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This study presents a database of joint angles, moments, and forces of the lower extremity from distance running
at a submaximal speed in recreational runners. Twenty recreational runners participated in two experimental
sessions, specifically pre and post a 5k treadmill run, with a synchronous collection of markers trajectories and
ground reaction forces for both limbs in walking and running trials. The raw data in C3D files could be used for
musculoskeletal modelling. Extra datasets of joint angles, moments, and forces are presented ready-for-use in
MAT files, which could be as reference for study of biomechanical alterations from distance running. Applying
advanced data processing techniques (Machine Learning algorithms) to these datasets (C3D & MAT), such as
Principal Component Analysis, could extract key features of variation, thus potentially being applied for corre-
lation with accelerometric and gyroscope parameters from wearable sensors during field running. Dataset of
multi-segmental foot could be another contribution for the investigation of foot complex biomechanics from
distance running. The dataset from Asian males may also be used for population-based studies of running

biomechanics.

1. Introduction

Running has attracted extensive participation over the past decades
for the benefits of physical fitness and health improvement. Due to the
easy accessibility, running has become the most convenient physical
activity around the globe, showing lower risks of all-cause mortality and
increased life longevity [1, 2]. Specifically, being a most efficient form of
exercise, running was proven with positive effect in prevention of chronic
disease, such as over-weight (high BMI), cardiovascular disease, cancer
mortality and several other healthy issues [2, 3, 4, 5]. Runners of elite or
recreational levels increased substantially across all age cohorts, either
during casual or official (marathon) running events [6, 7, 8].

However, high incidences of running-related injuries were docu-
mented and studied [9], aiming to investigate the potential mechanism
for injury prevention [10]. Recent studies about distance running found

* Corresponding author.
** Corresponding author.

redistributed plantar pressure in the foot [6], increased loadings to the
ankle and knee joints [11], and distally shifted mechanical output (power
and work) from the hip to ankle joint [12]. Further changes of the ankle
cartilage [13, 14], running stability [15], foot strikes [16], and inter-limb
symmetry [17, 18] were reported during distance running. Thus, factors
of foot strikes [16, 19], strength training [20] and footwear [21] were
analysed to help improve performance and prevent potential injuries.
Running often involves rapid and cyclical energy store-release in the
muscles and tendons while walking gait is like a pendulum mechanics
[22]. Development of joint kinematics and kinetics was assumed to be
typically consistent or within a small variation range between steps and
inter-limbs. However, sagittal angles became symmetrical while asym-
metry was observed in the angular velocity between dominant and
non-dominant limbs from an incremental speed induced running fatigue
test [23]. Alterations of biomechanical loading (even the accumulation)
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may contribute to potential running-related injuries [11, 24, 25], thus
affecting the running performance [26].

Approaches of musculoskeletal modelling, such as the Visual 3D [23,
271, Anybody [28, 29], and OpenSim [30, 31, 32] musculoskeletal
simulation, are widely employed in the biomechanics community. Apart
from traditionally reported variables of kinematics, kinetics, and muscle
activities, the above-mentioned techniques could calculate extra in-vivo
parameters, providing plausible and reliable methods to reveal alter-
ations in the neuro-musculoskeletal system. In particular, the calculated
muscle forces and joint forces during motions are difficult to measure
in-vivo from experiments, which are believed to be key reasons leading to
potential injuries [11, 33]. Our previous investigation of foot protonation
and lower extremity biomechanical loadings reported that pronated foot
postures in the right limb were observed following a 5k run, which was
an early indicator of increased peak knee and ankle moments [11].

Apart from the discrete variables, biomechanical parameters typically
vary over-time [34], thus requiring temporally understanding. Tech-
niques of data processing and statistical analysis in biomechanics
developed from traditionally employed comparisons of discrete values,
such as maximum, minimum, or discrete time-point (i.e., foot strike
angle), to multidimensional levels, such as 1-dimensional (1D)
time-varying joint angles, moments and contact forces. The
one-dimensional Statistical Parametric Mapping (SPM1d) is one of the
emerging and widely employed approaches for statistical analysis [11,
35, 36, 37, 38]. This technique was originated and developed from the
Statistical Parametric Mapping [39], to check significance between var-
iables based on random field theory (RFT) [36, 37, 40]. Similarly, the
Principal Component Analysis (PCA) [41] and Functional Data Analysis
(FDA) [42] are recently employed to reveal knee angle variations in
pathological gait [43], gait coordination and variability [44], strike
patterns [45], running level classification [46], ground reaction forces
[47], foot postures and function [48], jumping performance and force
output [49, 50, 51, 52], bilateral limb asymmetry [53], and kinematic
patterns from injury [54].

