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abstract

PURPOSE Variability in computed tomography images intrinsic to individual scanners limits the application of
radiomics in clinical and research settings. The development of reproducible and generalizable radiomics-based
models to assess lesions requires harmonization of data. The purpose of this study was to develop, test, and
analyze the efficacy of a radiomics data harmonization model.

MATERIALS AND METHODS Radiomic features from biopsy-proven untreated hepatic metastasis (N = 380)
acquired from 167 unique patients with pancreatic, colon, and breast cancers were analyzed. Radiomic features
from volume-match 551 samples of normal liver tissue and 188 hepatic cysts were included as references. A
novel linear mixed effect model was used to identify effects associated with lesion size, tissue type, and scanner
model. Six separate machine learning models were then used to test the effectiveness of radiomic feature
harmonization using multivariate analysis.

RESULTS Proposed model identifies and removes scanner-associated effects while preserving cancer-specific
functional dependence of radiomic features on the tumor size. Data harmonization improves the performance of
classification models by reducing the scanner-associated variability. For example, the multiclass logistic re-
gression model, LogitBoost, demonstrated the improvement in sensitivity in the range from 15% to 40% for each
type of liver metastasis, whereas the overall model accuracy and the kappa coefficient increased by 5% and 8%
accordingly.

CONCLUSION The model removed scanner-associated effects while preserving cancer-specific functional de-
pendence of radiomic features.

JCO Clin Cancer Inform 6:e2200023. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Colorectal cancer, pancreatic cancer (PC), and breast
cancers (BCs) are responsible for nearly 25% of all
cancer deaths. The liver is the most common site of
visceral metastasis for each of these malignancies.1 Up
to 70%of patients with colorectal cancer and up to 50%
of patients with PC or BC will develop liver metastasis at
some point during their disease. Computed tomography
(CT) is important in assessing both baseline disease
tumor burden and response to therapy in each of these
malignancies.2 Clinically, assessment is commonly
performed with qualitative or quantitative anatomic
imaging biomarkers such as lesion size, descriptors of
enhancement, or presence of necrosis. However, on-
cologic imaging is expected to be affected by advanced
image analysis leveraging machine learning (ML) and
deep learning methods.3 Convergence of imaging and
big-data techniques can significantly contribute to the
development of personalized medicine. For example,
radiomics offers a more thorough tumor description on
the basis of high-throughput quantification of the

intralesion and interlesion heterogeneity4-6 related to
tumor biology and microenvironment.7 Application of
radiomics with ML in oncology has demonstrated
promising results in classification and prognostic
studies and may eventually be adapted to assess tumor
response to therapy.8-10

Despite remarkable advances, radiomics faces various
challenges.7,11 The high sensitivity of radiomic features
to various texture patterns plays an important role in the
development of radiomicsmodels.12 However, radiomic
features are also sensitive to image acquisition factors,
such as scanner model, imaging protocols, and re-
construction algorithm.13-15 These factors may affect
various radiomic features differently16-18 complicating
the development of reproducible and generalizable
radiomics-based models across clinical sites and
institutions.19

Harmonization of radiomic features is required to
ensure accuracy and reproducibility of radiomics
models in multicenter clinical site settings.20 The two

ASSOCIATED
CONTENT

Appendix

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on
September 21, 2022
and published at
ascopubs.org/journal/
cci on November 4,
2022: DOI https://doi.
org/10.1200/CCI.22.
00023

1

http://ascopubs.org/journal/cci
http://ascopubs.org/journal/cci
http://ascopubs.org/doi/full/10.1200/CCI.22.00023
http://ascopubs.org/doi/full/10.1200/CCI.22.00023
http://ascopubs.org/doi/full/10.1200/CCI.22.00023


most common harmonization methods are standardization
of image acquisition and postacquisition harmonization.
Standardization of image acquisition protocol is a common
practice in clinical trials.21 Although this helps to reduce
variability in data, it is insufficient for radiomics analysis
in studies that are performed on different CT scanners
because variability in image acquisition contributes to a
systematic bias in radiomics data. Harmonization of
radiomic features implies a batch-effect correction to
remove the bias associated with image acquisition
factors.20 For example, a statistical method called Combat
on the basis of an empirical Bayes framework was devel-
oped to adjust the batch effect in genetic data22 and was
applied in various radiomics studies.23-26 However, Combat
does not eliminate the bias; instead, it provides a uniform
distortion across all classes. Moreover, Combat requires a
representative sampling that could be a limiting factor in
multicenter trials with a small number of patients per
center. To allow radiomics to be used on a larger scale both
within and among institutions, a postacquisition harmoni-
zation step is required. We propose a novel model that
performs radiomics data harmonization across different CT
scanners with preservation of radiomic features of tumor
subtype and size.27-32

