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A B S T R A C T   

Background: Image-guided radiotherapy (IGRT) has gradually been widely promoted in clinical procedure. 
However, there has been no consensus on the effects of IGRT on toxicity and survival, and no clear level 1 
evidence has even been promulgated. 
Methods: Medline, EMBASE, PubMed, Cochrane databases and ClinicalTrials.gov were searched for studies 
comparing IGRT vs non-IGRT or higher frequency IGRT vs lower frequency IGRT during prostate radiotherapy, 
indexed from database inception to April 2022. 
Results: The review included 18 studies (3 randomized clinical trial and 15 cohort studies) involving 6521 men, 
with a median duration of patient follow-up of 46.2 months in the IGRT group vs 52.7 months in the control 
group. The meta-analysis demonstrated that IGRT significantly reduced acute GU (risk ratio [RR], 0.78; 95 % 
confidence interval [CI], 0.69–0.88; P < 0.001 [9 studies]) and GI toxicity (RR, 0.49; 95 % CI, 0.35–0.68; P <
0.001 [4 studies]) and late GI toxicity (HR, 0.25; 95 % CI, 0.07–0.87; P = 0.03 [3 studies]) compared with non- 
IGRT. Meanwhile, compared with prospective studies, retrospective studies showed that IGRT had a more sig-
nificant effect in reducing the late GI toxicity. Compared with non-daily IGRT, daily IGRT significantly improved 
3-year PRFS (HR, 0.45; 95 % CI, 0.28–0.72; P = 0.001 [2 studies]) and BFFS (HR, 0.57; 95 % CI, 0.39–0.83; P =
0.003 [3 studies]). Furthermore, high-frequency daily IGRT could lead to greater 3-year BFFS benefit in prostate 
cancer patients than weekly IGRT. However, no significant effects of IGRT on acute rectal toxicity, late GU 
toxicity, 5-year OS and SCM were found. 
Conclusions: For men receiving prostate radiotherapy, IGRT was associated with an improvement in biochemical 
tumor control and a reduction in GI and acute GU toxicity, but did not significantly improve 5-year OS or in-
crease 5-year SCM.   

Introduction 

The essence of radiotherapy is to kill tumor cells with radiation, 
which has been proved to be greatly effective in practice [1,2]. The goal 
of radiotherapy is to deliver high dose to the tumor while sparing 
adjacent normal healthy tissues. The geometric accuracy of dose 
deposited to the desired target is critical to ensure high quality of 
treatments [3,4]. Under this demand, image-guided radiotherapy 
(IGRT) was born in 1980 s, which can accurately locate and guide 
radiotherapy [5,6]. IGRT also potentially reduces the planning target 
volume (PTV) margins and increases the prescription dose, helping to 
decrease toxicity and improve survival, respectively [7–9]. Over several 
decades, IGRT has gradually been widely promoted in clinic with its 

theoretical advantages [10–13]. However, there has been no consensus 
on the effects of IGRT on toxicity and survival, and no clear level 1 ev-
idence has even been promulgated. 

Prostate cancer is the most frequent cancers in men, accounting for 
more than 1 in 5 new diagnoses [14]. Encouragingly, with advances in 
treatment, life expectancy for men with localized prostate cancer can be 
as high as 99 % over 10-years if diagnosed at an early stage [15]. 
Radiotherapy contributes significantly to the treatment of prostate 
cancer, and it can cure 60 % of men with localized prostate cancer, 
which might benefit from IGRT technology [16]. But what exactly is the 
role of IGRT in radiotherapy? It has been reported that the clinical target 
volume (CTV)-PTV margins of prostate cancer can be shrunk from 15 
mm to 7 mm with weekly IGRT and higher frequency daily IGRT may 
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further tighten the margins to 5 mm, reducing the PTV volume by 
approximately 20 mm3 [17–19]. A smaller radiotherapy volume pro-
vided an opportunity to escalate the prescription dose from 75.6 Gy to 
79.8 Gy, which mitigated the biochemical recurrence rate by 6 % in 
patients with electronic portal imaging device (EPID) and 14 % with 
cone beam computer tomography (CBCT)-guided radiotherapy [20]. 

Meanwhile, there are some negative reports about IGRT. Kok et al. 
[21] and Sveistrup et al. [22] pointed out that IGRT with increased 
prescription dose did not improve biochemical failure-free survival 
(BFFS). A recent French phase III multicenter randomized trial even 
reported significantly worse overall survival (OS) when daily IGRT was 
compared to weekly verification, possibly due to increased second 
cancer mortality (SCM) [23]. IGRT also imposes a greater financial 
burden on patients and increases treatment time, especially in radio-
therapy rooms with heavy workload [24]. More worryingly, the main-
stream IGRT can generate additional doses during radiotherapy, the 
clinical consequences of which may be deterioration of late onset 
toxicity or risk of a second cancer [25–27]. 

