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Abstract
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. Although major diagnostic and therapeu-
tic advances have significantly improved the prognosis of patients with CVD in the past decades, these advances have less 
benefited women than age-matched men. Noninvasive cardiac imaging plays a key role in the diagnosis of CVD. Despite 
shared imaging features and strategies between both sexes, there are critical sex disparities that warrant careful considera-
tion, related to the selection of the most suited imaging techniques, to technical limitations, and to specific diseases that are 
overrepresented in the female population. Taking these sex disparities into consideration holds promise to improve manage-
ment and alleviate the burden of CVD in women. In this review, we summarize the specific features of cardiac imaging in 
four of the most common presentations of CVD in the female population including coronary artery disease, heart failure, 
pregnancy complications, and heart disease in oncology, thereby highlighting contemporary strengths and limitations. We 
further propose diagnostic algorithms tailored to women that might help in selecting the most appropriate imaging modality.
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ACS	� Acute coronary syndrome
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cardiomyopathy
CACS	� Coronary artery calcium score
CAD	� Coronary artery disease
CCS	� Chronic coronary syndrome
CCTA​	� Coronary computed tomography 

angiography
CFR	� Coronary flow reserve
CMR	� Cardiac magnetic resonance
CMVD	� Coronary microvascular dysfunction
CT	� Computed tomography
CTRCD	� Cancer treatment-related cardiac dysfunction
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CVD	� Cardiovascular diseases
CVRF	� Cardiovascular risk factor
DCM	� Dilated cardiomyopathy
ECV	� Extracellular volume
ECG	� Electrocardiogram
ERNA	� Equilibrium radionuclide angiocardiography
ESC	� European Society of Cardiology
FFR	� Fractional flow reserve
GLS	� Global longitudinal strain
HCM	� Hypertrophic cardiomyopathy
HF	� Heart failure
HFmrEF	� Heart failure with mildly reduced ejection 

fraction
HFpEF	� Heart failure with preserved ejection fraction
HFrEF	� Heart failure with reduced ejection fraction
ICA	� Invasive coronary angiography
ICI	� Immune checkpoint inhibitors
INOCA	� Ischemia with no obstructive coronary 

arteries
IVUS	� Intravascular ultrasound
LA	� Left atrium
LGE	� Late gadolinium enhancement
LV	� Left ventricle
LVEDP	� Left ventricular end-diastolic pressure
LVEF	� Left ventricular ejection fraction
LVEDP	� Left ventricular end-diastolic pressure
MACE	� Major adverse cardiovascular events
MBF	� Myocardial blood flow
MI	� Myocardial infarction
MINOCA	� Myocardial infarction with no obstructive 

coronary arteries
ML	� Machine learning
mPCWP	� Mean pulmonary capillary wedge pressure
MPI	� Myocardial perfusion imaging
OCT	� Optical coherence tomography
PET	� Positron emission tomography
PPCM	� Peripartum cardiomyopathy
RV	� Right ventricle
SCAD	� Spontaneous coronary artery dissection
SPECT	� Single-photon emission computed 

tomography
SSFP	� Steady state free precession
TTC​	� Takotsubo cardiomyopathy
TTE	� Transesophageal echocardiography

Introduction

Noninvasive imaging is of paramount value for the diag-
nosis and management of cardiovascular diseases (CVD). 
Indeed, there is a wealth of evidence showing that the appro-
priate choice of imaging modality improves not only diag-
nostic accuracy but also long-term outcomes [1]. Although 

overall diagnostic strategies are comparable between sexes, 
female-specific attributes may substantially affect the diag-
nostic performance of the underlying procedure (Table 1). 
Furthermore, technical challenges due to breast attenuation 
and general radiation safety considerations constitute major 
decision-making criteria for the selection of the most appro-
priate diagnostic procedure in women.

In this review, we summarize the main female charac-
teristics in pathophysiology and clinical presentation of the 
most frequent cardiovascular conditions and discuss the 
contemporary limitations of cardiac imaging in women. We 
further present four clinical scenarios, including seven case 
examples, where cardiac imaging proved useful in women 
with suspected or manifest CVD.

Pathophysiological features 
of cardiovascular diseases in women

The most obvious pathophysiological differences between 
women and men in relation to CVD are linked to sex hor-
mones. Relatively protected against CVD before meno-
pause, women’s risk exceeds men’s risk after menopause, 
highlighting the cardioprotective influence of sex hormones, 
particularly estrogens [2]. Conversely, female-specific dis-
eases associated with dysregulation of sex hormones, such 
as polycystic ovary syndrome and premature menopause, 
increase cardiovascular risk [3].