MATERIALS AND METHODS

This retrospective cohort study was approved by the In-
stitutional Review Board and was granted a waiver of Health
Insurance Portability and Accountability Act authorization
and a waiver of written informed consent. The research
methods were performed in accordance with the Decla-
ration of Helsinki. A literature search was performed using
PubMed in accordance with the guidelines from the Pre-
ferred Reporting Items for Systematic Review and Meta-
Analysis group (Appendix Fig A1).

Patients

A multisite single-enterprise database was queried for
patients with untreated pathologically proven metastatic
liver tumors from January 2015 through January 2020.
The inclusion criteria for this study were (1) patients with
at least one pathologically proven lesion representing

metastatic liver disease from PC, colon (CC), or BC; (2)
presence of a pretreatment contrast-enhanced portal
venous phase CT scan; and (3) at least one segmentable
hepatic metastasis. Patients were excluded from analysis
for the following reasons: (1) previous history of cancer
and or prior cancer treatments, (2) multiple cancers of
different types, (3) no evidence of malignancy in the bi-
opsy of liver metastasis, (4) infiltrative unsegmentable liver
lesions, and (5) radiologically apparent background liver
disease such as morphologic cirrhosis, depositional liver
diseases, and/or fatty liver. A total of 384 patients with liver
metastasis were initially identified. Application of inclusion
criteria resulted in a total of 167 patients (106 females and
61 males, Table 1).

CT Scanners

All imaging was performed on CT scanners from only a
single vendor (Siemens, Erlangen, Germany). Six Siemens
CT scanners were used to image study subjects with var-
iable acquisition techniques and protocols (Table 2).

Tumor Image Segmentation and Radiomic

Feature Extraction

Lesion segmentation was performed manually by a single
radiologist (author M.A.S.S.) with 3 years of radiology and 2
years of quantitative and radiomics analysis experience
using LIFEx software, version 6.30 (Orsay, France).33 Up to
three well-defined and well-separated liver metastases with
the longest diameter ≥ 10 mm were selected in each
patient. A range of 2-3 mm of perilesional rim was included
in the volume of interest. A total of 380 lesions from 167
patients with metastatic liver disease were segmented and
submitted for radiomics analysis. In addition, 188 hepatic
cysts (HC) from 158 patients without liver metastasis and
551 size-matched samples of normal liver (NL) tissue from
324 patients including patients with liver metastasis and
cysts were considered as reference lesions. Patient and
lesion characteristics are shown in Table 1. Image pro-
cessing, radiomics parameters, software details, and an
additional discussion on the topic of tumor segmentation
are provided in Appendix 1.

CONTEXT

Key Objective
Are predictive models based on radiomics and machine-learning sensitive to individual computed tomography scanners?
Knowledge Generated
A new radiomics data harmonization model can effectively identify and remove computed tomography scanner–associated

effects.
Relevance
Data harmonization can preserve the cancer-specific association of radiomic features on the tumor size and improve the

performance of machine learning classification models.
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Data Harmonization Model

Although each scanner has distinct imaging properties, it is
only possible to identify a systematic bias in comparison of
one scanner with another. Therefore, first, a reference
group was assembled by selecting patients with identical
tumor types who were imaged on a unique CT scanner for
patients with metastatic liver disease from one type of
cancer. Next, a linear mixed-effects (LME) model was
applied.34 The main advantage of LME is that for each
group it is assumed to have an individual association

between radiomic features and tumor size. This association
is considered consisting of two components: fixed effects
common to all patients from all groups and random effects
specific to each patient and therefore varying between
different groups.

LME analysis was performed for three fixed-effect variables:
cancer or tissue type (T), scanner (S), and VOI volume (V).
The volume was considered as a primary variable. The type
and scanner were considered as fixed factors, which could
affect the intercept and slope of the linear model.