In the absence of definite conclusions about risks and benefits, IGRT 
is still being used more frequently in the field of radiotherapy [11,28]. 
Therefore, it is imperative to urgently find out the impact of IGRT on 
patient efficacy, toxicity and second cancer, including IGRT frequency, 
IGRT technology, PTV margins reduction and prescription dose increase 
brought by IGRT, and the cooperation with radiotherapy technology. 
This systematic review and meta-analysis is intended to address these 
questions and help in the decision-making process regarding the clinical 
application of IGRT. 

Methods 

We registered the protocol for this systematic review in the Inter-
national Prospective Register of Systematic Reviews (PROSPERO) public 
database (CRD42021254752). This systematic review and meta-analysis 
followed the recommendations in the Cochrane Handbook for System-
atic Reviews of Interventions [29] and reported findings according to 
the Preferred Reporting Items for Systematic Reviews and meta-analyses 
(PRISMA) reporting guideline [30]. 

Eligibility Criteria. 
We reviewed studies reporting on men with nonmetastatic prostate 

cancer treated with any commonly-utilized form of IGRT. We excluded 
review articles and commentaries, studies with surgery or brachyther-
apy, pre-post dosimetric studies, studies that failed to report a pre-
specified outcome of this review, and unpublished or gray literature 
study data. We included randomized controlled trials (RCTs) and cohort 
studies (CRSs). 

Literature Search. 
Medline, EMBASE, PubMed, Cochrane databases and ClinicalTrials. 

gov were searched for studies indexed from database inception to 
April 2022. We used both subject headings and text-word terms for 
“prostatic neoplasms”, “image-guided radiotherapy”, “toxicity”, “sur-
vival/mortality’’, “second cancer”, and related and exploded terms 
including medical subject headings terms in combination with keyword 
searching. A full search strategy is presented in the Supplementary 
Table 1. No limitations were placed with respect to publication language 
or publication year. 

Table 1 
Studies Characteristics.  

Author (year) Patient characteristics Follow-up 
(median) 

Study Outcome 
Inclusion criteria Radiotherapy Country Size Type Intervention Comparator Survival GI GU 

Becker-Schiebe 
2016 [49] 

Localized (T1-T4) 3D-CRT/ 
IMRT 

Germany 55.4mo 198 RCS Daily IG-S Non-IG X ✓ ✓ 

Chung 2009  
[50] 

High-risk (T1c-T3) IMRT Singapore and 
USA 

<1yr 25 RCS Daily IG-R Non-IG X Rectal X 

de Crevoisier 
2018 [23] 

Localized 3D-CRT/ 
IMRT 

France 4.1 yr 470 RCT Daily IG-S Weekly IG-S BFFS, OS, 
SCM 

X X 

Ghanem 2021  
[45] 

Intermediate and 
high-risk localized 

IMRT/Arc Egypt IG: 3.7 yr 
Non: 11.2 yr 

257 PCS Daily IG-S Non-IG X ✓ ✓ 

Gill 2011 [46] T1-T4 CRT/IMRT Australia 4 yr 275 PCS Daily IG-S Non-IG X ✓ ✓ 
Jereczek-fossa 

2018 [47] 
localized T1-T3 3D-CRT Italy 85mo 353 PCS Daily IG-S Non-IG OS X ✓ 

Kok 2013 [21] Localized (T1-T3) 3D-CRT/ 
IMRT 

Australia 22mo 554 RCS Daily IG-S Non-IG BFFS ✓ ✓ 

Kuo 2021 [51] Localized (T1-T4) 3D-CRT/ 
IMRT 

China 50mo 836 RCS Daily IG Non-IG OS, SCM X X 

Murray 2020  
[44] 

Localized (pT1b- 
T3aN0M0) 

IMRT UK 56.9mo 293 RCT Daily IG-R Daily IG-S, 
Non-IG 

X X ✓ 

Singh 2013 [18] localized prostate 
(T1-T3N0M0) 

3D-CRT Australia 17 mo 266 RCS Daily IG-R Non-IG X X ✓ 

Stuk 2021 [52] localized IMRT Czech IG: 31.7mo 
Non: 60mo 

469 RCS Daily IG-R Non-IG X ✓ ✓ 

Sveistrup 2014  
[22] 

high-risk 3D-CRT/ 
IMRT/arc 

Denmark IG: 3.5 yr 
Non: 8.2 yr 

503 RCS Daily IG-R Non-IG BFFS ✓ ✓ 

Tøndel 2018  
[19] 

intermediate or high 
risk non-metastatic 

3D-CRT Norway greater 
than5yr 

257 RCT Daily IG-R Weekly IG-S X ✓ ✓ 

Valeriani 2013  
[53] 

Intermediate-risk 
(T2b-T2c) 

3D-CRT Italy 31mo 105 RCS Daily IG-R Non-IG X Rectal ✓ 

Wortel 2015 and 
2016 [43,48] 

localized 3D-CRT/ 
IMRT 

Netherlands IG: 57mo 
Non: 62mo 

431 PCS Daily IG-R Non-IG X ✓ ✓ 

Zapatero 2017  
[54] 

Localized (T1c- 
T4N0M0) 

3D-CRT/ 
IMRT 

Spain 75mo 733 RCS IG-S Non-IG X X ✓ 

Zelefsky 2012  
[55] 

