λz) 2 [1.00, 1.65]2, so that

reconstruction of the stress profile mainly involves interpolation instead of extrapolation.

Even with such a small dataset, our trained model can accurately reconstruct the entire stress-

stretch function, with a L2 relative error of 1.6% for σθ and 2.2% for σz. In addition to results

for individual test samples, we also examine the statistics across all test samples and how the

model parameters influence model performance. Fig 5B shows the mean L2 relative error of

the normalized stress ~s i (i = z, θ) (out of 20 runs with different random seeds) of the predicted

stress for different sizes of the ensemble as well as different values of dη (2 {2, 3, 4, 5, 6}). The

mean L2 relative error is smaller for larger ensembles, indicating one advantage of building

ensembles from individual models for a more accurate stress reconstruction. As the dimension

of the sample feature space (dη) increases, the reconstruction error decreases, which demon-

strates that a larger latent space allows more flexibility in expressing the stress-stretch relation-

ship, hence capturing the detailed, sample-specific constitutive behavior more accurately.

However, such flexibility does not always bring about benefits, as illustrated by the classifica-

tion results. Fig 5C shows classification accuracy for unseen test samples for different sizes of

ensemble and different dimensions of the sample feature space. The mean and standard devia-

tion are calculated through cross-validation and different random seeds. We found that a

larger ensemble not only increases the mean prediction accuracy, it also decreases the fluctua-

tion of such accuracy among different test sets and randomization, hence improving the reli-

ability and robustness of the deep learning model. For the classification task, the accuracy no

longer monotonically increases as dη increases. As seen in Fig 5C, the optimal dimension for

the sample feature space is dη = 4 or 5. With an excessively large dη, the training data encoded

into the latent space are too sparse during the learning stage, and the model is likely not to gen-

eralize well into the test data and hence performs worse in the classification task. The best
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performance is achieved for a 10-seed ensemble mega-model with dη = 4, which yields mean

classification accuracy 87% and L2 relative error of stress reconstruction 3.7%.

Results for Setup 2 (raw unstructured data) are in Fig 6. The stress data come from raw

experimental measurements, where they cluster around a subregion within the stretch domain

(λθ, λz) 2 [1.00, 1.65]2. Inevitably, reconstruction of the entire stress-stretch relationship

involves extrapolation based on the available data, hence increasing the difficulty for the tasks

of stress reconstruction and genotype classification. For this Setup, we subsequently provided

our model with 22 stress measurements, * 1.5 times more than Setup 1. Nevertheless, the

data still accounts for only * 2% of the original experimental measurements. Similar to Setup

1, we show the reconstruction of stress-stretch relationship for a typical test sample in a

10-seed ensemble (Fig 6A), L2 relative error of the normalized stress (Fig 6B), and classification

accuracy for different model parameters (Fig 6C). For the test sample shown in Fig 6A, the

stress profile can be accurately reconstructed, with the L2 relative error as small as 2.9% for σθ

Fig 5. Reconstruction and classification results of sample inference based on structured data. Stress data are

provided on 3 × 3 uniform grid points on the stretch plane. (A) Reconstruction of the stress-stretch relationship (σz
and σθ as functions of λz and λθ) for a typical test sample from a 10-seed ensemble model. The predicted and true

values of the stress are displayed by their respective physical values (σi where i = z, θ; in kPa), while their difference is

displayed as a relative (Rel.) error for normalized stress ~s i. (B) L2 relative error of the predicted normalized stress ~s i
with different sizes of ensemble (1-, 3-, 6- and 10-seed) and different dimensions of sample feature (dη 2 {2, 3, 4, 5, 6}).