TABLE 1. Summary of Patient Demographic, Pathologic, and Scanner Information
Characteristic Category PC BC CC HC NL

Patients Female/male, count 13/33 62/– 31/28 93/65 199/125

Female, age 62 6 14 56 6 13 64 6 13 61 6 14 62 6 14

Male, age 64 6 12 — 62 6 14 66 6 10 65 6 12

Patients, count total 46 62 59 158 324

Lesions by scanner Sensation 64 4 10 10 16 54

SOMATOM Drive 12 15 40 29 78

SOMATOM Force 50 40 57 49 95

SOMATOM Definition AS 39 34 29 49 214

SOMATOM Definition 0 13 9 28 69

SOMATOM X.cite 15 0 3 17 41

Lesions, count total 120 112 148 188 551

Lesion size Diameter, mean 6 SD, cm 2.3 6 0.9 2.5 6 1.3 2.9 6 1.5 2.3 6 1.2 2.7 6 1.0

Diameter, median (IQR), cm 2.1 (1.7-2.7) 2.1 (1.7-2.8) 2.5 (1.9-3.4) 2.0 (1.4-2.8) 2.6 (2.0-3.4)

Volume, mean 6 SD, mL 8.5 6 10.8 14.5 6 30.4 26 6 74.2 11.4 6 22.6 12.2 6 10.9

Volume, median (IQR), mL 4.2 (2.7-8.3) 4.2 (2.5-9.5) 7.5 (3.6-16.6) 3.9 (1.9-9.3) 9.5 (4.4-16.6)

Abbreviations: BC, breast cancer; CC, colon cancer; HC, hepatic cysts; IQR, interquartile range; NL, normal liver; PC, pancreatic cancer; SD, standard
deviation.

TABLE 2. Summary Table of Scanner Acquisition and Image Reconstruction Parameters Used in This Study

Scanner Type

SOMATOM Sensation
64 SOMATOM Definition

SOMATOM Definition
AS

SOMATOM
X.cite

SOMATOM
Drive SOMATOM Force

Single Source Single Source Single Source Dual Source Dual Source Dual Source

X-ray tube Straton Straton MX-P Straton MX-P Vectron Straton MX Vectron

Detector Ultra Fast Ceramic Ultra Fast Ceramic Ultra Fast Ceramic Stellar Infinity Stellar Infinity Stellar Infinity

Reconstruction method SAFIRE SAFIRE SAFIRE ADMIRE ADMIRE ADMIRE

No. of acquired slices 64 128 64 128 256 384

In-plane spatial resolution,
mm

0.24 0.3 0.33 0.3 0.3 0.24

Rotation time, seconds 0.33 0.28 0.33 0.3 0.25 0.25

In-plane temporal resolution,
ms

160 142 83 150 75 66

Generator power, kW 80 100 100 105 100 120

Maximum scan speed, mm/s 87 87 200 217 458 737

Maximum mA 580 800 800 1,200 750 1,300

Tube voltage, kV 80, 100, 120, 140 70, 80, 100, 120,
140

80, 100, 120, 140 70, 80, 90 70-140 70-150

Focal spot size, mm 0.6 × 0.6 0.7 × 0.7 0.7 × 0.7 0.6 × 0.7 0.7 × 0.7 0.4 × 0.5
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Therefore, the LMEmodel could be summarized as follows:

FT ,S � f R + rT + rS +
�
Δf R + ΔrT + ΔrS

�
$V (1)

Equation 1 describes a linear relationship between the
radiomic feature and tumor volume. It includes fixed effects
which defines the reference group, FR � f R + Δf R$V ,
where f R is the intercept and Δf R is the slope. Additional
components describe random effects associated with
scanners and tissue types, specifically random intercepts,
rS and rT, and random slopes, ΔrS and ΔrT . Once all
random effects are calculated, all radiomic features were
harmonized by removing random effects associated with
the scanners:

FH
T � FT ,S − rS − ΔrSΔV (2)

where FH
T is a new harmonized radiomic feature adjusted

with the scanner from the reference group. This approach
allows change in the reference group to a new group with
reharmonization of all radiomic features accordingly. In
addition, this model can be expanded to more variables
linked to different image acquisition parameters, for ex-
ample CT x-ray energy.