Localized (T1-T3) IMRT USA 2.8 yr 376 RCS Daily IG-S Non-IG PRFS Rectal ✓ 

Zhong 2014  
[56] 

Localized (T1-T3) IMRT China 4.8 yr 127 RCS 1–2 times 
weekly IG-S 

Non-IG PRFS Rectal ✓ 

Abbreviations: 3D-CRT = three-dimensional conformal radiotherapy; IMRT = intensity-modulated radiation therapy; Arc = volumetric modulated arc therapy; RCS =
retrospective cohort study; RCT = randomized controlled trial; PCS = prospective cohort study; IG-S = image-guided radiotherapy with standard CTV-PTV margins; 
IG-R = image-guided radiotherapy with reduced CTV-PTV margins; BFFS = biochemical failure-free survival; OS = overall survival; SCM = second cancer mortality; 
PRFS = prostate specific antigen relapse free survival; GI = gastrointestinal; GU = genitourinary; NR = not reported. 
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Study Selection and Data Extraction. 
Two experienced systematic reviewers (S.L.W. and W.T.) indepen-

dently screened records for eligibility. After the exclusion of irrelevant 
records, we obtained the full texts of remaining articles and reviewed 
them for eligibility. Discrepancies between the reviewers were resolved 
by discussion. When multiple articles included overlapping series of 
patients, we preferentially extracted outcome data from the primary 
article with the largest sample size for early outcomes and from the 
article with the longest follow-up duration for late outcomes. 

Risk of Bias. 
A risk of bias assessment was conducted using the Cochrane Risk of 

Bias Tool for RCTs, and the Newcastle-Ottawa Scale for prospective 
cohort studies (PCSs) and retrospective cohort studies (RCSs). In the 
Cochrane Risk of Bias Tool, each domain can score low risk if there is no 
indication for risk of bias, some concerns if there is potential for risk of 
bias, or high risk if there is clear indication for risk of bias [31]. Simi-
larly, the Newcastle-Ottawa Scale assesses risk of bias in three domains: 
[32] (1) selection of the study groups; (2) comparability of groups; and 
(3) ascertainment of exposure and outcome. We investigated the po-
tential for publication bias by visually inspecting funnel plots for 
asymmetry and with the Egger regression test [33,34]. 

Statistical analysis 

The results of late gastrointestinal (GI) toxicity, BFFS, prostate spe-
cific antigen relapse-free survival (PRFS), OS and SCM were reported as 
hazard ratios (HRs) with 95 % confidence interval (CIs), and the most 
fully adjusted HR were extracted. The results of acute GI toxicity, 
genitourinary (GU) toxicity and rectal toxicity were recorded as risk 
ratios (RRs) with 95 % CIs. The following effect modifiers on the end 
points were tested using subgroup analysis: imaging technology, IGRT 
frequency, PTV margins, radiotherapy volume, radiotherapy dose, 
radiotherapy technology and the type of included studies. 

Heterogeneity was assessed using the χ2 test and the I2 statistic. 
Significant heterogeneity was indicated by P < 0.05 in Cochrane Q tests 
or a ratio greater than 40 % in I2 statistics, which led to the use of 
random-effects models according to the DerSimonian and Laird method 
[35,36]. Otherwise, these tests were negative for heterogeneity, and 
fixed-effects models were chosen. We performed a 1-study-removed 
sensitivity analysis, in which the meta-analysis for each outcome was 
recalculated after removing 1 study at a time to determine the associa-
tion of individual studies with meta-analysis results. Statistical analyses 
were performed using the Cochrane Review Manager, version 5.3. A 
confidence level of 95 % (P < 0.05) was considered statistically 
significant. 

Results 

Systematic review results and study identification 

A total of 10,064 publications and 218 registered clinical studies 
were identified from the literature search. After screening titles and 
abstracts for eligibility, 224 full-text articles were reviewed. After 
further exclusion, 26 articles were eligible for inclusion, but 6 of them 
were excluded due to the inappropriate form of outcomes [17,37–41] 
and 2 were excluded because of the same cohort of patients [42,43]. 
Ultimately, 18 studies that met the eligibility criteria were finally 
selected, including 3 RCTs, [19,23,44] 4 PCSs [45–48] and 11 RCSs 
[18,21,22,49–56]. A PRISMA flow diagram depicting the study identi-
fication and selection is shown in Fig. 1. 

Patient and trial characteristics 

A total of 6521 participants were enrolled, 3104 men were in the 
IGRT group and 3107 men were in the control group. The median 
duration of treatment in the IGRT group was 46.2 months vs 52.7 

months in the control group. Trial characteristics including radiotherapy 
technology, IGRT frequency, IGRT technology, PTV margins, radio-
therapy volume, radiation dose, study type and adjuvant therapy are 
presented in Table 1 and Table 2. 