Each dot is an average value over 20 runs with different choices of random seeds. (C) Classification accuracy for

different sizes of ensemble and different dimensions of sample feature. Each bar is the average value over 20 runs with

different choices of random seeds.

https://doi.org/10.1371/journal.pcbi.1010660.g005
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and 2.4% for σz. It is worth noting that the stress prediction is accurate even in regions where

there are no data (e.g., (λθ, λz) 2 [1.40, 1.65] × [1.00, 1.40]), which demonstrates that our

trained model has effectively learned the general pattern of the stress-stretch relationship for

these murine aortas. In Fig 6B (solid lines) and C (opaque bars, labeled with “w/o Reg.”), how-

ever, we notice some phenomena different from Setup 1—the L2 relative error increases as dη

increases beyond 4 (Fig 6B), while the classification accuracy decreases monotonically as dη

increases within {2, 3, 4, 5, 6} (Fig 6C). We attribute such phenomena to overfitting in the

stress reconstruction, which is greater for this extrapolation case. An excessively large dη

endows G2Fnet with excessive flexibility in fitting capability, so hence the model then seeks to

fit the data slightly better at the cost of a significant drop of the overall reconstruction accuracy

and classification accuracy, especially for the extrapolation regions.

Fig 6. Reconstruction and classification results of sample inference based on unstructured data. Stress data are

provided for 22 unstructured points from experimental measurements. (A) Reconstruction of the stress-stretch

relationship (σz and σθ as functions of λz and λθ) for a typical test sample for a 10-seed ensemble model. The predicted

and true values of the stress are displayed by their respective physical values (σi where i = z, θ; in kPa), while their

difference is displayed as a relative (Rel.) error for normalized stress ~s i. (B) L2 relative error of the predicted

normalized stress ~s i with different sizes of ensemble (1-, 3-, 6- and 10-seed), different dimensions (dη 2 {2, 3, 4, 5, 6})

and regularization (Reg.) for the sample feature (without/with regularization). Each dot is the average value over 20

runs with different choices of random seeds. (C) Classification accuracy for different sizes of ensemble, different

dimensions and different regularization setups of sample feature. Each bar is the average value over 20 runs with

different choices of random seeds.

https://doi.org/10.1371/journal.pcbi.1010660.g006
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To deal with the overfitting issue for Setup 2 (raw unstructured data), we modify the loss

function for the sample fitting stage by including an additional regularization term to penalize

the sample feature that deviates too much from the origin (see Materials and methods for

details). The results with the modified loss function are shown in Fig 6B (dashed lines) and Fig

6C (translucent bars, labeled with “w/ Reg.”). This modification significantly reduces the L2

relative error of stress reconstruction and increases the classification accuracy, especially for

large values of dη. With such a technique, the best performance comes from the 10-seed

ensemble with dη = 2, which yields a mean classification accuracy of 81% and L2 relative error

of stress reconstruction 4.0%.

Discussion

Continuing discoveries in genetics increasingly reveal new vascular phenotypes, many with

critical clinical importance. Whereas it was long thought [46] that the passive mechanical

behavior of an artery was determined by two primary structural proteins, elastin and collagen,

we now know that many accessory proteins and glycoproteins as well as different matricellular

proteins similarly play key roles in determining the complex nonlinear material properties. As

examples, although type I collagen is the most abundant type in an artery, there are many dif-

ferent types of collagen within the wall. Mutations to the alpha1 helix of collagen III and colla-

gen V molecules (Col3a1+/- and Col5a1+/-) result in a vascular Ehlers-Danlos phenotype,

namely a fragile dissection-prone artery [47, 48]. Mutations to genes that encode matricellular

proteins, such as thrombospondin-2 (Tsp2-/-), can also increase the structural vulnerability of

the arterial wall, in part by compromising collagen fibrillogenesis [49]. These are just a few of

the many cases wherein specific mutations lead to particular types of changes in material prop-

erties within particular regions of the arterial tree. Fortunately, with available mouse models

we can now begin to build consistent databases for analysis across these many cases.

Similarly, many different classes of drugs have been developed or used to treat the diverse

vascular pathologies that present clinically. Not surprisingly, many of these drugs have also

been used to treat mouse models—they include different classes of anti-hypertensive, anti-

inflammatory, and lipid-lowering drugs, and those that reduce proteolytic activity to name a

few. Just as there is a pressing need to discover genotype-biomechanical phenotype relations

for the myriad constituents that contribute to the biomechanics of the arterial wall, there is

similarly a need to correlate drug treatments with the resulting phenotype, thus establishing

efficacy in terms of effects on vascular structure and function rather than more general out-

comes such as morbidity or mortality. In neither case can current phenomenological constitu-

tive models provide the necessary connections.

