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Abstract
In this study, the anthropogenic contamination in Trasimeno lake (Central Italy) was investigated using three sediment 
cores spanning over the last 150 years (Anthropocene) to identify the primary sources of pollution and quantify the 
level of contaminant enrichment in the basin. First, based on the relative cumulative frequency and linear regression 
methods, we obtained a geochemical baseline for the lake using the deeper parts of the sediment cores. The geochemi-
cal baseline allowed us to determine the values of trace elements enrichment factors. On this knowledge, as a second 
result, we were able to reconstruct the natural sources and the anthropogenic impact on the lake with a biennial reso-
lution. This goal has been obtained by combining different inorganic and organic chemical proxies such as trace ele-
ments, polycyclic aromatic hydrocarbons, and lead isotope ratios and exploiting both principal component and factor 
analysis to associate chemical proxies to human-driven contamination processes. Five different groups of elements 
have been identified, one of which is of natural origin and four of anthropogenic origin. In particular, it was possible to 
identify the times and impacts of the industrial activities during the Second World War, which dispersed heavy metals 
in sediments. Moreover, we found evidence of the recent human activities that have characterized the surroundings 
of the basin, such as Pb inputs related to the use of gasoline and the enrichment of certain elements generally used in 
agricultural activities (such as P, Cu, and Mn) due to the development of this sector in the last 40 years.
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Introduction

Freshwater ecosystems such as lakes and rivers are 
critical to understanding the effects of the environ-
mental change driven by human activities, which have 
been particularly relevant in the Anthropocene (Dubois 
et al. 2018). To assess the impact of human activities, 
an undisturbed reference, such as pristine natural back-
ground sediments, is necessary to reflect the situation 
of the individual lake on a local or regional scale. A 
background concentration is defined as the concentra-
tion of trace elements before industrialization, so its level 
should reflect natural processes uninfluenced by human 
activities (Tapia et al. 2012; Tylmann 2005). However, 
this reference is not easy to obtain because of the rapid 
population growth, industrialization, and urbanization 
processes over the past two centuries.

In the present work, we focus on Trasimeno, a shal-
low lake in Central Italy, which, similar to other basins 
in the Mediterranean area, has been severely impacted by 
human activities, which have altered its sensitive hydro-
logical status since the beginning of the twentieth cen-
tury and affected the ecosystem and biota (Goretti et al. 
2016). Recently, exploiting high-resolution stratigraphic 
archives (Gravina et al. 2022), we characterized the three 
major hydrological regimes of the lake, focussing on the 
variations of precipitation and sedimentation processes of 
endogenic carbonates, i.e., calcite and calcium carbonate 
phosphate, relating the presence of these compounds to 
natural and human-driven processes. This study allowed 
us to identify the range of the sedimentary archives less 
impacted by anthropogenic processes.

Herein, we started from this piece of knowledge to 
define a geochemical baseline (Matschullat et al. 2000) 
which allowed us to identify and date the primary sources 
of pollution (Wang et al. 2019) affecting the Trasimeno 
lake and quantify the degree of contaminant enrichment 
(Wang et al. 2019).

Three short sediment cores have been exploited to this 
aim and characterized in terms of major and trace ele-
ments, polycyclic aromatic hydrocarbons, and lead iso-
tope ratios. The multi-proxy approaches, with combina-
tion of different inorganic and organic indicators, and the 
treatment of data with multivariate statistical techniques, 
are the key to accurately reconstruct the events related 
to human activities that occurred in the area adjacent to 
the basin (Li et al. 2021). Studying the source of metals 
is quite complicated, because they are ubiquitous and are 
emitted both from natural and anthropic sources (Cear-
reta et al. 2000; Callender 2014; Ghadimi 2014). This 
is one reason why it is important to combine them with 
other proxies, such as lead isotope ratios. Lead isotope 
ratio analysis has proved a powerful tool for identifying 

the origin of lead. Townsend and Seen (2012), with many 
studies using sediments as the historical archive of Pb 
contamination (Odigie et al. 2014; Komárek et al. 2008), 
because Pb exhibits significant natural variation in the 
relative proportions of its isotopes. Along with lead, also 
PAHs are very source-specific and less sensitive to altera-
tion and destruction than other forms of organic matter, 
thus remaining unchanged even after burial in the lake 
sedimentary archives (Elmquist et al. 2007). Due to these 
characteristics, the study of the processes of emission, 
transport and deposition of the PAHs is very widespread, 
especially given their strong toxicity and potential for 
human exposure (Du and Jing 2018).