Mutiple  pathophysiological mechanisms are shared 
between both sexes but display a sexual dimorphism result-
ing in different phenotypes of CVD. Coronary microvas-
cular dysfunction (CMVD) [4] is a condition of microves-
sel impairment leading to myocardial ischemia even in the 
absence of epicardial coronary artery stenosis [5]. Several 
sex-specific biological, hormonal, and neurological path-
ways promote CMVD, acting in isolation or synergisti-
cally [6]. Indeed, CMVD is favored by low-grade systemic 
inflammation and increased sympathetic activity, which 
are more pronounced in women compared to men, as well 
as by the decrease of estrogens in postmenopausal women 
[7–9]. Importantly, CMVD is thought to be the common soil 
of various CVDs affecting most frequently postmenopau-
sal women, such as ischemia with no obstructive coronary 
artery disease (INOCA), heart failure (HF) with preserved 
ejection fraction (HFpEF), Takotsubo cardiomyopathy 
(TTC, also termed stress-induced cardiomyopathy, apical 
ballooning syndrome or broken-heart-syndrome), peripar-
tum cardiomyopathy (PPCM), and cardiomyopathy related 
to antineoplastic treatments [10–12], all of which will be 
discussed in this review.

Negative emotions can also trigger CVD via the so-
called brain–heart axis [13, 14]. An elevated amygdalar 
metabolic activity, a brain region involved in the processing 
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of emotions, is associated with an increased risk of future 
major adverse cardiovascular events (MACE) [15]. In 
women, but not in men, an association between the presence 
of myocardial ischemia and an increased amygdalar meta-
bolic activity has recently been shown [16] and is consistent 

with a high prevalence of mental stress in women with 
CVD [13]. Similarly, women are at a higher risk of mental 
stress-induced myocardial ischemia than men [17], which 
might be associated with the increased baseline sympathetic 
activity in older women [18]. Sympathetic hypertonia also 

Table 1   Specificities of imaging modalities and respective advantages/disadvantages

Abbreviations. CACS: coronary artery calcium score; CAD: coronary artery disease; CCTA​: coronary computed tomography angiography; CMR: 
cardiac magnetic resonance; CMVD: coronary microvascular dysfunction; CFR: coronary flow reserve; CT: computed tomography; CTRCD: 
cancer treatment-related cardiac dysfunction; ECV: extracellular volume; FFR: fractional flow reserve; GLS: global longitudinal strain; INOCA: 
ischemia with no obstructive coronary artery disease; LVEF: left ventricular ejection fraction; MBF: myocardial blood flow; mSv: milliSievert; 
MINOCA: myocardial infarction with no obstructive coronary artery disease; MPI: myocardial perfusion imaging; PET: positron emission tomog-
raphy; SPECT: single-photon emission computed tomography

Specificities in women relevant to the 
respective imaging modality

Advantages in women Disadvantages in women

Cardiac CT - Higher heart rate
- Less non-obstructive CAD
- Less calcified plaques
- Less high-risk plaque features
- Smaller diameter of epicardial coro-

nary arteries
- Angina for lower degrees of coronary 

stenosis
- FFR-CT higher in women than in men 

for given stenosis severity

- Calcium scoring: higher sensitivity in 
women

- CCTA: imaging of positive remod-
eling, a differential diagnosis of non-
obstructive CAD

- Early detection of plaques and subse-
quent increase in preventive therapies

- Information about plaque composition
- Measurement of CT perfusion and 

FFR-CT
- Reduced need for additional testing 

and costs in women with angina

- Radiation exposure (0.5–7 mSv)
- Lower sensitivity and specificity for 

detection of stable CAD than in men
- Lower image quality due to smaller size 

of epicardial coronary arteries

CMR - Small left ventricular cavity size in 
postmenopausal women

- T1 and ECV mapping values higher in 
women than in men

- In pregnant women, adapt position to 
left lateral tilt position

- Devoid of radiation exposure; possible 
during the 2nd and 3rd trimester of 
pregnancy