ML Classifiers and Performance Measures

To assess the performance of proposed data harmonization
model, we examined the accuracy of classification of liver
metastasis from different cancer types using the original
and harmonized data sets. Principal component analysis
was applied to visualize the grouping of features and to
assess the explained variation in both data sets. Multivariate
analysis of radiomic features for predicting lesion type was
performed using six ML models: Support Vector Machine,
Random Forest, Weighted Subspace Random Forest,
Boosted Logistic Regression, Stochastic Gradient Boosting,
and Extreme Gradient Boosting. Performance of each ML
model for predicting lesion type was determined by cal-
culating the sensitivity, specificity, positive predictive value,
and negative predicative value.

RESULTS

An association between CT-based 3-dimensional radiomic
features and the tumor size was seen using the linear
mixed-effect model. Radiomic features dependent on re-
gion of interest size showed discrimination between each
tumor type and between cysts and NL volumes of interest
(Fig 1). Appendix Table A1 shows the coefficient of de-
termination, R2, for each best fitting model used for feature
normalization.

Figure 2 demonstrates the significance of the LME analysis
as a heat map of P values of fixed and random effects for all
radiomic features. The first two top rows of the heat map
show the significance of fixed effects, the intercept and the
slope, f R and Δf R , for the reference group. The reference
group includes the liver metastasis from the BC and the

Siemens Sensation 64 scanner. Following two groups of
rows, the intercepts Type[.] from the rT group and the
slopes Volume*Type[.] from the ΔrT group show the sig-
nificance of random effects associated with different tissue
types. These random effects demonstrate a robust statis-
tical significance across all types of lesions for almost all
radiomic features. The random effects associated with the
scanners, the intercepts Scanner[.] from the rS group and
the slopes Volume*Scanner[.] from the ΔrS group, also
demonstrate statistical significance for various radiomic
features. However, they show larger variability most likely
because of a smaller number of data points in some
scanner groups (Table 2). It should be mentioned here that
significance of at least one of the LME parameters, the
slope or the intercept, is necessary for differentiation of
radiomic feature from the reference and the nonreference
groups.

After removing random effects associated with the scan-
ners from the nonreference group, the results of the LME
regression analysis for gray level co-occurrence matrix
entropy are plotted in Figure 3. After data harmonization, all
lines coincide with each other and are aligned with the
reference line. It is important to note that the data har-
monization preserves the intrinsic association between the
radiomic features and the tumor size for each cancer type.
Supplemental materials include examples of LME analysis
for other radiomic features.

Principal components analysis of both nonharmonized and
harmonized datasets showed all types of liver lesions vi-
sually grouped, regardless of their proximity to each other
and some overlap of confidence ellipses (Appendix Fig A2).
Three groups of liver metastasis were found to be arranged
between the NL parenchyma and cysts. The data har-
monization led to visible shrinkage of the 95% confidence
ellipses. The confidence area decreased by 38% for HC,
19% for PC, 24% for CC, 44% for BC, and 30% for NL
consequently. In the case of the multivariate analysis of the
whole data sets, the explained variance for the first two PC
components increased from 51.5% to 58.2% after data
harmonization.

Six distinct ML models were compared to assess their
performance in terms of predicting the lesion type using the
original and harmonized data sets. As illustrated in Figure 4,
the overall accuracy of all six models were above 0.8, and
the kappa coefficient was above 0.7 for the nonharmonized
data set. After data harmonization, the overall accuracy
improved by additional 0.03-0.06 and the kappa coefficient
by 0.04-0.08. The predictive performances of the logistic
regression model, LogitBoost, demonstrated the best
performance and improvements in the model performance
after data harmonization. The overall accuracy before
harmonization was 0.85 with 95% CI (0.8 to 0.9) and the
kappa coefficient was 0.77. After data harmonization, the
overall accuracy increased to 0.89 with 95% CI (0.84 to
0.93), and the kappa coefficient increased to 0.83. The
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FIG 1. CT-based 3D radiomic features as a function of VOI’s volume for hepatic metastasis from BC, CC, and PC, as well as liver cysts and normal liver: (A)
GLCM correlation, (B) GLRLM LGRE, and (C) NGLDM contrast. 3D, 3-dimensional; BC, breast cancer; CC, colon cancer; GLCM, gray-level co-occurrence
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confusion matrix of the LogitBoost model for predicting the
lesion type in the test set is shown in Appendix Figure A3. It
shows very high accuracy in differentiation of liver cysts and
NL parenchyma and low performance for all types of liver
metastasis using the original nonharmonized data set. Data
harmonization improves the sensitivity from 0.53 to 0.75 for
liver metastasis from BC, from 0.54 to 0.71 for liver me-
tastasis from CC and from 0.52 to 0.6 for liver metastasis
from PC. The confusion matrix–related metrics are shown
in Appendix Table A2.