The significant human impacts have been classified into 
three periods covering the Anthropocene and encompass 
artificial water level manipulation, industrial activities in the 
pre-second World War period, and more recent eutrophica-
tion related to agricultural practices.

Materials and methods

Study area, sampling and processing

The Trasimeno lake is a shallow and closed basin located 
in Central Italy. Despite its large extension (124 km2), 
which makes it the largest lake of Central and Southern 
Italy, this lake is very shallow, and its bathymetry is very 
smooth (Figure SM1 − a). In the last two centuries, the 
hydrometric trend of the basin passed through 3 distinct 
phases: (i) an old phase (OP) (from 1860 to 1900), during 
which the water level exceeded the overflow level (257.5 
m a.s.l.), allowing the discharge of suspended materials to 
the outside; (ii) a middle phase (MP) (from 1900 to 1960), 
during which the water level remained below the overflow 
level and also suffered a substantial lowering, causing 
saturation of the components in the water column; (iii) a 
young phase (YP) (from 1960 to 2010), during which the 
water level rose but not above the overflow level (Fig-
ure SM1− b) (Gravina et al. 2022). The present study has 
characterized three sediment cores, C1, C2 and C3, with 
depth below ground level of 95, 102 and 50 cm and with 
sedimentation rates of 0.21, 0.20 and 0.16 g cm− 2 year− 1 
respectively (Gaino et al. 2012). Each core was extruded 
and sectioned, in a series of 1-cm intervals for the top 30 
cm and in 2-cm intervals for the lower remaining. Then 
the cores were dated, obtaining a biennial resolution 
(Table SM2), covering the 1860–2010 period (Gaino et al. 
2012). This study has also characterized superficial sedi-
ments sampled during 2018 (Figure SM1 − a and table 
in Figure SM2). Finally a portion of each section/super-
ficial sample has been acid digest or extracted in a proper 
solvent for the subsequent chemical analyses (details in 
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the Supplementary Material - Section 1). All the details 
of the sampling site and sediment cores processing are 
reported in Gravina et al. (2022).

Chemical analysis

Major (Al, Fe, Ti, V, P and Mn) and trace elements (Co, 
Ni, Pb, Cr, Cu, Zn) concentrations were determined by 
inductively coupled plasma optical emission spectrometry 
(ICP-OES, Ultima 2, HORIBA Scientific) equipped with 
an ultrasonic nebulizer (CETAC Technologies, U-5000AT). 
Analytical wavelengths are reported in Table SM1. Quality 
assurance was provided by determining the elemental con-
centrations for duplicate samples and one reference mate-
rial (Certified Reference material SS-1-Contaminated Soil). 
The recovery of total metal concentration varied between 
79 and 130% among the different analytes. The Limit of 
Detection (LOD) of the methods ranged from 0.01 to 2.95 
ppm (Table SM2). PAHs have been analyzed using a gas 
chromatography-mass spectrometry with a triple-axis detec-
tor (HP7890A/5975CVL - Agilent Technologies, USA), 
equipped with a low bleed Select-PAH capillary column 
(Agilent J&W, CP 7461). To monitor the recovery method, a 
mix of 13 surrogate counterparts was used as standard (aver-
age recovery > 70%). The determination of 208Pb/207Pb and 
206Pb/207Pb ratios was performed by an Agilent 8900 ICP-
MS/MS (100 version, Agilent Technologies, Japan), oper-
ated in the MS/MS mode. The collision reaction cell was 
pressurized with a NH3/He 15 % mixture, used as a damping 
gas to lower the RSD. The instrumental mass bias was cor-
rected with the standard sample bracketing method using 
the lead isotopic standard SRM 981 from NIST (Gaithers-
burg, MD, USA) (Vanhaecke et al. 2009; Bazzano and Grotti 
2014; Bazzano et al. 2021; Bertinetti et al. 2022). The Sup-
plementary Material (Section 1 - Chemical analysis) reports 
more details on the analytical methodologies.

A standard principal component analysis (PCA) and a 
factor analysis (FA) have been performed on the chemi-
cal dataset with R - Version 1.2.5033 using the packages 
tidyverse and factoextra.