For purposes of illustration, we focused herein on consequences of mutations to elastin and

two elastin-associated glycoproteins, fibrillin-1 and fibulin-5. Elastic fibers constitute about

one-third of the murine aortic wall by dry weight and endow the aorta with its resilience, a

characteristic critical to its function as a conduit vessel. These fibers consist of 90% elastin and

10% elastin-associated glycoproteins, which include the fibrillins and fibulins but others as

well. The clinical importance of elastic fiber integrity is revealed by multiple conditions. Wil-

liams’ syndrome results from mutations that include the elastin gene; it is characterized by

supravalvular aortic stenosis (SVAS), that is, marked narrowing of the proximal aorta. Such

narrowing increases the workload on the left ventricle and thus increases morbidity. Williams’

syndrome has been studied using different animal models, including the Eln+/- mouse [50],

which produces about 50% of the normal elastin. Our two models, hBAC-mNull and hBAC-

mWT (see below), bracket this model by producing 15% and 115% of the normal elastin,

respectively [51]. Marfan syndrome results from mutations to the gene that encodes fibrillin-1,
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a glycoprotein that appears to help confer the normally long half-life of elastic fibers. The vas-

cular phenotype seen in Marfan syndrome has been modeled in mice using a Fbn1C1041G/+

mutation, which has dramatic effects on the mechanical properties [52]. Among the many

clinical events, Marfan patients often experience aortic root and proximal aortic dilatation,

often leading to dissection and/or rupture. Our choice of model, Fbn1mgR/mgR, results in a

severe Marfan-like phenotype [53]. Mutations to fibulin-4 also lead to thoracic aneurysms [54]

whereas those to fibulin-5 lead primarily to an accelerated aging phenotype and tortuosity

[55]. Vascular aging is, of course, one of the key risk factors for many cardiovascular, neuro-

vascular, and renovascular diseases [56, 57].

We previously showed that the severity of the different elastopathies studied herein could

be quantified, in part, via the elastic energy storage capacity. Under physiologic loading, mean

values of stored energy were found to be [6]: 156, 114, 59, 43, and 18 kPa for non-stenotic and

non-aneurysmal hBAC-mWT, WT, Fbn1mgR/mgR, Fbln5-/-, and hBAC-mNull DTAs, respec-

tively. Although these values ordered nicely, they are not diagnostic. For example, the mean

energy storage was 40–60 kPa for both the non-aneurysmal Fbln5-/- and an aneurysmal

Fbn1mgR/mgR thoracic aorta. Indeed, although the constitutive relation used for quantification

has described biaxial data equally well for diverse mouse models [7], and has been indepen-

dently validated as the best of multiple commonly used models [58], it is yet phenomenologi-

cal. It consists of a neo-Hookean term that is meant to capture the elastin-dominated isotropic

responses plus four Fung-exponential terms that are meant to capture the collagen-dominated

anisotropic responses; these four fiber families were motivated by multiphoton microscopy,

but used mainly because of the important and yet not well understood role of extensive cross-

links amongst the different fiber families. Because the relation is phenomenological, one can-

not ascribe physical meaning to the material parameters. Yet, of the eight parameters the one

that might be thought to be most descriptive is the single neo-Hookean parameter. Its values

range from about 21 to 32 kPa for many WT DTAs, whereas its value was found to be 25 kPa

for the hBAC-mWT, 29 kPa for the Fbn1mgR/mgR, 17 kPa for the Fbln5-/-, and 10 kPa for the

hBAC-null [55, 59, 60]. Hence, although there are some trends in its decrease with decreasing

elastic fiber integrity, such is not definitive and there are no trends for the Fung-exponential

terms. Clearly, there was a need for another approach for classification.

In this study, we demonstrated the capability of the proposed G2Fnet in capturing the

genotype-biomechanical phenotype relationship of a representative soft tissue—specifically,

the genotype-dependent stress-stretch relations for murine aortas. We showed that, given

measurements of radially-averaged (mean) stress response under limited deformation states,

G2Fnet accurately reconstructs the entire stress-stretch relationship and simultaneously pre-

dicts the genotype of the specimen from which the stress data derived. It is important to note

that our use of mean values of stress/stretch is consistent with biological assays of genotype

that rely on homogenized tissue, including PCR and bulk RNAseq. We further introduced

ensemble learning and mixup regularization to better handle cases with limited data.