- Simultaneous assessment of cardiac 
volumes, function, and perfusion

- Mapping techniques to detect edema 
and fibrosis

- Measurement of GLS to detect 
CTRCD

- Higher sensitivity than SPECT-MPI 
for stable CAD

- Differential diagnosis of MINOCA/
INOCA

- Higher rates of side effects of vasodila-
tor agents for stress perfusion CMR

- Fetal risk induced by heating effect dur-
ing 1st trimester of pregnancy

- Fetal risk related to gadolinium at any 
stage of pregnancy

- Higher frequency of claustrophobia in 
women

SPECT - Small left ventricular cavity size in 
postmenopausal women

- Breast tissue

- High accuracy for detection of myocar-
dial ischemia

- Wide availability
- If combined SPECT/CT, possible cor-

rection of breast attenuation artifacts
- If combined SPECT/CT, possible 

simultaneous quantification of CACS

- Highest radiation exposure of all nonin-
vasive imaging modalities (2–8 mSv)

- Higher rates of side effects of vasodila-
tor agents

- Small heart artifact
- Breast attenuation artifact
- No diagnosis of CMVD
- Risk of false negatives for small 

ischemic areas
- Underestimation of LVEF value com-

pared to CMR
- Excretion of radiotracer in maternal 

milk: interruption of breastfeeding 
for > 12 h

PET - Higher values of MBF at rest
- CFR values lower in women than in 

men

- Reference standard for the quantifica-
tion of MBF and CFR

- High spatial resolution
- Correction of breast attenuation 

artifacts

- Radiation exposure (2–5 mSv)
- No routine measurement of cardiac 

volumes
- Excretion of radiotracer in maternal 

milk: interruption of breastfeeding 
for > 12 h
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plays a detrimental role in HF [19] and TTC [20] and may 
account, at least in part, for the gender bias and sex-specific 
phenotypes seen in these conditions.

Sex differences in cardiovascular diseases 
and their impact on cardiac imaging

Coronary artery disease in women 

Coronary artery disease (CAD) differs between women 
and men in terms of risk factors—with a higher impact of 
traditional cardiovascular risk factors (CVRFs) in women, 
despite a lower overall risk burden [21], clinical presenta-
tion—more often atypical in women [3], mechanisms—with 
lower atherosclerotic plaque burden in women [22], and out-
comes—worse prognosis in women, despite lower CAD bur-
den [23]. In addition, women more frequently report non-tra-
ditional CVRFs, such as mental stress and depression [13]. 
Mechanistically, plaque composition differs between sexes 
with women presenting more often with plaque erosion 
during an acute coronary syndrome (ACS) (as compared to 
plaque rupture in men), less necrotic core, and less plaque 
calcification [24]. These sex differences in plaque composi-
tion could account for the higher prevalence of ischemia 
with non-obstructive CAD in women [24], a central feature 
in the female population of both acute and chronic coronary 
syndromes (CCS). Consequently, the ongoing paradigm that 
CAD imaging consists of detecting epicardial coronary ste-
nosis must be reconsidered in women [24].

In ACS, the majority of cases occur due to a plaque 
rupture which leads to a coronary occlusion, and is more 
frequent in men [25]. However, a subgroup of individuals 
displays myocardial infarction (MI) with no obstructive 
coronary arteries (MINOCA), of which the majority are 
women [26, 27]. MINOCA is defined as (i) an acute MI (as 
per the 4th universal definition) [28], (ii) with no obstructive 
coronary arteries on invasive coronary angiography (ICA), 
(iii) and no specific differential diagnosis, which requires 
excluding myocarditis and TTC [29, 30]. While MINOCA 
remains of unknown origin in 8–25% of cases [30], it can 
also be induced by specific conditions with high female 
prevalence, including coronary spasm (Case 1) and sponta-
neous coronary artery dissection (SCAD, see the “Specific 
cardiac diseases in pregnancy” section) [31]. Spontaneously 
resolving coronary plaque erosion can also cause MINOCA 
[32]. Given the specific etiologies of ACS in women, a new 
classification has been proposed in this population. Indeed, 
using the universal definition of MI, 1 out of 8 young 
women (< 55 years) with ACS remains unclassified [33]. 
The VIRGO (Variation in Recovery: Role of Gender on Out-
comes of Young AMI Patients) classification, which groups 

patients according to their clinical features, reduces the rate 
of unclassified cases thereby helping to tailor management 
strategies [34] (Fig. 1).

Similarly, in CCS, more women than men present with 
symptoms of myocardial ischemia but no obstructive coro-
nary arteries (INOCA) [35]. INOCA is the clinical mani-
festation of two different mechanisms that can overlap, i.e., 
CMVD (Case 2) and vasospastic angina [35]. One particular 
form of INOCA with a female overrepresentation is mental 
stress-induced myocardial ischemia [17], which consists of 
a left ventricular ejection fraction (LVEF) decline or a new 
regional wall motion abnormality or a perfusion decrease 
following mental stress [36]. As INOCA is associated with 
an increased risk of MACE [37], which is usually not cap-
tured by traditional risk scores [38], the diagnostic strategy 
must be adapted in the female population (Fig. 2).