DISCUSSION

The advances in ML and artificial intelligence research
have allowed the development of novel analytic methods in
radiology, especially oncologic imaging.35,36 These
methods can be leveraged to further improve and per-
sonalize the medical decision making. However, stan-
dardization of quantitative imaging18 and harmonization of
data collected in multicenter studies are required for
radiomics to advance into clinical practice and clinical
trials.7

We developed and validated a novel method for radiomics
data harmonization of hepatic metastasis in three common
cancer types. The method uses association between tumor
size and radiomic features to remove scanner effects while
preserving cancer-specific functional dependence of

radiomic features on tumor size. As in previous studies, we
have shown that this association can be quantified by the
LME model to identify the effects linked to tissue type and
unique scanner parameters.32,37 We demonstrated that the
regression parameters vary between different scanners.
The approach evaluates the effect of each scanner in
comparison with the reference scanner and harmonizes the
radiomics data set by subtracting scanner associated ef-
fects. The method allows the reference scanner to be
changed and the same data set to be reharmonized for a
new reference scanner. This approach allows for com-
parison of results from different studies that use different
reference scanners initially. Additionally, the proposed
model uses reference tissue, for example NL parenchyma
and HC in studies of liver metastasis to increase overall
accuracy.

To demonstrate the effectiveness of data harmonization, we
analyzed the radiomics data set of 380 liver metastases
from BC, CC, and PC in addition to 551 volume-matched
samples of NL and 188 HC imaged on six different
scanners. Principal component analysis demonstrated
shrinkage of 95% confidence ellipses in the range from
20% to 40% after data harmonization, suggesting a re-
duction in variability associated with different scanners. In
comparative analysis of six unique ML models, we dem-
onstrated the improvement in classification of lesion type
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after data harmonization. The six models were selected to
show the internal validity of the data as the results con-
verged regardless of the model used. Data harmonization
improved sensitivity while maintaining high specificity
reflecting the overlapping similarity of liver metastasis.

Removal of scanner effects while preserving cancer-
specific functional dependence of radiomic features on
the tumor size is essential for the development of radiomics-
based therapy response assessment. Tumor shrinkage
is considered a surrogate endpoint of chemotherapy
efficacy.38,39 Development of radiomics-based models that
account for changes in tumor texture associated with the
tumor size could improve response assessment and po-
tentially allow for treatment personalization. This is a future
direction of this work. Our study supports some prior
findings showing the association between the tumor size
and radiomic features.28-30,32 However, we also found that
this association may have been underestimated in other
prior reports. For example, Ibrahim et al40 reported no
significant correlations between the tumor volume and the

majority of radiomic features. This conclusion may be
explained by the fact that the Pearson coefficient is a
measure of linear correlations, whereas many radiomic
features exhibit nonlinear relationships with the tumor
size.30,32

The Image Biomarker Standardization Initiative provides an
important standardization of radiomics workflow.18 It covers
image processing and feature computation steps. Incor-
poration of data harmonization is the next logical step that
should be a research focus of at least equal importance. It
requires development and independent validation of such
methods as well as reassessment of reproducibility and
validity of radiomic features after data harmonization step. It
is important to note that the harmonization models could
differ depending between imagingmodalities. In contrary to
CT and positron emission tomography, where the voxel
intensities correspond to underlying tissue properties
(radiodensity or metabolic activity defined by positron
emission tomography uptake), the magnetic resonance
imaging intensities do not have a specific physical meaning
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FIG 4. The overall accuracy and the kappa co-
efficient for six ML models obtained from non-
harmonized and harmonized data sets. GBM,
Gradient Boosting; ML, machine learning; RF,
Random Forest; SVM, Support Vector Machine;
WS-RF, Weighted Subspace Random Forest;
XGB, Extreme Gradient Boosting.
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and vary from patient to patient and between scanners. To
overcome this issue, magnetic resonance imaging intensity
normalization is required before radiomics analysis.41 A
rigorous examination and unbiased validation of all these
models and methods is required for developing common
recommendations and guidelines.