G2Fnet directly provides a functional expression for a parameterized constitutive relation

(Eq 2) based on the neural operator architecture. By identifying the minimal necessary param-

eters through an encoder-decoder architecture, G2Fnet takes sample variation into account

and formulates the sample feature η with a limited dimension, which together with the

injected genotype feature ζ composes the “material parameters” of the learned constitutive

model. This formulation is formally similar to the classical approach of constitutive modeling

by analytical expressions, hence endowing our method with generalizability and transferability

across different specimens in multiple material classes. Notably, we do not refer to the existing

constitutive models during the entire workflow, including data preprocessing. This provides
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an end-to-end deep learning approach for constitutive modeling that bypasses existing analyti-

cal constitutive models.

While we focused on the application of G2Fnet in the biomechanics of aortas, we point out

that the utility of G2Fnet is general. The mechanics of aortas is not distinctly different from

most other load-bearing soft tissues. G2Fnet is built on the general theory of continuum solid

mechanics, relating deformation states, stress states, and genotypes as material classes. In view

of this general theoretical basis, G2Fnet will be capable of modeling the biomechanical behav-

ior of other soft biological tissues and relating it to genetic mutations that have biomechanical

consequences. More broadly, similar methodology may be applied to modeling even a broader

class of solid materials where material classification matters.

We emphasize that, to obtain classification results with high accuracy, the data need to be

sufficiently discriminative to render the genotypes identifiable. In S2 and S3 Figs, we include

additional results on model performance for an expanded dataset with 33 specimens from five

genotypes, where the additional genotype with 5 specimens comes from the aforementioned

hBAC-mWT mice. The aortas of these mice contain only 15% more elastin than those of WT

mice, rendering their biomechanical properties very similar and the two genotypes poorly

identifiable. As the results indicate in S2 and S3 Figs, the five-genotype classification accuracy

drops to roughly 82%, compared to 87% for four genotypes without hBAC-mWT. In fact, by

further testing G2Fnet on the WT and hBAC-mWT samples only, we find that the two-class

classification accuracy is merely 73%, showing a poor identifiability.

Despite the effectiveness of G2Fnet, there remain questions. First, to tackle the identifiabil-

ity issue as mentioned in the foregoing paragraph, future studies could extend the current

framework to incorporate multiple modalities of data [61]. For example, one may incorporate

microstructural and histological information [9] and build a compreshensive deep learning

procedure for capturing the genotype-microstructure-biomechanics relationship. Second,

while we view genotypes as material classes (technically through one-hot encoding), these

genotypes actually contain information. That is, there exist correlations between genotypes,

which could be further integrated into the deep learning framework. Third, our method pro-

vides point estimations. We could utilize recent work [62] regarding generative adversarial

networks (GANs) for learning a functional prior, to quantify uncertainty associated with our

predictions.

Materials and methods

Ethics statement

All animal protocols in this study were approved by the Yale University Institutional Animal

Care and Use Committee and conformed to the current Federal guidelines.

Animal models

Data from previously published studies from five groups of mice were re-analyzed herein, all

showing different degrees of elastopathy ([51, 63, 64]):

1. Wild-type C57BL/6J control mice [65],

2. Eln-/- mice in which elastin production was rescued through introduction of human elastin

through a bacterial artificial chromosome (hBAC-mNull), resulting in* 30% of normal

elastin expression [59],

3. Eln+/+ mice in which elastin production was amplified to *115% of the normal level

through introduction of human elastin (hBAC-mWT) [59],
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4. Fbn1mgR/mgR mice, in which expression of the elastin-associated glycoprotein fibrillin-1 is

expressed at 15–25% of its normal level [66], and

5. Fbln5-/- mice, which lack 100% of the elastin-associated glycoprotein fibulin-5 and biome-

chanically mimic human arterial aging phenotype [55, 67].