Specific considerations of imaging modalities 
for coronary syndromes in women

Advanced noninvasive cardiac imaging plays a critical role 
in women with suspected CAD [39] (Table 2). The most 
commonly used techniques are coronary computed tomog-
raphy angiography (CCTA), cardiac magnetic resonance 
(CMR) imaging and myocardial perfusion imaging (MPI), 
i.e., 99mTechnetium (99mTc) and 201Thallium (201Tl) single-
photon emission computed tomography (SPECT), and posi-
tron emission tomography (PET) using 82Rubidium (82Rb), 
13 N-ammonia (13N-NH3), or 15O-water (15O) [40].

Coronary computed tomography angiography

CCTA allows the detection and assessment of coronary 
stenosis severity, with obstructive CAD being defined as 
a stenosis ≥ 70%, or ≥ 50% if ischemia is documented [41]. 
Despite an overall high diagnostic accuracy for the detec-
tion of stable CAD [40, 42], the sensitivity and specificity 
of CCTA is slightly lower in women than in men [43, 44], 
owing to the smaller diameter of coronary vessels in women 
as well as to their frequently higher heart rates resulting 
in motion artifacts and lower image quality [45]. Women 
with moderate or severe ischemia are more likely to have 
non-obstructive CAD (i.e., < 50% stenosis in all vessels) on 
CCTA than men [46], and they present angina symptoms for 
lower degrees of stenosis than men [47]. This could again 
be explained by the fact that women have smaller epicardial 
coronary arteries [48] and more often positive remodeling, 
which might become symptomatic at lower degrees of steno-
sis than in men [47], particularly in distal segments and side 
branches [44]. Additionally, the coronary diameter is a key 
parameter predicting image quality of CCTA examination, 
which is therefore more frequently lower in women than 
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Case 1   Cardiac arrest in a 28-year-old woman. A 28-year-old woman 
with no medical history other than smoking was admitted to the 
intensive care unit after an out-of-hospital cardiac arrest with ven-
tricular fibrillation on ECG, return of spontaneous circulation after 
8  min of cardiopulmonary resuscitation and external defibrillation. 
At admission, ECG revealed ST-elevation in the anterior leads. Echo-
cardiography showed a hypokinetic left ventricular anterior wall. 
ICA was performed to rule out MI, showing normal coronary arteries 
(A) and a hypokinetic apex with mildly reduced LVEF of 45% (B, 
end-diastolic ventriculography; C, end-systolic ventriculography), 
suggestive of TTC. CMR performed 10  days later displayed nor-
malization of LVEF and wall motion abnormalities (D, end-diastolic 
and E, end-systolic sequences on  balanced SSFP cine sequences in 
3-chambers view), and no sign of myocardial scar or edema on LGE 
and T1-mapping sequences (F, T1 inversion recovery LGE sequence 
in 3-chambers view) and was therefore not suggestive of TTC. 
Given the initial ECG and hypokinetic pattern suggestive of a tran-
sient reduced coronary flow in the LAD, coronary vasospasm was 
hypothesized. A second ICA with assessment of coronary microvas-
cular function and coronary vasoreactivity testing was performed (G, 
ICA before pharmacological spasm provocation test). Assessment of 
coronary microvascular function confirmed normal coronary arter-
ies (index of microcirculatory resistance = 10, N < 25; CFR = 4.5, 
N > 2). Following intracoronary infusion of 100 μg of acetylcholine, 
all 3 criteria for vasospastic angina were met, i.e., (i) a marked diffuse 
vasospasm, most pronounced in the proximal left anterior descend-