Geochemical baseline and enrichment factors

In this study, the geochemical baseline (GBL) was obtained 
using the bottom portions of the 3 sediment cores (approxi-
mately 25 cm), considering that these portions represent the 
least contaminated sediments due to their deposition before 
1900. Then, two different GBLs were calculated using pas-
sive methods, i.e., the relative cumulative frequency tech-
nique (RCF) and the linear regression method (LRM).

The RCF technique is commonly used to obtain GBL 
(Matschullat et al. 2000; Teng et al. 2009) of an individ-
ual element and is based on different slopes of the relative 

cumulative frequency content fitting curves for the natural 
origin and abnormal concentration. A bend of the slope in 
the upper part of the curve (higher values) can be used to 
distinguish between anthropogenically non-influenced sam-
ples (low values) and anthropogenically influenced samples 
(high values). The baseline is obtained from the data below 
the first inflection value. The data in the cumulative fre-
quency curve are tested with a linear regression method, 
until achievement of the condition of p < 0.05 and R2 > 0.9. 
Otherwise the maximum value is removed and the procedure 
is repeated until the two criteria are both met.

The LRM allows obtaining the regional GBL from deep 
sediments by plotting the element towards the normalizer 
(Selvaggi et al. 2020). According to the principle of nor-
malization, the relative proportions of metals within mate-
rials from a particular region tend to be constant, even if 
the absolute metal concentration varies between crustal 
elements from one region to another. In the present study, 
normalization was done with Al or Fe according to the best 
correlation with the element considered. The samples lying 
beyond the confidence interval of 95% have been labeled 
as anthropogenically influenced. In the linear relationship 
between each element of concern and the reference ele-
ments (e.g., Al or Fe), data lying out of the 95% confidence 
band are eliminated, a new linear equation is built with the 
updated data set and, the process goes on until all the data 
are within the 95% confident band.

The local GBL was used in the present study to improve 
the assessment of anthropogenic impact through the enrich-
ment factor (EF). The EFs are calculated as:

where [Me] is the concentration of the element, [X] is the 
concentration of the reference element (Al, Fe, V, Li or Sc); 
at the numerator, there is the sample, while at the denomina-
tor there is the reference baseline (Schropp et al. 1990). Al 
was chosen as the reference for the present study.

Results and discussions

Geochemical baseline

The two methods describe were screened to identify the bet-
ter GBL as representative of the maximum pristine state of 
the sampled Trasimeno sediments, in order to quantify the 
enrichment of the trace elements through the EF factors.

As an example of the RCF values provided by cumula-
tive frequency curves method the cases of Co and Cr (other 

EF =

(

[Me]

[X]

)

sample
(

[Me]

[X]

)

reference
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elements are in Supplementary Material in Figure SM4) are 
plotted in Fig. 1. Figure 2, instead, shows the linear regres-
sion method for calculating GBL, where Al or Fe are chosen 
according to the highest correlation value with the element 
considered. Both GBLs obtained through RCF and LRM are 
shown in Table 1. Eventually, Background (Bkg) values, also 
reported in Table 1, were calculated by arithmetic average 
of the bottom part of the cores (portion before the 1900s 
corresponding to the pre-industrial period).

As shown in Table 1, the RCF is the closest lacustrine 
sediment baseline to other baseline values from different 
areas of the world (e.g., Callender 2014). As regards Ni, Cd 
and Cr the RCF baselines are higher than those reported by 
Callender (2014). While the RCF baselines for Pb, Cu and 
Zn are lower than Callender (2014) values, being 11, 16 and 
70 ppm compared to 22, 34 and 97 ppm, respectively.

Enrichment factors and trends of contaminants

EF values were calculated using the RCF baseline, consider-
ing that, even if widely used as a sediment metal-enrichment 
assessment tool, the calculated EF is highly dependent on 
the choice of an appropriate background or baseline as refer-
ence level (Rubio et al. 2000). Interpretation of EF values 
allows the assessment of contaminant enrichment. Accord-
ing to Birch et al. (1996), several scenarios can be depicted, 
i.e., EF < 1 “no enrichment”, 1 < EF < 3 “minor enrich-
ment”, 3 < EF < 5 “moderately enrichment”, 5 < EF < 10 
“moderately enrichment”, 10 < EF < 25 “severe enrich-
ment” 25 < EF < 50 “very severe enrichment” and EF > 50 
“extremely severe enrichment”. The EFs values were also 
interpreted by Zhang and Liu (2002): when EF is between 
0.5 and 1, the metal could be mainly from the weathering 
process; while if EF is greater than 1.5, the metal is from 
anthropogenic sources or grater percentage of the metal is 
from non-natural process.