With the development of musculoskeletal modelling and statistical
analysis techniques, scarce dataset of gait biomechanics from distance
running were publicly available in the literature, though this physical
activity gained great popularity in the recent years. Authors proposed the
current dataset, including standardised walking and running data from
Asian male recreational runners during a pre 5k and post 5k run at a
submaximal speed [55]. The first part of raw C3D dataset could be used
to explore the changes and symmetry from distance running as a pilot
example for future studies to expand the database. Another probable
application of this raw dataset is that the multi-segment foot model could
be applied to investigate the intersegmental foot biomechanics from a
distance run, which is scarcely reported in current literature. Our pre-
vious studies have reported the dynamic inter-segmental foot biome-
chanics from walking speeds [56], forward versus backward walking
[57], and toes manipulation [58, 59]. A second part of the MAT dataset is
the pre-processed (ready-for-use) joint angles, moments, and forces,
which could be directly integrated into the PCA (we took PCA as an
example for analysis in this study) or other machine learning algorithms
as a baseline example for the accelerometer and gyroscope signals from
IMU (inertial measurement units) correlation for field predictions.

2. Methods
2.1. Participants

Twenty male recreational runners of Chinese ethnicity (age: 25.8 +
1.6 years, body mass: 67.8 + 5.3 kg, body height: 1.73 + 0.05 m, detailed
information presented in the supplementary Table s1) were recruited to
join in this project, investigating the biomechanical changes in the lower
extremity during distance running, as per the inclusion criteria. All
included runners are right leg dominant, which was determined as the
preferred leg of ball-kicking [60], avoiding inter-limb discrepancy and

Heliyon 8 (2022) e11517

asymmetry [23]. All participants had a history of overground or treadmill
running activities (with 5-8km per session and 3-6 sessions per week),
with details described in the supplementary Table s1. They were free
from any lower extremity injuries or foot deformities in the past six
months prior to the test. The study was approved by the ethics committee
from the Research Institute in Ningbo University (RAGH20161208).
Written consent was obtained from all participants, and they were
informed of the objectives, procedures, and requirements of this running
test.

2.2. Protocol and instruments

As the outlined in Figure 1, this project mainly included four parts.
Firstly, the recreational runners of male Chinese ethnicity were recruited
following the above-mentioned inclusion criteria. The pre 5k session
(second part) was conducted to collect the right and left (separately)
lower limbs during walking and running. Then (third part), all runners
performed a 5k run on a treadmill at a submaximal speed [55]. The last
(fourth) part repeated the second step with collection of the right and left
limbs during walking and running. As shown in Figure 1 (Data Appli-
cation), the collected dataset could be employed to investigate the
biomechanical changes in the right and left limbs (respectively) and
inter-limb symmetrical/asymmetrical responses from a 5k run.

The pre and post 5k session were conducted on a 20m indoor pathway
in a motion capture lab. The indoor running distance was similar with
recent running studies [61, 62, 63]. Specifically, the lab was facilitated
with an eight-camera Vicon Motion capture system (Vicon Metrics Ltd.,
Oxford, UK) and an embedded AMTI force platform (AMTI, Watertown,
MA, United States) fixed in the middle of the pathway. They were syn-
chronously employed to record the markers trajectories and ground re-
action forces at a frequency of 200 Hz and 1000 Hz, respectively. The
cameras and lab setting were calibrated before each experimental session
with stable maker trajectory and less noise [64].