ing artery (H, red arrowhead), (ii) angina symptoms provoked by ace-
tylcholine infusion, and (iii) ST-elevation on ECG. All these findings 
were completely reversed after administration of intracoronary nitro-
glycerin (I). Noteworthy, acetylcholine-induced coronary spasm can 
be induced at lower acetylcholine doses in women than in men, sug-
gesting a higher sensitivity to vasospasms in the female population 
which could be related to the high prevalence of CMVD [225]. Upon 
discharge, a defibrillator was implanted and long-term treatment with 
calcium-channel blockers and long-acting nitrates was introduced 
along with advises to cease smoking, which constitutes an important 
risk factor for coronary vasospasm [226]. Given the fact that up to 
80% of MINOCA patients are women, an epicardial origin to angina 
or, in this case, to cardiac arrest should not be dismissed before rul-
ing out coronary vasospasm [227]. ICA-based criteria are well estab-
lished to diagnose epicardial vasospastic angina and should be dis-
cussed after the acute phase when no clear explanation for an ACS 
in a woman can be evidenced. Abbreviations: ACS: acute coronary 
syndrome; CFR: coronary flow reserve; CMR: cardiac magnetic reso-
nance; CMVD: coronary microvascular dysfunction; ECG: electro-
cardiogram; ICA: invasive coronary angiography; LAD: left anterior 
descending artery; LGE: late gadolinium enhancement; LVEF: left 
ventricular ejection fraction; MI: myocardial infarction; MINOCA: 
myocardial infarction with no obstructive coronary artery disease; N: 
normal; SSFP: steady-state free precession; TTC​: Takotsubo cardio-
myopathy
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in men [49]. Nevertheless, CCTA results in lower use of 
additional testing and costs in women than in men, although 

at the expense of higher radiation exposure compared to 
functional testing [50].

Fig. 1   Proposed diagnostic algorithm for acute coronary syn-
drome.  In case a STEMI is suspected, urgent ICA is recommended 
[235]. In case a NSTEMI is suspected, the diagnostic approach 
depends on the clinical likelihood of CAD, ECG findings, and tro-
ponin measurement [25]. If the clinical likelihood is low, ECG-trig-
gered contrast-enhanced CT can rule out simultaneously coronary 
stenosis, aortic dissection, and pulmonary embolism (triple rule-out) 
[25]. If the clinical likelihood is intermediate-to-high, ICA must be 
discussed, urgently or semi-urgently. If no coronary stenosis is found 
on ICA, MINOCA should be suspected. A first step consists of thor-
oughly reviewing the ICA to search for subtle signs of SCAD, coro-
nary embolization, or plaque disruption, using IVUS or OCT, when 
available [32, 236]. After symptom resolution and exclusion of other 
causes, invasive provocative testing using acetylcholine, ergonovine, 
or methylergonovine can help to establish a definitive diagnosis. Nev-
ertheless, it should be used with caution and only by experienced 
operators, and in all cases never in the acute setting of the episode 
[29]. LV angiography can also provide important information such 
as segmental hypokinesia suggesting epicardial abnormality, apical 
or midventricular ballooning being in favor of TTC cardiomyopa-

thy, and a more diffuse hypokinesia sometimes suggesting a micro-
vascular impairment [237]. If a diagnosis cannot be established, 
advanced noninvasive imaging is required. CMR can show patterns 
of ischemia/infarct, evidence MINOCA causes [82, 83], and rule 
out differential diagnosis such as TTC and myocarditis [26, 30, 83]. 
MPI can also be used in the acute/subacute setting, after symptom 
resolution and normalization of ECG and troponin [238]. Abbre-
viations: ACS: acute coronary syndrome; CAD: coronary artery dis-
eases; CMR: cardiac magnetic resonance; CCTA​: coronary computed 
tomography angiography; CT: computed tomography; ECG: electro-
cardiogram; ICA: invasive coronary angiography; IVUS: intravascular 
ultrasound ; LV: left ventricle; LVEDP: left ventricular end-diastolic 
pressure; MI: myocardial infarction; MINOCA: myocardial infarction 
with no obstructive coronary artery disease; MPI: myocardial per-
fusion imaging;  N: normal; NSTEMI: non ST-elevation myocardial 
infarction; OCT: optical coherence tomography; PET: positron emis-
sion tomography; SCAD: spontaneous coronary artery dissection; 
SPECT: single-photon emission computed tomography; STEMI: ST-
elevation myocardial infarction; TTC​: Takotsubo cardiomyopathy
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Beyond detection of coronary stenosis, CCTA informs 
about plaque composition, which is of prognostic value 
regardless of the degree of stenosis. Indeed, evaluation of 
low-attenuation plaque volume (< 30 Hounsfield units) is a 
better predictor of future ACS than plaque calcification and 
stenosis severity [51]. This could be particularly interesting 
in women who usually exhibit lower plaque burden and 

calcifications than men [52], notwithstanding worse long-
term outcomes [23]. Although women display less high-
risk plaque features than men (low-attenuation plaques, 
positive remodeling, spotty calcifications, and napkin ring 
sign) [53], a study in 4415 patients with stable chest pain 
without known CAD showed that high-risk plaques found 
by CCTA were a stronger predictor of MACE in women 