Note that the third type (hBAC-mWT) are used only in results in S2 and S3 Figs. All mice

were euthanized with an intraperitoneal injection of pentobarbital sodium and phenytoin

sodium (Beuthanasia-D; 150 mg/kg), after which the DTA was carefully dissected.

Biaxial testing

DTAs were cleaned of loose perivascular tissue and their side branches ligated. Aortas were

then mounted on glass pipets in a custom computer-controlled biaxial testing device and sub-

merged in Hank’s Balanced Salt Solution. They were brought to their approximate in vivo axial

stretch, determined as the axial stretch for which a given pressure fluctuation from 60 to 140

mmHg led to minimal fluctuation of the measured axial force. Arteries were then equilibrated

by applying a pulsatile pressure from 80–120 mmHg for 15 minutes at this in vivo axial stretch.

Finally, arteries were precondidtioned using four inflation-deflation cycles from 10 to 140

mmHg.

We previously showed that combined data sets from multiple pressure-diameter and axial

force-length protocols provide information sufficient for robust parameter estimation when

using traditional nonlinear constitutive relations in terms of mechanical stress and strain [3].

Arteries were hence subjected to seven protocols: cyclic pressurization from 10 to 140 mmHg

while axial length was separately held fixed at its in vivo value and ±5% of this value as well as

cyclic axial loading from 0 to fmax while the pressure was separately held fixed at 10, 60, 100,

or 140 mmHg. Note that fmax was defined as the maximum value achieved during pressuriza-

tion to 140 mmHg while the vessel was held at 1.05 times the in vivo length. Using standard

equations [68], biaxial data, in terms of pressure-diameter and axial force-length, were con-

verted to circumferential and axial Cauchy stress-stretch data that were used in the deep

learning algorithm. Importantly, we used only the unloading portions of the last cyclic tests

in each protocol, thus using the concept of pseudoelasticity and calculating values of stored

energy that would be available to do work on the distending fluid (blood) as desired of an

elastic artery.

Data preprocessing

Before applying G2Fnet, we needed to preprocess the raw, unstructured stress-stretch data to

obtain structured data on a m ×m (m = 31 herein) uniform grid of stretch states in (λz, λθ) 2
[1.00, 1.65]2. To do so, we used a simple fully connected neural network to approximate the

stress-stretch relationship, where the stretch state (λz, λθ) serves as the input and strain energy

density w serves as the direct output. Stress responses (σz, σθ) are then calculated through auto-

matic differentiation. The neural network is trained by matching the predicted stress to the

raw data. To improve the quality of the preprocessed stress data, consider two physical con-

straints: (1) convexity of the strain energy density w, which is a fundamental physical principle;

(2) convexity of the stress components as functions of stretch states, which we impose for large

stretches (herein defined by max{λz, λθ}> 1.45) given that the stress-stretch curve is qualita-

tively J-shaped for relatively large stretches. These two constraints are incorporated into the

loss function as penalty terms [22].
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Architecture of G2Fnet

G2Fnet is shown in Fig 3; it is based on three neural networks, namely a branch encoder (BE),

a branch decoder (BD), and a trunk net (TN). BE is a convolutional neural network that takes

stress-strain data as input, in the form of fðsði;jÞz ; s
ði;jÞ
y Þg

m;m
i;j¼1

, the stress values at m ×m struc-

tured grid points (m = 31 in this work) of stretch fðl
ði;jÞ
z ; l

ði;jÞ
y
Þg

m;m
i;j¼1

. Since the choices of

stretches fðl
ði;jÞ
z ; l

ði;jÞ
y
Þg

m;m
i;j¼1

are common for all data in this work, they are neglected from the

input of the branch encoder. The branch encoder compresses the information on stress into

the low-dimensional latent space representation of the sample feature:

η ¼ fZðiÞgdη
i¼1
¼ NN ξBEðfðs

ði;jÞ
z ; s

ði;jÞ
y Þg

m;m
i;j¼1
Þ; ð4Þ

where ξBE represents the trainable parameters of the branch encoder and 2� dη� 6. BD and