Genitourinary (GU) toxicity 

The forest plot depicted that IGRT significantly decreased grade 2 or 
worse (G2+ ) acute GU toxicity (risk ratio [RR], 0.78; 95 % confidence 
interval [CI], 0.69–0.88; P < 0.001 [9 studies]; Fig. 2A) compared with 
non-IGRT. However, there was no difference between IGRT and non- 
IGRT in the risk of G2+ late GU toxicity (RR, 0.89; 95 % CI, 
0.60–1.34; P = 0.59 [9 studies]; Fig. 2B). 

Gastrointestinal (GI) toxicity and acute rectal toxicity 

Patients who received IGRT had lower G2+ acute GI (RR, 0.49; 95 % 
CI, 0.35–0.68; P < 0.001 [4 studies]; Fig. 2C) and late GI toxicity (HR, 
0.25; 95 % CI, 0.07–0.87; P = 0.03 [3 studies]; Fig. 2D) than those who 
did not. Four studies reported the G2+ acute rectal toxicity, and the 
incidence of G2+ acute rectal toxicity was low overall. According to the 
forest plot (Fig. 2E), IGRT did not significantly decrease the acute rectal 
toxicity (RR, 0.70; 95 % CI, 0.21–2.32; P = 0.56 [4 studies]). 

Subgroup analysis of the effects of IGRT on toxicity 

The heterogeneity of acute and late GU toxicity was I2 = 30 % and I2 

= 79 %. Subgroup analyses were performed for possible heterogeneity 
factors. The results demonstrated that IGRT technology, PTV margins 
and radiotherapy technology might lead to different outcomes of acute 
GU toxicity, but the differences were not significant. However, dose- 
escalation could have a significant adverse effect on the reduction of 
acute GU toxicity (P = 0.02; I2 = 83 %). And two-dimensional (2D) 
imaging + fiducial markers (FMs) might be more beneficial for late GU 
than other types of IGRT although it was also not significant (Table 3). 
On the other hand, there were no heterogeneity factors significantly 
associated with acute GI toxicity (Supplementary Table 2). For coop-
eration of IGRT and radiotherapy technology, IGRT combined with 
intensity-modulated radiation therapy (IMRT) might be more effective 
than three-dimensional conformal radiotherapy (3D-CRT) in preventing 
the occurrence of acute rectal toxicity (P = 0.05; I2 = 74.6 %; 

Fig. 1. Flow Chart of Publication Search and Selection.  
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Supplementary Table 3). 

3-year Prostate Specific Antigen Relapse Free Survival (PRFS) and 
Biochemical Failure-free Survival (BFFS) 

The forest plots (Fig. 3A) showed that IGRT significantly improved 3- 
year PRFS (hazard ratio [HR], 0.45; 95 % CI, 0.28–0.72; P = 0.001 [2 

studies]). Moreover, daily IGRT compared with non-daily IGRT (weekly 
or non-IGRT) also significantly increased 3-year BFFS in prostate cancer 
patients (HR, 0.57; 95 % CI, 0.39–0.83; P = 0.003 [3 studies]; Fig. 3B). 

5-year overall survival (OS) and second cancer mortality (SCM) 

Daily IGRT had no significant effect on neither 5-year OS nor SCM 

Table 2 
Potential Heterogeneity Factors of Studies.  

Author 
(year) 

CTV-to-PTV margins Radiation 
range 

Radiation Dose (Gy) IGRT 
technology 

Adjuvant 
Intervention Comparator Intervention Comparator 

Becker- 
Schiebe 
2016 [49] 

10 mm circumferentially, except 
for 6 mm posteriorly; For boost 
contouring, 5 mm in all directions 

Same margins PORT or 
WPRT 
according to 
the risk 

Prostate: 77.4 (1.8 
per fraction) 
Pelvic: 50.4 (1.8 
per fraction) 

Prostate: 72 or 
73.8 (1.8 per 
fraction) 
Pelvic: 50.4 
(1.8 per 
fraction) 

FMs + KV/MV 
or CBCT 

ADT 

Chung 2009 
[50] 

2–3 mm circumferentially 10 mm circumferentially, except 
for 5 mm posteriorly 

WPRT Prostate: 73.8 (1.8 
per fraction) 
Pelvic: 48.6 (1.8 
per fraction) 

Same dose FMs + OI NR 

de 
Crevoisier 
2018 [23] 

10 mm circumferentially, except 
for 5 mm posteriorly 

Same margins PORT 70–80 (2 per 
fraction) 

Same dose FMs + EPID/ 
KV, CBCT or 
Ultrasounds 

ADT 

Ghanem 
2021 [45] 

10 mm circumferentially, except 
for 5 mm posteriorly 

Same margins PORT or 
WPRT 
according to 
the risk 

79.2 (1.8–2 per 
fraction) for 
prostate 

74 (1.8–2 per 
fraction) for 
prostate 

CBCT ADT 

Gill 2011  
[46] 

10 mm circumferentially, except 
for 7 mm posteriorly 

Same margins PORT 78 (2 per fraction) 74 (2 per 
fraction) 

FMs + OI ADT 

Jereczek- 
fossa 
2018 [47] 

7 mm and 3 mm, for all but 
posterior margins 

10 and 5 mm, for all but 
posterior margins 

PORT 70.2 (2.7 per 
fraction) 