The boxplot, reported in Figure SM5 in Supplementary 
Material, shows means, high and low quartiles and outliers 
for the EF values in the 3 sediment cores (C1,C2,C3).

The enriched elements in C2 (Fig. 3), listed in descend-
ing order, are Co, Pb, Zn, Mn, P, Cu, Ti, Cr, V, and Ni. The 
enriched elements, listed in descending order for C1 core, 
are Cu, Pb, Co, Ni, Zn, Cr, V, Mn, P, and Ti, while for C3 
core are Pb, Zn, Cu, Ni, Cr, V, Mn, Co, Ti, and P. The global 
anthropogenic enrichment in the basin seems to be high, 
especially for Pb, Cu, Co, and Zn.

Trends of polycyclic aromatic hydrocarbons

Specific organic proxies such as some polycyclic aromatic 
hydrocarbons (PAHs) allow to identify their possible source, 
which can be petrogenic, pyrogenic, biogenic, and diage-
netic (Abdel-Shafy and Mansour 2016). The pyrogenic kind 
of PAHs is linked to exposure to high temperatures under 
low oxygen or no-oxygen conditions, such as wood and coal 
combustion. The petrogenic origin is due to transportation, 
storage, and spills of crude oil and crude oil products. In 
contrast, the biological origin of some PAHs is due to their 
synthesis by certain plants and bacteria or to their forma-
tion during degradation of vegetative matter. For the estima-
tion of anthropogenic sources, Perylene is usually removed 
from the sum of PAHs, because it is formed after deposition 
transformation during diagenesis and is derived from natu-
ral precursors (Jiang et al. 2000). Therefore, the total PAH 
(=ΣPAHs) is calculated by subtracting the concentration of 
perylene (Fernández et al. 2002).

As shown in Fig. 4a, ΣPAHs, measured on sediments in 
the center of the lake, core C2, was relatively constant until 
1920 with an average value of 26.5 ng/g. This value is con-
sistent with those found in surface sediments of relatively 
pristine environments in the Italian Alps (Poma et al. 2017). 
In the MP hydrological phase we observed a significant 
increase of ΣPAHs, starting in 1930–1940, and reaching val-
ues a factor 4 higher in the YP (Young phase), after WWII 
(Second World War) with a first maximum in 1965–1970 
and a second maximum in the late 1990s (Fig. 4a).

The overall increase in the PAHs concentration found in 
the Trasimeno since 1930 has also been observed in other 
European lakes (Fernández et al. 2002; Du and Jing 2018). 

Fig. 1   Cumulative frequency 
curves (scatters) of Co and Cr. 
Co represents the curve with 
only 1 inflection point, while 
Cr represents the curve with 
2 inflection points. Linear 
regressions were performed on 
the cumulative frequency curve 
with p < 0.01 and R2 > 0.9 
(purple line)
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In detail, the first ramp of growth with the first maximum 
between 1960 and 1975 coincides with the exponential 
increase in the PAHs concentration found in the sediments of 
Swedish lakes, occurred between 1920 and 1960 (Elmquist 
et al. 2007). Since 1970, there was a break in the trend and a 
decrease in the PAHs concentration, reflecting the decreas-
ing effects of dependence on petroleum fuels and the legisla-
tive actions aimed at reducing emissions. Finally, the second 
growth ramp with maximum concentration in the late 1990s, 
may be an indication of an increase in the consumption of 
wood pellets for domestic heating (Elmquist et al. 2007).

On the other side, Perylene remained constant and low 
during the most recent YP phase but increased rapidly with 
the depth of burial in sediments due to diagenesis, unlike 
other PAHs molecules (as can be seen from Fig. 4b). We 
exploited specific diagnostic ratios (typically based on iso-
mers) to identify the contamination sources (Roszko et al. 
2020; Yunker et al. 2002), assuming that different PAH 
molecules transform and degrade at the same rate during 
their lifetime in the environment, so that the characteristic 
concentration ratios of the sources are preserved. Compared 
to the many commonly used PAH diagnostic ratios (Du and 
Jing 2018), the scatterplot in Fig. 4c shows only two ratios 
((Fln/(Fln + Pyr) and Ant/(Ant + Phe)) that were the most 
significant for this case study. In detail, the Fln/(Fln + Pyr) 
ratio distinguishes the origin of samples belonging to dif-
ferent historical periods (Guo et al. 2011). The Trasimeno 
sediment samples from the period of most significant indus-
trial activity, i.e., around the Second World War, indicate oil 
and liquid fossil fuel combustion sources. Most YP samples 
represented anthropogenic origin related to biomass com-
bustion and generated by pyrolysis, which can be associated 
with characteristic agricultural activities of the surroundings 
of Trasimeno lake in the last part of the twentieth century.