The study had several limitations. First, the sample size was
relatively small because of the strict requirements of un-
treated pathologically proven metastatic liver disease. This
study only considered liver metastases derived from breast,
colon, and pancreatic cancers, which can affect model
generalizations. Other types of liver tumors such as those
from lung cancer, ovarian cancer, skin cancers and pri-
mary hepatocellular carcinoma should be considered to
improve the model performance. In addition, the model
analysis should be further expanded to other types of
cancer, including primary tumors of different origin. Ad-
ditionally, we differentiated scanners by model. Future
studies should consider various image acquisition

parameters in addition to the scanner model. Furthermore,
only a single CT vendor was included in the analysis. All
imaging was performed on Siemens CT scanners because
of a widespread multisite presence and the strict inclusion
criteria that resulted in limited search outcome for other
vendors. A multicenter study including broader selection of
scanner vendors and models should be performed to
evaluate this limitation. The predictive ML model demon-
strated moderate discrimination power most likely because
of overlapping similarity of liver metastases and a small set
of radiomic features. Further investigation should be per-
formed to explore more comprehensive radiomics models
including the application of wavelet filters and other image
transform methods. All these limitations should be con-
sidered when interpreting our results.

In summary, a novel radiomics model was developed that
removed scanner-associated effects while preserving
cancer-specific functional dependence of radiomic fea-
tures on the tumor size.
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APPENDIX 1. IMAGE PROCESSING AND MACHINE LEARNING

Tumor Image Segmentation

Liver metastases generally occur in noncirrhotic liver and develop
varying degrees of hepatic arterial blood supply. Rim enhancement
appears in hypervascular and hypovascular metastases with a fre-
quency varying from cancer to cancer. RECIST 1.1 guidelines rec-
ommends the inclusion of the rim in tumor measurements. On the
other hand, hepatocellular carcinoma occurs most often in people with
chronic liver diseases. Hepatocellular carcinoma shows typical
hypervascular patterns, with clear-cut enhancement in the predomi-
nantly arterial phase and rapid washout in the portal venous phase.
Development of a multicancer model requires an approach that
considers properties of tumors from different cancers. In our study, a
range of 2-3 mm of perilesional rim was included in the volume of
interest of all lesions.

Radiomics of perilesional rim or cirrhotic liver is another important
topic of research that requires a separate study. The presence of
cirrhotic liver parenchyma surrounding the tumor requires a parallel
analysis of the tumor and tumor surrounding perilesional space. This
approach was successfully employed in lung cancer radiomics
studies.42 Therefore, it could be beneficial for radiomics analysis of liver
metastasis.

Image Processing and Radiomics Parameters

• Spatial resampling of images was set to a voxel size of
1 × 1 × 5 mm3.

• The absolute gray-level discretization was performed within the
volume of interest in the range of intensity values varying from –50
Hounsfield Unit (HU) to 300 HU using a fixed number of bins equal
to 64 and a fixed bin size equal to 10 HU.

• 3-dimensional radiomic features from the intensity-based statistics,
intensity histogram, discretized intensity statistics, discretized in-
tensity histogram, gray-level co-occurrence matrix, gray-level run
length matrix, neighborhood gray-level different matrix, and gray-
level zone size matrix classes were calculated.

Linear Mixed-Effects Model

To use a linear regression analysis, first, we examined the associations
between the radiomic features and the tumor volume by using five

fitting models: linear, logarithmic, inverse, power, and exponential.32

The coefficient of determination, R-squared, was used to evaluate
goodness of fit. The best fitting model for each feature was selected on
the basis of the highest R-squared and passing the normality test of
residuals. For each feature, a transformation corresponding to the best
fitting model was applied to perform a linear regression analysis. The
contribution of all fixed and random factors and interaction effects were
tested for significance.