80 (2 per 
fraction) 

BAT, 
ExacTrac® or 
CBCT 

ADT 

Kok 2013  
[21] 

10 mm circumferentially, except 
for 7 mm posteriorly 

Same margins PORT 78 (2 per fraction) 74 (2 per 
fraction) 

FMs + KV OI ADT 

Kuo 2021  
[51] 

NR NR NR 72–81 (1.8–2 per 
fraction) 

Same dose NR ADT 

Murray 
2020 [44] 

In the IGRT and IGRT-S arms, 
standard CTV to PTV posterior 
margins of 6 mm/3 mm/0 mm 
were used. In the IGRT-R arm, 
posterior margins were 10 mm/5 
mm/0 mm 

Posterior margins were 10 mm/ 
5 mm/0 mm 

PORT Conventional: 74 
(2 per fraction) 
hypo-fractionated: 
60 (3 per fraction) 
or 57 (3per 
fraction) 

Same dose FMs or MVCT NR 

Singh 2013  
[18] 

7–12 mm circumferentially, except 
for 5–7 mm posteriorly; For boost 
contouring, 6–10 mm 
circumferentially, except for 5–7 
mm posteriorly 

10–15 mm circumferentially, 
except for 7–10 mm posteriorly; 
For boost contouring, 10 mm 
circumferentially, except for 
7–10 mm posteriorly 

PORT 70–76 (2 per 
fraction) 

Same dose FMs + MRI ADT 

Stuk 2021  
[52] 

6–8 mm 10 mm isotropic margins PORT 70–74 (2 per 
fraction) 

Same dose CBCT or KV-KV ADT 

Sveistrup 
2014 [22] 

5 mm in the right-left and anterior- 
posterior planes and 7 mm in the 
superior-inferior plane 

Fourth and fifth fractions were 
delivered with a margin to the 
PTV of 1 cm and the remaining 
33 fractions with a margin of 2 
cm 

PORT 78 (2 per fraction) 76 (2 per 
fraction) 

FMs + KV OI 
(ExacTrac®) 

ADT 

Tøndel 2018 
[19] 

7 mm in all direction; for boost 
contouring, 3 mm in all direction 

15 mm in all direction; for boost 
contouring, 3 mm in all 
direction 

PORT 78 (2 per fraction) Same dose FMs + 2D MV 
OI or FMs + KV 
CBCT 

ADT 

Valeriani 
2013 [53] 

5 mm expansion in all direction 8 mm circumferentially, except 
for 6 mm posteriorly 

PORT 54.75 (3.65 per 
fraction) 

Same dose KV CBCT ADT 

Wortel 2016 
[48] 

5–8 mm; for boost contouring, 3–5 
mm 

10 mm; for boost contouring, 5 
mm 

PORT 78 (2 per fraction) Same dose FMs + CBCT ADT 

Zapatero 
2017 [54] 

1 cm circumferentially and 7 mm at 
the prostate-rectal 
interface 

Same margins PORT 76–80 (2 per 
fraction) 

Same dose FMs ADT 

Zelefsky 
2012 [55] 

1 cm circumferentially and 6 mm at 
the prostate-rectal 
interface 

Same margins PORT 86.4 (1.8 per 
fraction) 

Same dose FMs + KV OI ADT 

Zhong 2014 
[56] 

8–10 cm circumferentially and 6 
mm at the prostate-rectal interface; 
for boost contouring, 3–4 mm 
circumferentially 

Same margins PORT or 
WPRT 
according to 
the risk 

76–80 (2 per 
fraction) for 
prostate 

Same dose CBCT ADT 

Abbreviations: CTV = clinical target volume; PTV = planning target volume; WPRT = whole-pelvic radiotherapy; PORT = prostate-only radiotherapy; IGRT = image- 
guided radiotherapy; FMs = fiducial markers; KV = kilovoltage; MV = megavoltage; CBCT = cone beam computer tomography; OI = orthogonal imaging; EPID =
electronic portal imaging device; MRI = magnetic resonance imaging; ADT = androgen deprivation therapy; NR = not reported. 
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(Fig. 3C and Fig. 3D). However, the heterogeneity of both analyses was 
large, with I2 = 71 % and I2 = 73 %, respectively. Among them, de 
Crevoisier et al. [23] showed that daily IGRT significantly reduced the 5- 
year OS of patients and potentially increased the SCM. However, Kuo 
et al. [51] believed that daily IGRT had no effect on 5-year OS and SCM. 

Subgroup analysis of the effects of IGRT on survival 

Further subgroup analysis revealed that compared with non-IGRT, 
daily IGRT resulted in a significant improvement in 3-year PRFS (HR, 
0.33; 95 % CI, 0.11–0.99; P = 0.03), whereas weekly IGRT did not 
(Supplementary Table 4). And daily IGRT also significantly improved 
3-year BFFS compared with weekly IGRT (HR, 0.45; 95 % CI, 0.25–0.80; 
P = 0.007; Supplementary Table 4). However, among the included 

Fig. 2. Forest Plots of the meta-analytic Estimate for Acute Genitourinary (GU), Late GU, Acute Gastrointestinal (GI), Late GI and Acute Rectal Toxicity With vs 
Without IGRT. 