TN are both fully connected neural networks. They serve together as an approximation of the

stress-stretch relationship parameterized by the sample feature η ¼ fZðiÞgdη
i¼1

and class feature

ζ ¼ fzðiÞgdζ
i¼1, where dζ = 4 is the number of relevant genotypes in our problem. The class fea-

ture is the one-hot representation of the genotype corresponding to the aorta sample. BD

maps the combined representation of class and sample feature into two p-dimensional out-

puts:

ðby; bzÞ ¼ ðfb
ðiÞ
y g

p
i¼1
; fbðiÞz g

p
i¼1
Þ ¼ NN ξBDðζ; ηÞ; ð5Þ

while TN maps an arbitrary stretch state (λθ, λz) into other two p-dimensional outputs:

ðty; tzÞ ¼ ðft
ðiÞ
y g

p
i¼1
; ftðiÞz g

p
i¼1
Þ ¼ NN ξTNðly; lzÞ; ð6Þ

where ξBD and ξTN are the trainable parameters of BD and TN, respectively. Finally, the stress

prediction ðŝy; ŝzÞ is calculated by

ŝy ¼ by � ty þ b0y ¼
Xp

i¼1

bðiÞy t
ðiÞ
y þ b0y; ð7Þ

ŝz ¼ bz � tz þ b0z ¼
Xp

i¼1

bðiÞz t
ðiÞ
z þ b0z; ð8Þ

where b0θ and b0z are additional trainable parameters as biases. For simplicity of notation,

these two trainable parameters are incorporated into ξTN hereafter. Combining the expressions

for BD and TN in Eqs 5–8, we may write the neural network approximation of the stress-

stretch relationship parameterized by class and sample feature as Eq 2 in the main text.

Mixup regularization

The genotype/class feature ζ is represented by one-hot vectors with dimension dζ. During the

learning stage, BD only receives inputs in which the class features are 0–1 binary values; it its

thus not well informed of the output behavior for intermediate values of ζ, resulting in a possi-

bly non-smooth loss landscape. Such non-smoothness can be detrimental to the succeeding

inference stage since the estimated ζ are updated with gradient-based optimizers in deep learn-

ing. To regularize the branch decoder to ensure smooth predictions for intermediate values of

ζ, we adopt the mixup technique for the training data [45]. This technique produces synthetic

training data by linearly combining features and labels of existing data. Technically, with n0
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samples of real data with stress fðsði;j;kÞz ; s
ði;j;kÞ
y Þg

m;m
i;j¼1

and genotype ζ(k) (k 2 {1, 2, . . ., n0} indi-

cates the specific sample), we generate the stress and genotype of a synthetic data point accord-

ing to

fðsði;j;synÞz ; s
ði;j;synÞ
y Þg

m;m
i;j¼1
¼
Xn0

k¼1

akfðs
ði;j;kÞ
z ; s

ði;j;kÞ
y Þg

m;m
i;j¼1

ð9Þ

ζðsynÞ ¼
Xn0

k¼1

akζ
ðkÞ
; ð10Þ

where αk (k 2 {1, 2, . . ., n0}) are random, nonnegative weights for different real samples satisfy-

ing
Pn0

i¼1
ak ¼ 1. To generate each synthetic data point, we need to choose n0 real samples

from different genotypes. After generating the synthetic data, we train G2Fnet with both real

and synthetic data, which helps to regularize the behavior of the learned constitutive relation

(Eq 2) for intermediate values of ζ (e.g., ζ = [0.1, 0.3, 0.0, 0.6]T).

Constraining the behavior of latent space

Reconstruction of stress-stretch relationship and classification of genotype are achieved by

updating the inputs of BD to fit the provided stress-stretch data pairs in the inference stage. A

reliable prediction can be achieved only when the values of (ζ, η) are similar in the learning

and inference stages. The class feature ζ is naturally constrained to be nonnegative and sum to

1, so that we need minimum efforts to ensure the similarity of η. For the sample feature η,

however, we need several techniques to guide its behavior. We consider the following guide-

lines for ensuring the similarity of (ζ, η) in the learning and inference stages:

• Enforce the (sample) mean and variance of η to be close to 0 and 1, respectively, in the learn-

ing stage. This helps to ensure that the sample feature η distributes properly around the ori-

gin of the dη-dimensional space. Technically, this enforcement is achieved by including a

penalty term in the loss function for the learning stage.