Machine Learning Workflow

The radiomics data set was partitioned into a training set (80%) and a
test set (20%). Five-fold cross-validation repeated five times was used
to estimate the model performance. Comparison of the predicted and
actual lesion types was determined by creating a confusionmatrix. The
overall accuracy and the Cohen’s kappa statistic were averaged over
cross-validation iterations.

Data Harmonization and Data Protection

Many challenges in the field of data protection and privacy arise from
the rapid pace of technological developments. Collaborative data
sharing models have a great potential for the development of new
models. Openly available anonymized imaging data sets that include
segmentation masks and clinical and genetic data allow a quick testing
and comparison of results between different models. For example, the
National Cancer Institute supported The Cancer Imaging Archive
(TCIA) plays a big role in early research including testing and validation
of new models. On the other hand, Federated Learning approach
enables secured and privacy-preserving cross-institutional research. It
could be difficult to use it in early research settings. However, it is the
most optimal strategy for large multicenter studies and clinical trials.

Software

A robust linear mixed-effects model was used to minimize outlier
effects by using the robustlmm package from the open statistical
computing environment R version 4.0.3.43

Machine learning classifications models were developed using Caret
(version 6.0-79) R-package.44

A P value , .05 was considered statistically significant.
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TABLE A1. Radiomics Data Transformation Model and the R-Square
Change
Radiomic Feature Fitting Model R2

CONVENTIONAL_HU_min Linear 0.35

CONVENTIONAL_HU_mean Linear 0.32

CONVENTIONAL_HU_std Power 0.53

CONVENTIONAL_HU_max Linear 0.19

CONVENTIONAL_HU_Q1 Linear 0.22

CONVENTIONAL_HU_Q2 Linear 0.28

CONVENTIONAL_HU_Q3 Power 0.69

CONVENTIONAL_HU_
Skewness

Linear 0.50

CONVENTIONAL_HU_
Kurtosis

Power 0.81

CONVENTIONAL_HU_
ExcessKurtosis

Linear 0.78

DISCRETIZED_HU_min Power 0.44

DISCRETIZED_HU_mean Power 0.61

DISCRETIZED_HU_std Power 0.54

DISCRETIZED_HU_max Power 0.20

DISCRETIZED_HU_Q1 Power 0.45

DISCRETIZED_HU_Q2 Power 0.59

DISCRETIZED_HU_Q3 Power 0.69

DISCRETIZED_HU_
Skewness

Linear 0.49

DISCRETIZED_HU_Kurtosis Power 0.80

DISCRETIZED_HU_
ExcessKurtosis

Linear 0.76

DISCRETIZED_HISTO_
Skewness

Power 0.60

DISCRETIZED_HISTO_
Kurtosis

Power 0.59

DISCRETIZED_HISTO_
ExcessKurtosis

Linear 0.44

DISCRETIZED_HISTO_
Entropy

Power 0.59

DISCRETIZED_HISTO_
JointEntropy

Power 0.59

DISCRETIZED_HISTO_
Energy

Power 0.64

SHAPE_Volume (mL) Linear 1.00

SHAPE_Sphericity Power 0.56

SHAPE_Surface (mm2) Power 0.97

SHAPE_Compacity Power 0.98

GLCM_Homogeneity Power 0.59

GLCM_Energy Linear 0.55

GLCM_Contrast Inverse 0.55

GLCM_Correlation Power 0.12

GLCM_Entropy Inverse 0.46

GLCM_JointEntropy Inverse 0.46

(Continued in next column)

TABLE A1. Radiomics Data Transformation Model and the R-Square
Change (Continued)
Radiomic Feature Fitting Model R2