Table 3 
Subgroup Analysis of Potential Heterogeneity Factors for Acute and Late GU Toxicity.  

Heterogeneity factors Acute GU toxicity Late GU toxicity 
No. Studies Hazard ratio (95 % CI, P value) P Value for 

Interaction 
I2 No. Studies Hazard ratio (95 % CI, P value) P Value for 

Interaction 
I2 

Imaging technology         
2D imaging + FMs 2 0.81 (0.62–1.05; P = 0.11) P = 0.28 22.1 % 1 0.71 (0.54–0.93; P ¼ 0.01) P = 0.28 22.4 % 
3D imaging 4 0.84 (0.70–1.01; P = 0.07)   4 0.82 (0.47–1.42; P = 0.47)   
Mixed use 2 0.65 (0.51–0.84; P < 0.001)   3 1.46 (0.62–3.44; P = 0.38)   
Reduced margins in IGRT         
Yes 6 0.87 (0.73–1.03; P = 0.10) P = 0.07 69.9 % 4 0.85 (0.59–1.21; P = 0.36) P = 0.59 0 % 
No 3 0.69 (0.58–0.82; P < 0.001)   4 0.69 (0.35–1.35; P = 0.28)   
Radiotherapy volume         
PORT 6 0.74 (0.65–0.85; P < 0.001) P = 0.12 59.5 % 6 0.90 (0.55–1.48; P = 0.68) P = 0.95 0 % 
WPRT for high risk 3 0.96 (0.72–1.28; P = 0.77)   3 0.87 (0.34–2.26; P = 0.78)   
Dose escalation in IGRT         
Yes 3 1.01 (0.80–1.27; P = 0.96) P ¼ 0.02 83 % 3 0.81 (0.49–1.34; P = 0.42) P = 0.69 0 % 
No 6 0.72 (0.62–0.83; P < 0.001)   5 0.69 (0.37–1.28; P = 0.24)   
Radiotherapy technology         
3D-CRT 1 0.91 (0.29–2.91; P = 0.88) P = 0.17 44.2 % 1 1.04 (0.10–11.12; P = 0.97) P = 0.90 0 % 
IMRT or Arc 4 0.67 (0.54–0.83; P < 0.001)   4 0.90 (0.33–2.41; P = 0.83)   
Mixed use 4 0.86 (0.74–1.00; P ¼ 0.04)   3 0.73 (0.45, 1.19; P = 0.20)   

Abbreviations: GU = genitourinary; FMs = fiducial markers; IGRT = image-guided radiotherapy; WPRT = whole-pelvic radiotherapy; PORT = prostate-only radio-
therapy; 3D-CRT = three-dimensional conformal radiotherapy; IMRT = intensity-modulated radiation therapy; Arc = volumetric modulated arc therapy. 

Fig. 3. Forest Plots of the meta-analytic Estimate for Prostate Specific Antigen Relapse Free Survival (PRFS), Biochemical Failure-free Survival (BFFS), Overall 
Survival (OS) and Second Cancer Mortality (SCM). 
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studies, only one study [23] compared the effects of daily IGRT and 
weekly IGRT on survival of patients with prostate cancer. On the other 
hand, reduced PTV margins might have an unfavorable effect on BFFS. 
IGRT significantly improved BFFS over non-IGRT when PTV margins 
were the same (HR, 0.51; 95 % CI, 0.32–0.79; P = 0.003). However, 
when PTV margins in IGRT group reduced, IGRT did not significantly 
increase BFFS (HR, 0.78; 95 % CI, 0.38–1.62; P = 0.50; Supplementary 
Table 4). 

Subgroup analysis of the type of included studies 

To explore the influence of different studies types on the results, 
subgroup analyses were conducted according to three subgroups: RCT, 
PCS and RCS. The results exhibited that there was no significant dif-
ference in acute and late GU toxicity, acute GI toxicity and BFFS due to 
different studies types. However, for late GI toxicity, although PCS and 
RCS both showed that IGRT had better protection effect than non-IGRT, 
RCS believed that the effect was more significant (P = 0.03; I2 = 78.9 %; 
Fig. 4). The conclusions of RCT and RCS on OS and SCM were different, 
but there were too few studies included for statistical analysis. The re-
sults were presented directly in Supplementary Table 4. 

Quality Assessment, sensitivity analyses and publication bias 

The risk of bias in the included trials was rated as low to moderate 
(Supplementary Fig. 1 and Supplementary Table 5 in the Supple-
ment). meta-analysis conclusions were largely unchanged in a 1-study- 
removed sensitivity analysis in which the meta-analysis was recalcu-
lated after removing 1 study at a time (Supplementary Table 6). Funnel 
plot asymmetry was not evident for any outcome (Supplementary 
Fig. 2), and the results of the Egger regression test did not indicate 
publication bias (Supplementary Table 7). 