Prior to the test, participants performed 10 min walking or running on
treadmill (to confirm a submaximal speed range) and ground (to control
similar speed with treadmill run with timing gate) as warm-up. During
the pre 5k session, two trials of static standing with both legs shoulder-
width apart were firstly captured, followed by three trials of walking
and running tests with right and left foot (each) consecutively landing on
the force platform. Upon the completion of the pre 5k test session, the
reflective markers were removed from participants. Participants ran 5k
run on the treadmill with their own running footwear at a submaximal
speed (~12 km/h, 80% of their personal best speed), which was to
‘mimic’ a casual run. A 5-min preparation was left for the post 5k test
setup (putting reflective markers back). The post 5k session was per-
formed following the same testing procedures as the pre 5k session.

As illustrated in Figure 2, this dataset includes markers in both
acromion, pelvis, bilateral thigh, bilateral knee, bilateral shank, and
multi-segment foot. The details of collected data in raw C3D files are
presented in the supplementary Table s2, including information of labels,
dimension, unit, description (anatomical location) and capturing
frequency.

3. Data record and process

The collected data were then manually labelled in a Vicon Nexus
software (version 1.8.5A, Vicon Metrics Ltd., Oxford, UK) following the
maker-set model [11, 31, 65] as shown in Figure 2. In terms of the static
and dynamic (walking and running) markers' trajectories, the gaps were
visually checked and manually filled (using ‘pattern fill’ according to the
shape of another trajectory without a gap to fill the selected gap) to avoid
inconsistent trajectories [64]. As for the walking and running ground
reaction forces, a threshold of 20N in the vertical direction was employed
for the detection of foot strike and toe off to define the stance [38, 47, 66,
67]. A pipeline was set in the workstation of Nexus to export the raw C3D
files. Consequently, a total of 28 successful trials per participant were
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(n=20)

Data Collection

| Pre 5k vs Post 5k |
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Data Application

Figure 1. Outline of the experimental protocols (including Runners Recruitment, Data Collection during Pre 5k and Post 5k Sessions, and Data Application).
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Figure 2. Illustration of marker-set (left & central) and multi-segmental foot model (right).

obtained from the experimental tests, including trials from static,
walking, and running of the left and right limbs during the pre 5k and
post 5k sessions. The collected data could be applied for the pre 5k versus
post 5k comparison and the right versus left limb (or dominant versus
non-dominant) comparison.

3.1. Data store

One gait cycle (heel contact to next heel contact) was defined as per
the vertical ground reaction force from the force platform during data
processing of the left and right walking trials. While considering the high
dynamics of running activity, one stance phase (heel contact to toe-off)
for running trials was included during data processing of the left and
right running trials. The threshold for the vertical ground reaction force
was set at 20N [38, 47, 66, 67]. The collected experimental data were
presented as raw in C3D files, which is public available in our figshare
repository and SimTK repository.

3.2. Musculoskeletal model

This study employed an OpenSim full-body musculoskeletal model
adapted from a recent study [31], and updated extra range of motion in
the coronal and horizontal planes of the knee joint [11]. The current
model added the muscle path into cylindrical wrapping surfaces adapting
from the previously utilized ellipsoidal wrapping surface [68]. This
model included 80 musculo-tendon parameters, derived from measured
21 cadaver specimens and MRI of 24 young healthy subjects, made it
reasonable while scaling into other cohorts of young and healthy pop-
ulations [31]. The model is available from the OpenSim full-body project
repository (https://simtk.org/projects/full_body), including a combined
head, torso, pelvis, and right and left lower extremity with femur, patella,
tibia/fibula, and foot (talus, calcaneus, tarsus, metatarsal and toes). The
hip joint was modelled as a ball-and-socket joint with three
degree-of-freedoms (DOFs) in relative to the x-axis, y-axis, and z-axis.
Apart from original DOF in the sagittal plane (flexion-extension, z-axis)
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of knee joint, extra two degree-of-freedoms in the abduction-adduction
(x-axis) and internal-external rotation (y-axis) motions were updated,
following previously validated studies [11, 69]. Ankle was modelled as a
pin joint with dorsiflexion and plantarflexion in relative to z-axis. The
subtalar and metatarsophalangeal joints were locked during the data
processing.

The raw C3D files were exported as ‘trc’ (markers trajectories) and
‘mot’ (ground reaction force) using customized MATLAB scripts accom-
panying with the OpenSim software resource package (https://simtk-co
nfluence.stanford.edu:8443/display/OpenSim/Scripting+with-+Matl
ab). The data were filtered using a low pass (4th-order Butterworth) filter
for ‘trc’ files at 6 Hz and ‘mot’ files at 30 Hz as per the capturing fre-
quency [11].