Identification of anthropogenic sources by PCA 
and FA analysis

A PCA analysis was performed on the C2 central core, 
which has the largest number of samples and which is more 
undisturbed and representative of the entire basin. The PCA 
performed on the C2 included trace elements and ΣPAHs 
(Fig. 5 and Table SM4). The analysis, especially the PC2 
component, identified 5 groups of tracers: one natural group 
(A) including Al, Ti, V and Fe and 4 distinct anthropogenic 
groups (B, C; D and Pb). Group B included Co, Ni, Zn and 
Cr, group C included Cu and P, and D included Mn and 
ΣPAHs. In addition, the Mn variable is explained in part also 
by PC1. Pb is an isolated element that is separated from the 
groups mentioned above and is explained mainly by PC2.

The score legend of Fig. 5 effectively separates the three 
different hydrometric phases that have occurred in the lake 
over the past 150 years (OP, MP and YP), and allows to 

determine the sources of elements and organic compounds. 
In particular, the YP scores and PC2 distinguished the 
anthropogenic element groups (B, C and D groups). The 
distinct groups of anthropogenic elements have different 
origins; in fact, the anthropogenic group B is well separated 
from the natural elements (groups A) by PC2, but is also 
well isolated from Pb, which is likely associated with atmos-
pheric deposition due to human use of leaded gasoline since 
the 1960s.

Finally, the results of the PCA analysis individuated a spe-
cific type of contamination throughout the lake, influenced 
by the intensification of agriculture during the eutrophic 
phase (YP, after 1970). The use of fertilizers, which can 
contain Mn, Cu, P, Zn, and Cr, Pb, is the main impacting fac-
tor. Manganese can be emitted as Mn sulfates in fertilizers 
or from pesticides, animal feed, or water treatment products. 
On the other hand, copper is contained in pesticides and fun-
gicides (used to control plant diseases) or is emitted as Cu 
sulfate (treatment used to control algal growth). Actually, Cu 
sulfate is also added to pig feed to suppress bacterial action 
and therefore it is poured in the soil when pig slurry is used 
as fertilizer (Panagos et al. 2018). The use of fungicides 
based on the mixture of Cu sulfate, lime and water started in 
the 1880s and became widely used to control downy mildew 
in grapevines, while on the global scale, the use of Cu in 
agriculture has increased since 1980 (Panagos et al. 2018). 
Ultimately, the use of both Cu and P as fertilizers has been 
a common practice for much of the last century (confirm-
ing their appearance in group C), in contrast, the use of Mn 
as a fertilizer was not approved in Europe until the early 
2000s, and that may be the reason for Mn does not belong 
to group C (EFSA Panel (NDA) 2013; (FEEDAP) E 2016; 
Christensen et al. 2015). Mn and ΣPAHs growth trends are 
also very similar, showing strong increase in concentration 
especially in recent years. For this reason both belong to 
group D. However, no particular common source for Mn 
and ΣPAHs has been identified, mainly because it is dif-
ficult to attribute to such a complex parameter as ΣPAHs, a 
single source. Factor analysis (in Supplementary Material 
Figure SM7) confirms the source-dependent separation of 
elements obtained using the PCA. It is observed that Al and 
Fe are separated from other elements, representing the group 
of natural origin, while among the elements of anthropo-
genic origin, the PAHs are separated by Mn, while there is 
the subgroup Mn-P