Discussion 

This meta-analysis examined the effects of the presence or absence of 
IGRT, IGRT frequency, IGRT technology, PTV margins, prescription dose 
escalation, and the combination with different radiotherapy technology 
on the survival, toxicity and second cancer of patients with prostate 
cancer. The meta-analysis demonstrated that IGRT significantly reduced 
acute GU and GI toxicity and late GI toxicity compared with non-IGRT. 
Moreover, compared with non-daily IGRT, daily IGRT significantly 
improved 3-year PRFS and BFFS. However, no significant effects of IGRT 
on late GU toxicity, 5-year OS and SCM were found. Further analysis 
showed that 2D imaging + FMs might be more beneficial for late GU 
than other types of IGRT, and that high-frequency daily IGRT could lead 
to greater 3-year BFFS benefit in prostate cancer patients than weekly 
IGRT. In addition, IGRT with reduced PTV margins could significantly 
reduce the acute GU toxicity. However, increasing the prescription dose 
would balance out the decrease in acute GU toxicity. For cooperation of 
IGRT and radiotherapy technology, IGRT combined with IMRT might be 
more effective than 3D-CRT in protecting acute GU and rectal toxicity. 

One of the most potential benefits of IGRT is to reduce PTV margins 
and increased prescription dose, due to lower setup errors and higher 
accuracy [39,41]. With mainstream IGRT, including CBCT or 2D + FMs 
imaging, PTV margins in the range of 6–8 mm (3–5 mm posteriorly) 
were the most commonly reported, much tighter than 10–15 mm mar-
gins in non-IGRT [57]. Our meta-analysis showed that compared to the 
same PTV margins, IGRT with reduced margins could significantly 
reduce the acute GU toxicity. A reduction in the PTV margins could 
facilitate further increases in prescription doses [58]. Raziee et al. [20] 
suggested continuous improvement in biochemical control rates with 
progressive dose-escalation (DE) when high-precision daily IGRT was 
used. However, it should be reminded in our meta-analysis that DE could 
have adverse effects on the reduction of acute GU toxicity produced by 
IGRT, although it did not alter the reduction in acute GI toxicity. 

At present, most researchers have agreed that IGRT is conducive to 

Fig. 4. Subgroup Analysis of the Type of Included Studies. RCTs, randomized controlled trials; PCSs, prospective cohort studies; RCSs, retrospective cohort studies.  
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reduce acute toxicities [43,49,50,52,55]. Our meta-analysis concluded 
that IGRT significantly decreased acute GU and GI toxicity compared 
with non-IGRT. However, the reduction of the PTV margins did not 
further alleviate acute GI and rectal toxicity. We regarded that this was 
likely because most non-IGRT patients were also reduced posterior 
margins to protect the rectum [43,53]. It was worth mentioning that in 
our meta-analysis, IGRT combined with IMRT might be more effective 
than 3D-CRT in reducing acute GU and rectal toxicity, probably 
benefiting from better bladder and rectal protection with IMRT than 
with 3D-CRT [59]. Our previous study concluded that the choice of 
whole pelvic radiotherapy (WPRT) or prostate-only radiotherapy 
(PORT) significantly affected the toxicity of localized prostate cancer 
[60]. This meta-analysis further analyzed the impact of radiotherapy 
region selection on IGRT efficacy. The results suggested that selective 
WPRT could attenuate the reduction in acute GU toxicity brought about 
by IGRT. It was possible that the prostatic urethra and part of the 
bladder neck lay within the PTV due to the large area irradiation, despite 
the use of more advanced techniques [43]. 

Late toxicity, especially GU toxicity, is highly controversial in cur-
rent studies [22,47,48,54]. This meta-analysis showed that IGRT 
reduced late GI toxicity but had no effect on late GU toxicity. However, 
there was considerable heterogeneity in both late outcomes, with I2 =

79 % and I2 = 94 %. No further subgroup analysis was performed due to 
the few published studies of late GI toxicity. Conversely, we did an 
exhaustive heterogeneity analysis for late GU toxicity, including IGRT 
technology, PTV margins, radiotherapy volume, radiotherapy dose and 
radiotherapy technology. Regrettably, no study-level factor was signif-
icantly associated with late GU toxicity. Nevertheless, 2D imaging +
FMs might be more beneficial for late GU although it was not significant. 
2D imaging systems need to be combined with the implantation of FMs 
to achieve clinically recognized guidance. However, most 3D imaging 
did not use FMs for alignment. Barney et al. [61] pointed out that 
although kV portal images using fiducials and CBCT were similar for 
defining interfraction prostate shifts, 2D imaging + FMs had obvious 
advantages in alignment. They believed the difficult interpretation and 
alignment of CBCT required a physician to be at the machine prior to 
each treatment to perform the match. Finally, by using fiducials for 
prostate IGRT, they avoided the uncertainty associated with CBCT soft- 
tissue definition, thus providing their patients with what they believed 
to be a more reliable, reproducible treatment. Their institution had 
opted to continue to use fiducials with kV imaging for daily prostate 
IGRT. However, the clinical effect still needs further confirmation. The 
acquisition of late toxicity data requires a longer follow-up, and there is 
a certain risk of loss to follow-up and information distortion, which 
makes it difficult to obtain compelling late toxicity results. Fully 
convincing results of late toxicity demand more rigorous studies with 
longer follow-up times to be published. 