The coordinates system from lab collected (Vicon) datasets (c3d files)
were rotated to fit the OpenSim global and local coordinate system, thus
positive x to the anterior, positive y to the superior, and positive 2z to the
right. Following steps were performed in the OpenSim v4.0 as per pre-
viously published workflow [11, 30, 70], including the ‘Scale’, ‘Inverse
Kinematics (IK)’, ‘Inverse Dynamics (ID)’, ‘Static Optimization (SO)’, and
‘Joint Reaction (JR)’ analysis. The surface EMG recorded muscle activities
were compared against the simulated muscle activation from SO in
OpenSim for model validation [11].

A customized Python function with a cubic spline was employed for
the data interpolation (normalization) (https://spmld.org/doc/Pre
liminaries/processing.html#interpolation), thus registering the data of
left and right limbs into 101 data-point for walking gait cycle and 51
data-point for running stance. Averaged waveforms of joint angles, joint
moments, and joint contact forces for each participant during pre-5k and
post-5k sessions were plotted and stored as ‘fig’ files presented in the
FIGURE folder for reference, respectively.

The pre-processed dataset was stored as ‘mat’ files in the MAT folder.
In terms of the walking trials, nine matrices (pre 5k: 20%*101 vs post 5k:
20*101; and right: 20*101 vs left: 20*101) (3 angles, 3 moments, and 3
contact forces) were created for the hip joint. Nine matrices (pre 5k:
20%101 vs post 5k: 20%101; and right: 20*101 vs left: 20*101) (3 angles,
3 moments and 3 contact forces) were created for the knee joint. Five
matrices (pre 5k: 20%101 vs post 5k: 20%101) (1 angle, 1 moment and 3
contact forces) were created for the ankle joint. In terms of the running
trials, nine matrices (pre 5k: 20%51 vs post 5k: 20*51) (3 angles, 3 mo-
ments, and 3 contact forces) were created for the hip joint. Nine matrices
(pre 5k: 20*51 vs post 5k: 20*51) (3 angles, 3 moments and 3 contact
forces) were created for the knee joint. Five matrices (pre 5k: 20*51 vs
post 5k: 20%51) (1 angle, 1 moment and 3 contact forces) were created
for the ankle joint.

In this dataset, a Principal Component Analysis (PCA) was taken as
example for the advanced statistical analysis. The PCA would be con-
ducted to reduce the high dimensionality data and project onto principal
components (PCs) [47, 71], thus extracting the key features of variation.

1 2 n1 n 1 2 2
X; Xy o Xy X 7z, % # | T3 Q
: =1 i : : : : 1)
1 2 n1 n 1.2 2
Xao X9 v Xz Xy Zy Zh % | Tao Qa0

As presented in Eq. (1), the original matrices (X = x3, X2, X3, ... Xn-1, Xn)
were orthogonally transformed into uncorrelated principal components
(Z = 21, 22, 23, ..., Zm) (M < n), corresponding loading vectors (% = Ty,
Ty, T3, ... Ty and residuals (Q), thus forming a relationship of Z = X =72,

This study mainly accounted for the main variations of the first key
(3-4) PCs (ZI, ZZ, 2:3, & 2% with explained variations of over 95%, and
variations in the (3—-4) PCs were plotted against the mean for visualiza-
tion of the key features. The n was 101 data-point for walking trials and
51 data-point for running trials, respectively, during the PCA modelling.
All the matrices of joint angles, joint moments, and joint contact forces
firstly run statistical analysis, and then the PCA modelling in the MAT-
LAB software (R2019a, The MathWorks Inc., MA, USA).

Heliyon 8 (2022) e11517
3.3. Usage notes

All data from this study are stored in c¢3d, mat and fig formats. The
‘c3d’ file can be read using the open-access software, MOKKA BTK
(http://biomechanical-toolkit.github.io/mokka/index.html). The ‘mat’
and ‘fig’ files can be read using the commercial software MATLAB (The
MathWorks, USA). The Musculoskeletal model in the current study is
freely available from the SimTK forum (https://simtk.org/projects
/opensim).