Industrial contamination in the middle hydrological 
phase

The average concentration of some major and trace ele-
ments (V, Co, Ni, P, Pb, Cr, Cu, Ti, Mn and Zn) meas-
ured for the three sediment cores (top part, bottom part 
— used for GBL calculation — and whole core) together 
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with maximum and minimum values are reported in Sup-
plementary Material in Table SM3. The trends are quali-
tatively similar for the three cores (Figure SM3). Never-
theless the highest concentrations have been recorded in 
C2 (center of the lake) and the lowest in C3 (Southern 
lake). These differences can be associated with the dif-
ferent sedimentation rates (Gaino et al. 2012), the dis-
tance from the shore or the center of the basin, and the 
different composition of washed-out material from the 
Eastern, Western, and Southwestern parts (Figure SM1) 
of the area surrounding the lake (Yang and Rose 2005). It 
results from Table SM3 that in the C2 core, Ni, Cr and Ti 
have higher concentrations in the bottom with respect to 
the top of the core, and the current (2018) concentration 
values drop even further. On the other side V, Co, Cu, Zn 
have comparable values along with the sediment core, but 
also show lower values in the most superficial and current 
sample; unlike previous trends, Pb and Mn present lower 
mean concentrations in the bottom part of the core with 
respect to the top part and also with respect to the current 
(2018) conditions. The situation is slightly different for 
the north-eastern C1 core: Cu, Pb, Co, Mn and Zn show 
lower mean concentration values in the bottom part than 

in the top part of the core and whole core while V presents 
stable values for the whole core record. In the case of the 
southern C3 core, V, Co, Ni, Pb, Cr, Cu and Zn present 
lower mean concentration values in the bottom part of the 
core than in both the top and the whole sediment core; Ti 
and Mn present relatively stable values for the entire core 
record (Table SM3 and Figure SM3).

A closer view of the concentration profiles of some spe-
cific trace elements (Pb, Ni, Co, Zn, Cr, and V) of the C2 
core is shown in Fig. 6. The concentration trends are char-
acterized by a clear peak dated between 1930 and 1945 for 
all the elements. The peak corresponded to a simultaneous 
increase of the element concentrations and coincided with a 
relative rise in the water level (see Figure SM1 - b), though 
in the general context of the lowering phase. Overall, these 
pieces of evidence point to a significant contamination pro-
cess lasting more or less 20 years. The nature of the trace 
elements involved suggests an industrial source. Indeed, in 
this period, a military airplane industry was operative and 
very active in Passignano, the main village on the lake’s 
northern coast. This airplane industry moved from Milan to 
the surroundings of the Trasimeno’s shores in 1916, and one 
of the most important Italian aeronautical schools was also 
established close to the basin. Technological development 
began in 1922 when the “Societa’AeronauticaItaliana” 
(SAI) was created and the combat aircraft production 
increased significantly with the outbreak of World War II 
(Bellaveglia 2015; SAI 2018).

Fig. 2   Normalization of heavy metals on the reference element: Al 
(from a to d) and Fe (from e to j) of bottom dataset. Concentration 
are in mg/kg. The linear regression was obtain with p < 0.01 and R2 
greater. The dark gray area represents the 95% confidence

◂

Table 1   Concentration of geochemical baseline and background values calculated with different methods. All data are presented as mg/Kg or ppm

Methods GBL / Bkg Co Ni P Pb Cr Cu Ti Zn Mn  V

Relative cumulative Core sed Mean 8.46 72.82 1381.04 10.59 101.23 16.14 325.09 69.69 758.04 64.10
frequency methods (RCF) dev sta 5.14 7.99 157.59 2.53 24.09 4.62 49.73 14.70 69.26 17.23
Linear regression Core sed Mean 85.83  1798.06 447.61 823.45
technique — Al dev sta 23.87  387.72 143.59 124.12
Linear regression Core sed Mean 13.00 14.91 134.89 19.19 86.20 66.13
technique — Fe dev sta 7.50 4.75 43.59 5.95 23.85  23.15
Baseline mean Core sed Mean 11.48 99.11 1680.05 13.73 137.42 20.82 415.41 84.19 784.26 70.48
3 bottom cores dev sta 6.81 21.79 441.74 4.44 39.39 7.74 111.02 24.77 100.77 20.79
Bottom core C1 Core sed Mean 10.66 108.98 1497.81 13.48 144.11 24.41 406.82 87.17 780.99 73.207

dev sta 3.70 10.86 77.26 2.63 10.20 8.43 65.242 19.36 64.43 8.595
Bottom core C2 Core sed Mean 19.93 118.13 2272.85 19.09 182.41 25.36 523.20 110.03 871.76 93.86

dev sta 0.65 3.14 97.92 1.16 10.92 1.37 97.07 5.37 110.25 8.32
Bottom core C3 Core sed Mean 4.87 71.23 1292.26 9.23 89.98 12.79 317.27 57.91 710.12 46.68

dev sta 3.69 6.58 190.90 1.90 14.51 2.00 59.95 9.54 61.97 8.21
Current state Core sed Mean 10.7 76.6 418.6 18.8 100.0 18.2 292.5 78.5 1063.9 53.3