There are few studies on the impact of IGRT on survival, and the 
follow-up time is short. And among the included studies, there was only 
one study [23] involving the comparison of the effects of daily IGRT and 
weekly IGRT on the survival, which made it impossible to conduct a 
comprehensive and quantitative analysis on the survival impact of daily 
IGRT compared with weekly IGRT. Nevertheless, through this meta- 
analysis, it could be concluded that daily IGRT significantly improved 3- 
year PRFS and BFFS, with very low heterogeneity (I2 = 0). The result of 
the BFFS differed slightly from our previous presentation at the ASTRO 
conference due to an update of the included literature. On the other 
hand, the 5-year OS showed large heterogeneity, I2 = 71 %. Kuo et al. 
disputed a recent French phase III multicenter randomized trial. They 
argued that IGRT did not have a significant effect on OS, rather than 
high-frequency IGRT that resulted in a noteworthy reduction in OS, 
according to a recent RCS [51]. The significantly worse 5-year OS in the 
multicenter randomized trial might be due to the increased SCM with 
IGRT [23]. However, its incidence of second cancer had been ques-
tioned, as 5 years of follow-up was insufficient to observe such a clear 
result. The final judgement for OS must require studies with longer 

follow-up. 
Another considerable controversy surrounding IGRT is whether the 

additional doses produced by the current mainstream IGRT lead to an 
increase in SCM [26,27,62]. The 5-year SCM was also highly heteroge-
neous in this meta-analysis of published studies (I2 = 73 %). In addition, 
it is argued that time (lag period) must elapse between the date of 
exposure to radiation and the development of a secondary cancer for 
that tumor to be considered induced by radiation [63]. Historically, this 
has been defined as five years, [64,65] and more than 5 years of follow- 
up is required to obtain reliable SCM results. Theoretically, the use of 
daily standard CBCT for a 35-fraction treatment could result in up to 1.5 
to 2 Gy to some critical organs and an effective dose of 600 to 800 mSv to 
the body, which might induce an additional SCM of 3 % to 4 % [66]. The 
average dose per image for kilovoltage (KV) or megavoltage (MV) 2D 
planar was just 1–3 mGy [11]. However, KV and MV 2D imaging systems 
need to be combined with the implantation of FMs to achieve clinically 
recognized guidance, which is invasive to patients [67]. CBCT currently 
accounts for the majority of IGRT, and this proportion is increasing 
[10,12,13]. The publication of studies with longer follow-up is urgently 
needed to determine whether additional higher doses brought about by 
CBCT lead to increased SCM. 

Limitations 

This study has several limitations. First, the quality of included 
studies varied at a certain extent, but the results remained robust in the 
sensitivity analyses. Second, it should be emphasized that the compar-
ison of IGRT frequency was based on only two publications. One of them 
was related to the toxicity of radiotherapy [19] and the other to BFFS 
and OS [23]. Therefore, the impact of IGRT frequency on survival and 
toxicity could not be comprehensively and quantitatively analyzed. 
Third, although no obvious bias was found by funnel plot and Egger 
regression test, the majority of included studies were retrospective 
studies that were prone to inherent bias that could not be detected. 
Fourth, most of the included studies involved the application of 3D-CRT. 
However, it was more widely recommended to use more advanced 
radiotherapy methods such as IMRT or VMAT to treat prostate cancer, so 
as to reduce the radiation dose of organs at risk. Unfortunately, 3D-CRT 
was also applied in two studies comparing IGRT frequency, so the results 
of daily IGRT compared with weekly IGRT on survival and toxicity 
should be viewed critically. Fifth, 5-year follow-up analysis may be 
underpowered for some survival indicators. More high-quality research 
publications with longer follow-up are needed for the next longer 
follow-up level 1 evidence summary. 

Conclusions 

In this meta-analysis of patients with prostate cancer, IGRT was 
significantly associated with a reduction in GI and acute GU toxicity and 
an improvement in biochemical tumor control, but there was no sig-
nificant effect on 5-year OS and SCM. Furthermore, high-frequency daily 
IGRT could lead to greater 3-year BFFS benefit in prostate cancer pa-
tients than weekly IGRT, and 2D imaging + FMs might be more bene-
ficial for late GU than other types of IGRT. In addition, IGRT with 
reduced PTV margins could significantly mitigate the acute GU toxicity. 
However, increasing the prescription dose would balance out the 
reduction of acute GU toxicity. For cooperation of IGRT and radio-
therapy technology, IGRT combined with IMRT might be more effective 
than 3D-CRT in protecting acute GU and rectal toxicity. Meanwhile, 
compared with prospective studies, retrospective studies showed that 
IGRT had a more significant effect in reducing the late GI toxicity. In this 
meta-analysis, the majority of the analyzed publications are retrospec-
tive studies, and more high-quality randomized controlled trials are 
urgently needed to further verify the role of IGRT in prostate cancer. 
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