Case 2     Chest pain in a 62-year-old woman.  A 62-year-old woman 
with a history of hypertension and polycystic ovary syndrome pre-
sented with ongoing episodes of atypical chest pain (high abdominal 
discomfort) and shortness of breath on exertion. These symptoms had 
evolved for several years and had lately been increasing in frequency. 
A submaximal stress ECG test reproduced the symptoms accompa-
nied by negative T-waves in the anterior leads (A). Subsequently, 
13N-NH3-PET-MPI was performed because myocardial ischemia was 
suspected. CACS calculated from low-dose CT amounted to 5, due to 
minimal calcification of the left coronary artery (B, red arrowhead), 
indicating a low risk of cardiovascular mortality (score A1N1 of the 
CACS data and reporting system [228], with A1 indicating a mildly 
increased risk and N1 indicating the involvement of one single ves-
sel). Analysis of relative perfusion showed homogenous 13N-NH3 
uptake in all myocardial segments at rest and stress (C, horizontal 
and vertical long axes; D and E: polar maps), with no reversible or 
non-reversible perfusion defects (F, polar map), thereby making 
regional ischemia or scar in an epicardial territory unlikely. The CFR 
calculated from rest (G, polar map) and stress (H, polar map) MBF 
was diffusively reduced (< 2) in all myocardial segments (I, polar 

map). This finding was consistent with the diagnosis of CMVD-
related microvascular angina. Subsequently, medical treatments of 
CMVD including betablockers and nitrates were introduced, along-
side the control of CVRFs. Indeed, although to date no standardized 
treatment of CMVD exists, the current recommendations are to con-
trol factors that promote inflammation and thrombosis (such as statin, 
aspirin, and betablockers) as well as vasomotor dysfunction (such as 
nitrates) [229]. CMVD is present in about two-thirds of women with 
angina and non-obstructive CAD [27] and contributes to adverse 
cardiovascular outcomes in women [230]. Therefore, this diagno-
sis should always be evoked in women with persisting angina, even 
in the absence of significant epicardial coronary stenosis. Nuclear 
imaging techniques, especially PET-MPI, are of paramount impor-
tance to establish the diagnosis of CMVD. Abbreviations: 13N-NH3: 
13N-ammonia; CACS: coronary artery calcium score; CAD: coronary 
artery disease; CFR: coronary flow reserve; CMVD: coronary micro-
vascular dysfunction; CT: computed tomography; CVRF: cardiovas-
cular risk factor; ECG: electrocardiogram;  MBF: myocardial blood 
flow; MPI: myocardial perfusion imaging; PET: positron emission 
tomography
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than in men [54]. While calcified plaques are usually non-
modifiable, the progression of non-calcified plaques can 
potentially be modified by preventive treatment such as 
statins [55]. Accordingly, the early detection of plaque 
progression with CCTA could result in an early initiation 
of treatment, which may improve patients’ outcomes [56]. 
Moreover, plaque regression under preventive treatment, 
as assessed by CCTA, is a promising imaging biomarker 
of treatment efficacy that may help tailor the therapeutic 
strategy [57].

Non-contrast cardiac computed tomography (CT), whose 
effective radiation dose amounts to < 1 mSv using contem-
porary scanners [58], can also provide valuable informa-
tion about the calcified plaque burden in coronary arteries 
(Agatston coronary artery calcium score, CACS), a powerful 

predictor of subsequent MACE [59]. Although overall 
coronary calcium burden is lower in women than in men, 
CACS is a better predictor of MACE in the female popula-
tion than in men, with a similar burden of calcified plaques 
being associated with a worse prognosis in women [60]. 
However, CACS does not rule out non-calcified plaques, 
stressing the importance of plaque composition analysis in 
women, in whom calcifications appear nearly 10 years later 
than in men [47]. Nevertheless, when matching the base-
line plaque volume, the progression rate of plaque burden 
appears mediated mainly by calcified plaques in women and 
by non-calcified plaques in men [61]. Therefore, a careful 
evaluation of changes in plaque composition could help fine-
tune the coronary risk stratification, especially in the female 
population [57]. Noteworthy, breast arterial calcifications are 