GLCM_Dissimilarity Power 0.52

GLRLM_SRE Power 0.74

GLRLM_LRE Power 0.71

GLRLM_LGRE Power 0.47

GLRLM_HGRE Power 0.55

GLRLM_SRLGE Power 0.44

GLRLM_SRHGE Power 0.61

GLRLM_LRLGE Power 0.67

GLRLM_LRHGE Power 0.27

GLRLM_GLNU Linear 0.99

GLRLM_RLNU Power 0.99

GLRLM_RP Power 0.77

NGLDM_Coarseness Inverse 0.98

NGLDM_Contrast Inverse 0.88

NGLDM_Busyness Linear 0.97

GLZLM_SZE Power 0.27

GLZLM_LZE Power 0.94

GLZLM_LGZE Power 0.41

GLZLM_HGZE Power 0.29

GLZLM_SZLGE Power 0.46

GLZLM_SZHGE Power 0.23

GLZLM_LZLGE Power 0.93

GLZLM_LZHGE Power 0.94

GLZLM_GLNU Power 0.99

GLZLM_ZLNU Power 0.95

GLZLM_ZP Power 0.83
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TABLE A2. The Confusion Matrix-Related Statistical Metrics
Statistical Metrics BC CC PC HC NL

Before harmonization

Sensitivity 0.52 0.54 0.53 0.97 0.99

Specificity 0.96 0.97 0.95 0.99 0.92

Positive predictive value 0.61 0.72 0.50 0.95 0.93

Negative predictive value 0.94 0.94 0.96 0.99 0.98

Prevalence 0.10 0.11 0.08 0.52 0.52

Detection rate 0.05 0.06 0.04 0.52 0.04

Detection prevalence 0.09 0.09 0.09 0.19 0.56

Balanced accuracy 0.74 0.76 0.74 0.98 0.96

After harmonization

Sensitivity 0.60 0.71 0.72 0.92 0.98

Specificity 0.97 0.97 0.95 0.99 0.98

Positive predictive value 0.64 0.73 0.57 0.99 0.98

Negative predictive value 0.97 0.96 0.97 0.98 0.98

Prevalence 0.07 0.12 0.09 0.19 0.53

Detection rate 0.04 0.08 0.06 0.17 0.52

Detection prevalence 0.07 0.11 0.11 0.17 0.53

Balanced accuracy 0.79 0.84 0.83 0.96 0.98

Abbreviations: BC, breast cancer; CC, colon cancer; HC, hepatic
cysts; NL, normal liver; PC, pancreatic cancer.
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Electronic database searches: Medline/PubMed

Records identified on January 30, 2022

Keyword groups
  Data harmonization
  Tumor radiomic(s)
  Tumor classification

(n = 6,354)
(n = 4,090)

(n = 102,430)

Records removed before screening:
   Duplicate records, irrelevant field, and
   unavailable full text

Keyword groups
  Data harmonization
  Tumor radiomic(s)
  Tumor classification

(n = 1,411)
(n = 1,105)

(n = 84,550)

Articles with titles, abstracts, and keywords

Keyword groups
  Data harmonization
  Tumor radiomic(s)
  Tumor classification

(n = 4,943)
(n = 2,985)

(n = 17,880)

(n = 2,726)
(n = 2,519)

Articles excluded

Data harmonization
   Not relevant to radiomics
   Not in cancer population
   Model duplicates

Tumor radiomic(s)
   Not in liver metastasis
   Not in colon or breast or
   pancreatic cancer population

Tumor classification
   Not relevant to radiomics
   Not in liver metastasis

(n = 4,908)
(n = 4,160)

(n = 75)

(n = 17,330)
(n = 16,777)

Articles included in literature review

Keyword groups
  Data harmonization
  Tumor radiomic(s)
  Tumor classification

Final literature list includes 42 articles

(n = 35)
(n = 47)
(n = 43)
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FIG A1. Flowchart outlining the protocol adopted in this systematic review on the basis of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses three-phase flow diagram. Search was conducted in three main
areas: data harmonization, tumor radiomics, and tumor classification.
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FIG A2. PCA and summary distribution in metastatic liver disease scatter plots of top two principal components of the
radiomic features across the two labels (clusters) using untransformed data or data transformed. BC, breast cancer;
CC, colon cancer; HC, hepatic cysts; NL, normal liver; PC, pancreatic cancer; PCA, principal component analysis.
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FIG A3. The confusion matrix of the Logit Boost model was obtained in the test set that had a total of 204 records, of which 14 were from BC, 23 from
CC, 35 fromHC, 109 fromNL, and 23 were from PC. BC, breast cancer; CC, colon cancer; HC, hepatic cysts; NL, normal liver; PC, pancreatic cancer.
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