dev sta 3.7 16.2 79.1 3.0 27.6 4.1 104.4 13.1 303.9 17.6
(Förstner and Wittmann 1981) Lake sed Mean 44.5 27 42 30 65.5
Pre-indsutrial Lake sed Mean 40 22 48 34 97
(Callender 2014)
Recent lacustrine Lake sed Mean 39 102 63 60 207
(Callender 2014)
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Fig. 3   C2 core trend of enrichment factors for trace elements (Co, Ni, 
P, Mn, Pb, Cr, Cu, Zn and V) represented by the histogram graph. 
The black rumble represents the current state of enrichment in the 

surface sediments of the lake (corresponding to 2018). The dotted red 
line indicates limit at 1 (according to Birch et al. 1996), while contin-
uous red line indicates limit at 1.5 (according to Zhang and Liu 2002)

85822 Environmental Science and Pollution Research (2022) 29:85815–85828



1 3

After the peak, most elements lowered in concentra-
tion while, in the case of Pb, we notice a growth from 
the 1960s to the present day. This trend must be associ-
ated with a different source and reasonably connected 
with the use of leaded gasoline, containing Pb as an anti-
knockout substance (Resongles et al. 2021). A further 
investigation for the Pb case has been made by measur-
ing the 208Pb/207Pb and 206Pb/207Pb isotope ratios which 
are proxies of the emission source. Results are shown in 
Fig. 7 for the 206Pb/207Pb together with the trend of the 
total Pb concentration. A 208Pb/207Pb versus 206Pb/207Pb 
plot is presented in the Supplementary Material (Fig-
ure SM8). The results in Fig. 7 show a clear lowering 
of the 206Pb/207Pb isotope ratio from values larger than 
1,230 (1,233 the maximum) before 1920, which can be 
considered a natural situation, towards values lower than 
1,210 (1,207 the minimum) in the most recent years. Iso-
tope ratio values can vary easily between different areas 
depending on the mineralogy of the area and on the level 
and type of contamination from the surrounding. In gen-
eral, the values obtained in the Trasimeno lake are con-
sistent with the literature (Odigie et al. 2014; Gobeil et al. 
1995; Townsend and Seen 2012; Chiaradia et al. 1997; 
Bränvall et al. 2001). The lowering of the 206Pb/207Pb 
ratio plotted in Fig. 7 started clearly in coincidence with 
the pollution peak of the 1930–1940 and carried on fur-
ther with a minimum in the 1980s and a slight recover 
later on. According to the literature this particular ratio 
is higher in natural soils, while it decreases because of 
anthropogenic pollution (Renberg et  al. 2002; Sakata 
et al. 2018; Chiaradia et al. 1997; Bränvall et al. 2001). 
Moreover, a three-isotope plot can often help identify-
ing and differentiating between anthropogenic and natu-
ral/geogenic Pb sources, particularly when the naturally 
occurring and anthropogenically introduced Pb has sig-
nificantly different isotope ratios (Townsend and Seen 
2012). We reported in the supplementary material (Fig-
ure SM8) the correlation between the 208Pb/207Pb and the 
206Pb/207Pb isotope ratios which, consistently, suggest the 
contribution of at least two end-members to the observed 
Pb isotope ratio. In conclusion, the isotope ratio results 
confirm the anthropogenic nature of the contamination 
in the 1930–1940 event and the successive anthropogenic 
origin of Pb in the more recent years.

Fig. 4   a) ΣPAHs (continuous red curve) and perylene (dashed green 
line) concentration (ng/g) in core C2; b) ΣPAHs versus perylene 
concentration (diagenetic origin) in core C2; c) scatterplot of (Fln/
(Fln + Pyr) [Fln=Fluoranthene, Pry=Pyrene] and Ant/(Ant + Phe) 
[Ant=Anthracene, Phe=Phenanthrene] diagnostic ratios related to 
the core C2, with marked regions corresponding to different sources. 
Square represent samples in YP, circles represent sample in MP, tri-
angles represent sample in OP and empty triangles represent samples 
during the 2nd World War (WWII)

▸
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Impacts of vehicular traffic and agricultural 
contaminations in the young hydrological phase

Pb shows a characteristic enrichment trend, which is in good 
agreement between the different sampling sites. In particu-
lar, the trend shows an increase in concentration during 
the WWII period that persisted until the early 2000s. As 
discussed above, Pb enrichment is primarily due to anthro-
pogenic activities such as the use of leaded gasoline and 
the disposal of sewage sludge to the ground: only core C1 

showed a lowering of enrichment after 2000, indicating the 
termination of leaded gasoline use, which came into effect 
in 2002 in Europe. The C1 core is located in the area of the 
lake most impacted by vehicular traffic due to the presence 
of a highway, built in the 1965, 200m far from the shore.