Fig. 2   Proposed diagnostic algorithm for chronic coronary syn-
drome. In case of suspected CCS, the choice of the imaging modality 
also depends on the clinical likelihood of CAD, which varies accord-
ing to sex. Indeed, for a similar clinical presentation and age, the clin-
ical likelihood is usually lower in women than in men [239]. If the 
clinical likelihood is low (< 15%), CCTA safely rules out obstructive 
CAD [240]. If it is intermediate-to-high (15–85%) or in case of low 
likelihood, but persistent symptoms, exercise ECG or stress echo are 
recommended as an initial test [241]. However, pretest risk assess-
ment in women is limited because of frequently atypical symptoms 
[242] and lower performances of ECG stress tests [243], related to 
a high rate of false positives (due to the higher prevalence of non-
obstructive CAD in women) and to lower maximal exercise capaci-
ties than men [244]. Women also present a higher prevalence of con-
cave-shaped chest wall than men, which is associated with increased 
false positive stress echocardiography findings [128]. Consequently, 
noninvasive MPI (SPECT, CMR) is preferred. Based on the findings 

of the latter, ICA can be discussed. If ischemia or coronary stenosis 
cannot be detected but symptoms persist and the suspicion of CAD 
remains high, INOCA must be considered in women. PET-MPI with 
calculation of MBF and CFR is the preferred noninvasive modality. 
Alternatively, CMR can be used. If noninvasive MPI does not allow 
ruling out INOCA, or if ICA is negative, invasive measurement of 
coronary microvascular function (IMR,  CFR, and/or FFR) can be 
discussed, as well as vasoreactivity testing with acetylcholine [245]. 
Abbreviations: CAD: coronary artery disease; CCS: chronic coro-
nary syndrome; CCTA​: coronary computed tomography angiogra-
phy; CFR: coronary flow reserve; CMR: cardiac magnetic resonance; 
ECG: electrocardiogram; FFR: fractional flow reserve; ICA: invasive 
coronary angiography; IMR: index of microvasculature resistance; 
INOCA: ischemia with no obstructive coronary artery disease; MBF: 
myocardial blood flow; MPI: myocardial perfusion imaging; PET: 
positron emission tomography; SPECT: single-photon emission com-
puted tomography
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associated with subclinical CAD and their detection might 
improve risk stratification in asymptomatic women [62].

Additional novel CCTA tools have emerged lately, 
which could improve the detection of ischemia in women 
[63]. Indeed, it has been shown that adding CT perfusion to 
CCTA improves the specificity of ischemia detection com-
pared to CCTA alone in women, but not in men [64]. CT-
derived fractional flow reserve (FFR-CT) was shown to be 
higher in women than men regardless of stenosis degree, and 
women tend to have a lower likelihood of positive FFR-CT 

than men for a similar degree of coronary stenosis [65]. 
This highlights the need for sex-based thresholds and fur-
ther studies exploring the incremental prognostic value of 
FFR-CT in women.

The use of CCTA remains limited in young women due to 
breast radiation exposure and in pregnant women, with esti-
mated radiation of 0.5–7 mSv [66]. For a similar exposure 
from cardiac imaging, the risk of developing cancer is higher 
in women than in men, which could be related to relatively 
smaller body sizes in women [67]. Nevertheless, technological 

Table 2   Imaging findings of diseases of specific interest in women

Abbreviations. 13N-NH3: nitrogen-13 radiolabelled ammonia; 15O-H2O: oxygen-15 radiolabeled water; 18F-FDG: fluor-18 radiolabeled fluorode-
oxyglucose; 82Rb: Rubidium-82; 123I-MIBG: iodine-123-meta-iodobenzylguanidine; 99mTc: technetium-99 m; 201Tl: Thallium-201; CAD: coronary 
artery disease; CCTA​: coronary computed tomography angiography; CFR: coronary flow reserve; CMR: cardiac magnetic resonance imaging; 
HFpEF: heart failure with preserved ejection fraction; LGE: late gadolinium enhancement; LV: left ventricle; LVEF: left ventricle ejection fraction; 
MBF: myocardial blood flow; MINOCA: myocardial infarction and no obstructive coronary artery disease; MPR: myocardial perfusion reserve; 
PET: positron emission tomography; SPECT: single-photon emission computed tomography; TTC​: Takotsubo cardiomyopathy

Specificities in women relevant 
to the respective imaging modal-
ity

Noninvasive imaging tools Imaging findings

Ischemic heart disease MINOCA - SPECT (201Tl, 99mTc) and PET 
(82Rb, 13N-NH3, 15O-H2O) perfusion 
tracers

- Myocardial fixed perfusion defect in case 
of myocardial necrosis

- CMR - Myocardial fixed perfusion defect in case 
of myocardial necrosis

- Subendocardial edema and LGE in case 
of ischemia

- CCTA​ - Non-obstructive CAD, positive remod-
eling

Microvessel disease - PET perfusion tracers (82Rb, 13N-NH3, 
15O-H2O)