• Initialize ζ to be [1/dζ, . . ., 1/d ζ]T and η to be [0, . . ., 0]T in the inference stage.

• Ensure that η never evolves to be too far from the origin in the inference stage. Technically,

this is enforced by penalizing |η| in the loss function for the inference stage. This technique

is used only for the Setup 2 (raw unstructured data) of the inference stage (Fig 6C “w/ Reg.”).

Loss function

In the learning stage (Fig 3A), the model adjusts the value of trainable parameters of the three

networks (ξBE, ξBD and ξTN) to minimize the mismatch of stress at the m ×m grid points

between the provided data fðsði;jÞz ; s
ði;jÞ
y Þg

m;m
i;j¼1

and the prediction given by

fðŝði;jÞz ; ŝ
ði;jÞ
y Þg

m;m
i;j¼1
¼ fNN ξBD;ξTNðl

ði;jÞ
y
; l
ði;jÞ
z ; ζ;ηÞgm;mi;j¼1

; ð11Þ

where η is given by BE (Eq 4). Suppose we have N training samples including synthetic data

from mixup, then the reconstruction loss is expressed by

Lrec ¼
1

m2N

XN

k¼1

vk
Xm;m

i;j¼1

ðŝ
ði;j;kÞ
y � s

ði;j;kÞ
y Þ

2

js
ði;j;kÞ
y þ εj

þ
ðŝði;j;kÞz � sði;j;kÞz Þ

2

js
ði;j;kÞ
z þ εj

" #

; ð12Þ
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where ε is a small number to avoid singular results when the true stress is zero, and vk is the

weight for the kth training sample. We define this vk because we need different weights for real

data and synthetic data generated by mixup. The loss shown in Fig 4B is exactly Lrec. The regu-

larization term of the latent space is

Lreg ¼
1

2
μTμþ trðΣÞ � dη � logjΣj
� �

; ð13Þ

where μ is the mean (dη-dimensional vector) and S is the covariance matrix (dη × dη) of the

sample feature η. By minimizing Lreg, μ tends to be a zero vector and S tends to be the identity

matrix, hence enforcing the sample mean and variance of η to be close to 0 and 1, respectively.

The total loss in the learning stage is

Llearn ¼ wrecLrec þ wregLreg; ð14Þ

where wrec and wreg are weights for two loss terms. Llearn is minimized by updating ξBE (incor-

porated through η in Eq 11 and μ and S in Eq 13), ξBD and ξTN (incorporated through

fðŝði;jÞz ; ŝ
ði;jÞ
y Þg

m;m
i;j¼1

in Eq 11).

In the inference stage (Fig 3B) (Eq 2), G2Fnet is provided with limited, (possibly)

unstructured measurements of stress fðs
ðiÞ
y ; s

ðiÞ
z Þg

m0

i¼1
at m0 stretch states fðl

ðiÞ
y
; l
ðiÞ
z Þg

m0

i¼1
from

an unseen sample. It seeks to minimize the mismatch between stress data and prediction, by

updating the class feature ζ and sample feature η through epochs. The fitting loss is hence

calculated by

Lfit ¼
1

m0
Xm0

i¼1

ðŝ
ðiÞ
y � s

ðiÞ
y Þ

2

js
ðiÞ
y þ εj

þ
ðŝðiÞz � s

ðiÞ
z Þ

2

js
ðiÞ
z þ εj

" #

; ð15Þ

where ε is a small number to avoid singular results when the true stress is zero. The regulari-

zation term of the latent space is Lreg2 ¼ jηj
4

(used for Setup 2 with raw unstructured data

only; see Fig 6B and 6C). Hence, the total loss in the inference stage is

Linfer ¼ wfitLfit þ wreg2Lreg2; ð16Þ

where we adopt the subscript “reg2” to distinguish this loss term from that defined for the

learning stage in Eq 13. Linfer is minimized by updating η and ζ only, seeking to find the

best-fit reconstruction of the stress-stretch relationship and identifying the source genotype

of the data. In this process, ζ is subject to two constraints: (1) all components are nonnega-

tive; (2) all components sum to 1. After the completion of the iterative inference stage, the

updated ζ predicts the genotype according to its largest component, and BD and TN in Eq 2

(with the updated η and ζ) together serve as the learned constitutive relation.