3.4. Code availability

The code for data interpolation and the Principal Component Analysis
and Statistical Parametric Mapping analysis following the previously
established studies [36, 37, 38, 47], which are available in the re-
positories (http://www.spm1ld.org/; https://github.com/0todd0000/sp
mldmatlab). The MOKKA BTK software is available in the repository
(http://biomechanical-toolkit.github.io). The code for the OpenSim
musculoskeletal model is available from the online repository (https
://github.com/opensim-org/opensim-core).

4. Key results and findings

The dataset in raw data of ‘c3d’, pre-processed results and PCA
modelling of the ‘mat’ and ‘fig’ files are available from the figshare re-
pository and SimTK repository of our long-distance running project (htt
ps://auckland.figshare.com/projects/Dataset_of Lower_Extremity_Joint
_Angles_ Moments_and_Forces_in_Distance_Running/136708, https
://simtk.org/projects/longdistrun). Specific data organization and re-
cords are presented below.

4.1. Data records

The recorded markers trajectory and analog (ground reaction force)
data were stored in C3D files (https://www.c3d.org), which are sum-
marized in supplementary Table s2. Additional analog information was
Fx1, Fx1, Fz1, Mx1, Myl, and Mz1, which represented ground reaction
force and moment at the X, y, and z coordinates of the foot in the current
dataset. This dataset is available under the Creative Commons Attribu-
tion 4.0 International (CC BY 4.0) - Non-Commercial License.

4.1.1. Raw data

The C3D.zip folder contains the raw datasets collected from the
motion capture experiments. The subfolders of ‘S01, S02, ..., S20° contain
the data of twenty participants during the Pre 5k (Pre), and Post 5k (Post)
sessions, respectively. The static trial is as ‘Sxx(number)_(Pre/Post)Stat-
ic.c3d’, and the walking and running trials for right and left limbs are
described as ‘Sxx(number)_(Pre/Post) (Walk/Run) (R/L)_xx(trials).c3d’.

4.1.2. Processed matrix data

The MAT.zip folder contains the processed (ready-for-use) dataset in
well-organized matrices. The subfolders of ‘Pre5k_vs_Post5k’ and ‘Right -
vs Left contain the normalized data, which could be employed to
investigate changes in Pre 5k versus Post 5k sessions and Right versus Left
lower limbs difference during a submaximal 5k run.

‘PrePost. (walk/run) (/M/JR)_(R/L) (Ankle/Knee/Hip) (X/Y/Z).mat in
the Pre5k_vs_Post5k folder of the MAT.zip represents the well-organized
matrices comparison of walking (walk) or running (run) joint (Ankle/
Knee/Hip) angles (), moment (M) or reaction force (JR) around the X, Y,
and Z-axis during pre 5k (1-20 row) and post 5k (21-40 row) sessions.

‘(Pre/Post) (walk/run) (/M/JR)_LeftRight (Ankle/Knee/Hip) (X/Y/
Z).mat’ in the Right vs_Left folder of the MAT.zip represents the well-
organized matrices comparison of Right (1-20 row) and Left (21-40
row) joint (Ankle/Knee/Hip) angles (), moment (M) or reaction force (JR)
during the Pre 5k or Post 5k walking (walk) or running (run) sessions.
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4.1.3. Processed figure data

The FIGURE.zip folder contains the plotted figures of joint angles,
moments, and forces from walking (Walk) and running (Run) trials. In
terms of the walking (Walk) trials, the ‘Pre5k_vs_Post5k’ folder includes
walking variables between the Pre 5k session and Post 5k session, as ‘(L/
R)walk(/M/JR)_PrePost (Ankle/Knee/Hip) (X/Y/Z)_raw.fig'.

The ‘Right vs_Left’ folder includes variables between the Right limb
and Left limb, as ‘(Pre/Post)Walk(/M/JR)_LeftRight (Ankle/Knee/Hip)
X/Y/Z)_raw.fig .

In terms of the running (Run) trials, the ‘Pre5k_vs_Post5k’ folder in-
cludes running variables between the Pre 5k and Post 5k sessions, as ‘(L/
R)run(/M/JR)_PrePost (Ankle/Knee/Hip) (X/Y/Z)_raw.fig .