The intensification of the agricultural activities in the YP is 
responsible for the release of various elements and pollutants 
in the environment, such as the essential elements (Cu and Zn) 
contained in fertilizers, and the heavy metals (Pb and Cr) used 
in the synthesis of fertilizers as catalysts (Nacke et al. 2013). 

Fig. 5   C2 core PCA: the different major principal components against 
each other are reported in each graph plot, comparing trace elements, 
heavy metals, phosphorus and ΣPAHs. The legend shows the scores 

according to specific hydrometric phase: phase OP in green, phase 
MP in red and phase YP in blue
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Moreover, the use of leaded fuel in agricultural machinery for 
the development of farming operations is another reason for 
enrichment of Pb (Nicholson et al. 2003; Zan et al. 2012).

Cu is consistently enriched in the sampled sediments, with 
maximum values recorded between 1970 and 1980. One of the 
main sources of Cu in the Trasimeno basin is the use of Cu sul-
fate pentahydrate in the production of fungicides, introduced 
in agriculture as early as the nineteenth century and widely 
distributed on fruit plants (olives and vines) and vegetables. 
Other sources of land pollution are sewage sludge, municipal 
compost and animal waste (Callender 2014). Mn enrichment 
began only later in 1965, with a maximum enrichment around 
the 1990s, confirming the delay in using this element for agri-
cultural purposes towards the end of the century.

The current state of the sediment showed that pollution 
caused by some elements and heavy metals, such as Co, Ni , 
Cr, Zn, P and V has returned to baseline levels after increas-
ing during the industrialization, urbanization and agricultural 
intensification. On the other hand, elements like Pb, Mn, Cu 
and Zn maintain enriched values relative to the baseline but 
lower than the period between 1940 and 1990 (Fig. 3). Mn and 
Cu are currently used in the predominant agricultural activi-
ties around the Trasimeno lake. The Pb enrichment may be 
due to the persistence of lead contamination even after the 
cessation of leaded petrol use in the early 2000s (Resongles 
et al. 2021). The process of remobilization of historical Pb 
deposited in soil from the atmosphere can be considered a 
critical current secondary source (MacKinnon et al. 2011).

Fig. 6   Trace metal concentra-
tion (V, Cr, Zn, Co, Ni, Pb) 
temporal profiles of the C2 core 
(adjacent-averaging method, 
with weighted average options 
was used on 5 points to obtain 
the trends line)

Fig. 7   Trends of total Pb concentration and 206Pb/207Pb isotope ratio, 
for the C2 core. The solid blue line indicates the 206/207 Pb iso-
tope ratio, while the dashed brown line indicates the Pb concentra-
tion (ppm), and adjacent-averaging method, with weighted average 
options was used on 5 points to obtain the trends line
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Conclusion

The main proxies of the Trasimeno lake’s pollution are indus-
trial metals (Cr and Zn) and agriculture-related elements (Cu, 
Mn and P). The impact of industrial pollution at the regional 
level started before World War II, mainly tied up to the 
increase in the airplane industry activities, as demonstrated 
by Pb isotope ratios trend. Over time, the main pollution 
inputs to the Trasimeno lake shifted towards the intensifica-
tion of agriculture, livestock, urbanization and transportation, 
which have increased since the 1960s. PAHs concentration 
and relative abundance, which is similar to that of other 
European lakes in the same period, helped to disentangle the 
effects of biomass and fossil fuels combustion processes.

The Trasimeno’s GBL values determined in this study 
are comparable with global baseline references from the 
literature, and they are also reasonable with respect to 
human activities around the lake, therefore ensuring a cor-
rect quantification of sediment enrichment by pollutants.

The assessment of the current condition of the lake demon-
strated that some elements such as Co, Ni, Cr and V, mainly 
related with industrialization, urbanization and agriculture, have 
returned to GBL levels. On the other hand, Mn, Pb and Cu, 
coming from intensive agricultural activities are highly persis-
tent in the environment even after being banned at the end of 
the last century, and remain enriched compared to GBL values.
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