Technical details

We summarize additional technical details of G2Fnet in S1 Appendix.

Supporting information

S1 Fig. Biomechanical data of aorta samples from mice with all four genotypes. Data were

obtained through biaxial tests using a seven-step protocol, including three inflation cycles at

axial stretch (λz) levels of 95%, 100%, and 105% of the in vivo axial stretch (λz,iv) and four
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extension cycles at pressures (P) of 10, 60, 100, and 140 mmHg (C and D). Whiskers indicate

standard error (n = 8, 8, 5, 7 for the four genotypes from left to right of the legend). Data are

shown for the same single (1 of 7) protocol for each of the genotypes.

(TIF)

S2 Fig. Reconstruction and Classification Results of Sample Inference based on Struc-

tured Data for Expanded Dataset with Five Genotypes. Samples with five genotypes,

where two of them (WT and hBAC-mWT) share similar microstructure and hence exhibit

similar mechanical properties, are involved. (A) L2 relative (Rel.) error of the predicted nor-

malized stress ~si with different sizes of ensemble (1-, 3-, 6- and 10-seed) and different

dimensions of sample feature (dη 2 {2, 3, 4, 5, 6}). Each dot is an average value over 20 runs

with different random seeds. (B) Classification accuracy for different sizes of ensemble and

different dimensions of sample feature. Each bar is the average value over 20 runs with dif-

ferent random seeds.

(TIF)

S3 Fig. Reconstruction and Classification Results of Sample Inference based on Unstruc-

tured Data for Expanded Dataset with Five Genotypes. Samples with five genotypes,

where two of them (WT and hBAC-mWT) share similar microstructure and hence exhibit

similar mechanical properties, are involved. (A) L2 relative (Rel.) error of the predicted nor-

malized stress ~s i with different sizes of ensemble (1-, 3-, 6- and 10-seed), different dimen-

sions (dη 2 {2, 3, 4, 5, 6}) and regularization (Reg.) for the sample feature (without/with

regularization). Each dot is the average value over 20 runs with different random seeds. (B)

Classification accuracy for different sizes of ensemble, different dimensions and different

regularization setups of sample feature. Each bar is the average value over 20 runs with dif-

ferent random seeds.

(TIF)

S1 Appendix. Technical Details of G2Fnet.

(PDF)
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23. Guo T, Rokoš O, Veroy K. Learning constitutive models from microstructural simulations via a non-intru-

sive reduced basis method. Computer Methods in Applied Mechanics and Engineering. 2021;

384:113924. https://doi.org/10.1016/j.cma.2021.113924

24. Qu T, Di S, Feng Y, Wang M, Zhao T. Towards data-driven constitutive modelling for granular materials

via micromechanics-informed deep learning. International Journal of Plasticity. 2021; p. 103046. https://

doi.org/10.1016/j.ijplas.2021.103046

25. Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa M. Deep learning predicts path-depen-

dent plasticity. Proceedings of the National Academy of Sciences. 2019; 116(52):26414–26420. https://

doi.org/10.1073/pnas.1911815116 PMID: 31843918

26. Masi F, Stefanou I, Vannucci P, Maffi-Berthier V. Thermodynamics-based Artificial Neural Networks for

constitutive modeling. Journal of the Mechanics and Physics of Solids. 2021; 147:104277. https://doi.

org/10.1016/j.jmps.2020.104277

27. Masi F, Stefanou I. Thermodynamics-based Artificial Neural Networks (TANN) for multiscale modeling

of materials with inelastic microstructure. arXiv preprint arXiv:210813137. 2021.

28. Fuhg JN, Bouklas N. On physics-informed data-driven isotropic and anisotropic constitutive models

through probabilistic machine learning and space-filling sampling. arXiv preprint arXiv:210911028.

2021.

29. Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;

39(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 PMID: 28060704
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