Pre Sk — Post Sk walking (right)
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The ‘Right vs_Left’ folder includes variables between the Right limb
and Left limb, as ‘(Pre/Post)Run(/M/JR)_LeftRight (Ankle/Knee/Hip) (X/
Y/Z) raw.fig'.

4.1.4. Processed PCA data

The PCA_mat.zip folder contains the matrix of PC coefficients, per-
centage explained, PC scores and reconstructed 4PCs. Specifically, the
PCA modelling of pre 5k and post 5k in the right and left limbs are
presented, as ‘PCA_PrePost run(walk)_(/M/JR)_Left(right)_(Ankle/Knee/
Hip) (X/Y/Z).mat’, during walking and running. The PCA modelling of
the left and right limbs are presents, as ‘PCA_Pre(Post)run(walk)_(/M/JR)
_LeftRight (Ankle/Knee/Hip) (X/Y/Z).mat’.
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Figure 3. Raw Joint angles in the sagittal plane (left: a, ankle; d, knee; g, hip) and scores of 4 PCs (central: b, e, h) and percentage explanation (right: c, f, i) during pre

5k and post 5k walking of the right limb.
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The PCA fig.zip folder contains the scores of the 4PCs and percentage
explanation and line of accumulation in the first 10PCs. The specific first
4PCs were plot against the mean of joint angle, moment, or forces.
Specifically, the pre 5k and post 5k in the right and left limbs are pre-
sented, as ‘PrePost run(walk)_(/M/JR)_(R/L)_(Ankle/Knee/Hip) (X/Y/Z)
_score_PCs.fig’ for the scores and explained percentage, and the ‘PrePos-
t run(walk)_(/M/JR)_(R/L)_(Ankle/Knee/Hip) (X/Y/Z)_4PCs.fig for the
first 4PCs. The right and left limbs during pre 5k and post 5k are pre-
sented, as ‘Pre(Post)run(walk)_(/M/JR)_LeftRight (Ankle/Knee/Hip) (X/
Y/Z) score PCs.fig’ for the scores and explained percentage, and
the ‘Pre(Post)run(walk)_(/M/JR)_LeftRight (Ankle/Knee/Hip) (X/Y/Z).
4PCs.fig’ for the first 4PCs.

Pre Sk Right — Left walking
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4.2. Results validation

The motion capture system and lab setting were calibrated before
each experimental session to avoid noise and ensure high markers visi-
bility. In terms of the marker gaps, a manual gap filling was performed
using ‘pattern fill” according to the shape of another trajectory without a
gap to fill the selected gap, and force plate was checked (and zero-level)
before each individual session to ensure an accurate measurement of
ground reaction forces. The similar steps were followed as the recently
published data descriptor articles [64, 72, 73, 74, 75, 76].

All the walking and running marker trajectories and ground reaction
forces as stored in the raw C3D files were visually inspected and checked
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Figure 4. Raw Joint angles in the sagittal plane (left: a, ankle; d, knee; g, hip) and scores of 4 PCs (central: b, e, h) and percentage explanation (right: c, f, i) of left and

right limb during pre 5k walking.
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in the Motion Kinematics & Kinetics Analyzer (MOKKA) BTK software.
The processed (ready-for-use) kinematics, kinetics, and forces results
(presented in the FIGURE folder) were compared against recent studies of
walking or running and confirmed with similar shape trends and
magnitude from the authors.

The joint angles in the sagittal plane, scores of 4 PCs, and percentage of
explanation were plotted in Figure 3 (pre 5k and post 5k walking of the right
limb), Figure 4 (left and right limb during pre 5k walking), Figure 5 (pre 5k
and post 5k running of the right limb), and Figure 6 (left and right limb
during pre 5k running) below as example for results validation. Extra dataset
of joint kinetics and forces are available at our online project repository.

Pre Sk — Post Sk running (right)
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Specifically for the walking joint angles during pre 5k and post 5k
sessions from the distance run, the first four PCs took up the main account
of variances (94.73%) in the ankle dorsiflexion and plantarflexion, with
PC1 of 50.11% showing variances from early stance (20%) to late stance
(80%), PC2 of 34.4% during initial landing till mid stance, PC3 of 6.69%
in the late stance, and PC4 of 3.53% in the late stance as well. The knee
flexion showed main variances during push-off (PC1 of 46.83%) and mid
stance (PC2 of 25.07%). The PC3 had variations during early stance
while landing, with 18.35%. The hip flexion also presented main vari-
ances during late stance (PC1 of 60.83%, PC2 of 21.01%), and push-off
(PC3 of 11.65%).
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Figure 5. Raw Joint angles in the sagittal plane (left: a, ankle; d, knee; g, hip) and scores of 4 PCs (central: b, e, h) and percentage explanation (right: c, f, i) during pre

5k and post 5k running of the right limb.
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Pre 5k Right — Left running
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Figure 6. Raw Joint angles in the sagittal plane (left: a, ankle; d, knee; g, hip) and scores of 4 PCs (central: b, e, h) and percentage explanation (right: c, f, i) of left and

right limb during pre 5k running.

In terms of the left and right walking joint angles during pre 5k ses-
sion for interlimb symmetry of asymmetry, the main variances of ankle
dorsiflexion and plantarflexion were observed during mid stance (PC1 of
47.98%), and early landing and late push-off (PC2 of 23.55%), PC3 of
15.04%. The knee flexion had main variations from mid-stance to push-
off in PC1 of 60.13%, followed by initial landing angles in PC2 of
18.63%, and final push-off in PC3 of 12.78%. The hip flexion showed
variances across the stance in PC1 of 74.16%, and mid-stance in PC2 of
12.6% and PC3 of 8.55%.

As for the running joint angles during pre 5k and post 5k sessions
from distance run, the main variances of ankle dorsiflexion and plan-
tarflexion were observed in push-off (PC1 of 89.35%, PC2 of 6.74%). The
knee flexion was mainly reported in the mid-stance as well in PC1 of
87.58%, and early landing to late push-off in PC2 of 7.63%. The variances
of hip flexion were mainly observed in late push-off as well in PC1 of
94.46%. For the running joint angles comparison between the left and
right limb during pre 5k run for interlimb symmetry of asymmetry, the
main variations were observed in the midstance (PC1 of 78.07%) and
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followed by the landing and push-off in PC2 of 15.98% and PC3 of
4.77%.

5. Discussion

A public dataset on the walking and running biomechanics of recre-
ational runners during a pre 5k and post 5k run was presented in the
current study, which explicitly included raw data in c¢3d format, and pre-
processed data (joint angles, moments and contact forces readily for
reuse or reference) in mat format using a popular Open-source muscu-
loskeletal modelling software (OpenSim). Extra details on the metadata
were provided concerning runners' demographics (mass, height, running
experience and limb dominance) and information of raw C3D files, which
gave open options for the biomechanical researchers and sport scientists
to reuse this dataset. In terms of the pre-processed ready-for-use data,
authors ran a preliminary PCA modelling on the dataset to extra the key
features of variations in the joint angles, moments, and contact forces
from a 5k run. This is an example of using advanced statistics to generate
key variations of the biomechanical parameters from distance running,
apart from statistical significance of being different and larger or smaller.
The current dataset of male Asian runners in Chinese ethnicity may
provide comparison reference for the study of population-based long-
distance running biomechanics. Another important contribution is to
analyse the multi-segmental foot biomechanical changes from distance
running, which is scarcely reported and documented in the literature.
The current dataset also investigates biomechanical response from dis-
tance running with self-preferred shoes, which may be used as baseline
(or comparison) to investigate the biomechanical alterations with
improved footwear technology [77].

While validating the raw dataset from the current study, the detailed
information concerning the experimental protocol and instruments
employed for data collection showed consistency with recent literature of
running studies [11, 24, 46, 78]. The gap in the marker trajectory and
ground reaction forces were visually checked in the Vicon Nexus and
Mokka BTK software [79] in C3D files. In terms of the pre-processed
ready-for-use dataset in well-organized matrix, the joint angles in the
sagittal plane of lower extremity joints (hip, knee and ankle) were plotted
and compared against literatures. This was due to the high waveform
similarity was observed and documented from recent studies of distance
runners [80]. While appropriate similarity was recorded in the other two
planes, the sagittal angles were believed to be consistent considering the
variations from distance running [81, 82] or inter-limb asymmetry [23,
83]. In terms of the potential similarity or difference between different
MSK software, the current study presented ready-for-use data from
OpenSim platform following well-established pipeline [30, 31, 32], and
comparison between different MSK software was conducted for the
calculation of angles, moments, and muscle activations and forces [28,
29]. The current dataset also includes extra the marker trajectory (trc)
and ground reaction force (mot) files, allowing users to employ different
MSK approaches.

Advanced statistics have been employed recently for the classification
of runner cohorts (distance and gender) while analysing the kinematics
[46], ground reaction forces [47] and running performance [84].
Following an example of principal component analysis, a PCA of ground
reaction forces between gender at incremental running speeds was con-
ducted to extract key features of variances for understanding the impact
characteristics [47]. As illustrated in the figures of this study, the joint
angles, PCA scores and percentage of explanations showed the regions of
key variations from the score values, and main contributions. Extra in-
formation of PCA results on the joint moments and contact forces during
pre 5k and post 5k and right and left limbs were included in the online
repository. Users may refer to this results in raw to understand biome-
chanical responses from a single submaximal distance running [85], and
investigate potential biomechanical loading redistribution across joints
and between limbs.
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Apart from the PCA statistical modelling, users of biomechanics and
sports science community may run hypothetical statistics on the ready-
for-use dataset. An example was provided for reference using the popu-
lar open-source one-dimensional statistical parametric mapping (SPM1d)
package. Prior to statistical analysis, the normality (‘spm1d.stats.norma-
lity.ttest paired’) distribution could be checked using the built-in function
in the open-source SPM1d package (www.spmld.org), which was pre-
viously reported the applications in analysis of the time-varying 1D
biomechanical data [36, 37]. As per the results of the normality check,
Statistical Parametric Mapping (SPM, ‘spm1d.stats.ttest paired’) or Statis-
tical non-Parametric Mapping (SnPM, ‘spm1d.stats.nonparam.ttest paired’)
analysis would be taken for the statistical comparison in the current
study, following a previous example [38]. The paired sample t-test in
SPM was previously used to check the difference between Pre 5k and Post
5k running and examine the inter-limb (Right against Left) symmetry or
asymmetry [11, 86, 87, 88].

There are few limitations for the processed datasets and experimental
procedures which should be noted. Firstly, the open-source OpenSim
software was employed for all the data processing, which was due to that
this software is free and popular among all the biomechanics community
[32]. These datasets may need further validation via comparisons against
other musculoskeletal platforms, such as Anybody [23, 27] and Visual 3D
[28, 29]. Secondly, this study presented the dataset of the male recrea-
tional runners' cohort all in Chinese ethnicity. While considering the
population-based running biomechanical performance and related in-
juries [89, 90, 91, 92, 93], this database of 20 participants (relatively
small sample size) may be a foundation and provide a pilot example for
future studies to expand the samples of runners from different ethnicities.
Thirdly, the 5k run was conducted on a treadmill at a submaximal (80%
PB) speed, while the data collection was overground running without
strictly controlling running speeds [47] and surfaces [61]. As reported in
the literature, different running surface may alter the biomechanical
responses [94, 95, 96]. However, the current dataset mainly focuses on
the response from a distance run with particular interests of the biome-
chanical changes in nature. Lastly, this study collected datasets of bare-
foot walking and running in a lab setting during a pre 5k and post 5k run
with self-preferred shoes without standardizing the running footwear.
This would be a first public available database to investigate inter foot
segmental biomechanical changes from distance running.

6. Conclusion

In summary, this study presented a validated database in raw (C3D
files) and pre-processed ready-for-use (mat files) matrix, explicitly
including the joint angles, moments, and forces of the lower extremity
from distance running at a submaximal speed in recreational runners.
The dataset is from Asian population of Chinese ethnicity, which may be
used for the analysis of population-based running biomechanics. The raw
database included multi-segmental foot marker-set, which may add up
the information of inter-segmental foot biomechanical changes from
distance running. The extracted key variances and weighted scores from
PCA modelling of joint angles, moments and contact forces may be
reference as training database for advanced statistics and wearable
technology prediction in the real-scenarios analysis of distance running.
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