- Absence of segmental perfusion defect 
with a distribution suggestive of epicar-
dial origin

- MBF < 1.8 mL/g/min for 13N-
NH3, < 2.3 mL/g/min for 15O-H2O, no 
standard threshold for 82Rb

- CFR < 2.0 for 82Rb and for 13N-
NH3, < 2.5 for 15O-H2O

- CMR (not used in clinical routine) - Reduced MPR < 2.2
- Absence of segmental perfusion defect 

with vascular distribution
- CCTA​ - Absence of obstructive CAD

Heart failure HFpEF - CMR - LVEF ≥ 50%, non-dilated LV, concentric 
hypertrophy, and left atrial enlargement

- SPECT and PET radiotracers - No specific finding
- CCTA​ - No specific finding

TTC​ - SPECT (99mTc, 201Tl) and PET (82Rb, 
13N-NH3, 15O-H2O) perfusion radi-
otracers

- Glucose metabolism (18F-FDG)
- Myocardial sympathetic innervation 

(123I-MIBG)

- Reduced perfusion in the acute phase, 
normalized perfusion in the subacute 
phase

- Reduced in the acute and subacute phase
- Reduced in the acute and subacute phase

- CMR - Kinetic abnormalities (apical, basal, or 
midventricular), myocardial edema, LV 
thrombi in case of complication

- No sign of necrosis
- CCTA​ - Absence of obstructive CAD
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advances and refinements of the scanning protocol may allow 
a significant reduction of the effective breast tissue dose [68].

Cardiac magnetic resonance

CMR is particularly interesting in women with suspected 
CAD because it is devoid of ionizing radiation exposure 
[69]. In women with stable CAD, CMR has a higher sensi-
tivity than SPECT as demonstrated by the CE-MARC [70] 
and MR-IMPACT II studies [71]. Two CMR techniques 
are available to detect myocardial ischemia [72]: perfusion 
CMR using a vasodilator agent and requiring a gadolin-
ium-based contrast agent to assess perfusion abnormali-
ties, and dobutamine-stress CMR, which focuses on wall 
motion abnormalities and therefore does not require contrast 
agents. Noteworthy, the higher rate of side effects induced 
by vasodilator agents in women (such as headache, flushes, 
dizziness, chest pain, and nausea), in particular with adeno-
sine [73], represents a limitation to their use. Interestingly, 
first-pass myocardial perfusion on vasodilator stress CMR 
can detect subendocardial ischemia even in the absence of 
significant coronary stenosis, a frequent presentation in 
women [30]. Although not yet implemented in clinical rou-
tine, quantification of myocardial blood flow (MBF) by rest/
stress high-resolution perfusion CMR displays good accu-
racy to identify CMVD [74]. CMR’s high spatial resolution 
can also be useful in the follow-up of women with ACS 
undergoing revascularization, who present with smaller 
post-revascularization infarct size and myocardial salvage 
than men [75]. T1 and T2 mapping techniques and CMR-
based measurement of extracellular volume (ECV) help to 
accurately assess the acute infarct size [76]. T1 mapping is 
highly sensitive to edema (such as in the acute phase of MI 
[77]), and fibrosis (such as in scarred myocardium follow-
ing MI [78]). ECV measurement using mapping techniques 
also detects myocardial fibrosis with high sensitivity, com-
plementing the data obtained from T1 mapping [79]. While 
late gadolinium enhancement (LGE) only highlights focal 
fibrosis [80], T1 and ECV mapping allow the detection of 
diffuse interstitial fibrosis, even in the early phases of the 
disease [81]. Similarly, T2 myocardial maps can be gener-
ated, which, if increased, indicate myocardial edema [82]. 
CMR mapping techniques simultaneously assess differen-
tial diagnoses of CAD in women such as myocarditis and 
TTC [83]. Indeed, early CMR imaging with T1 and ECV 
mapping techniques significantly improves the detection of 
acute phases of TTC compared to CMR without mapping, by 
evidencing myocardial edema in the affected area [83, 84].

Noteworthy, T1 and ECV values are higher in women than 
in men [85]. Additionally, T1 and ECV increase with age 
in males, but not in females [79], which could reflect the 
age-dependent increase of interstitial myocardial fibrosis in 
males observed in histopathological studies [86]. While these 

differences might be irrelevant in diseases inducing high lev-
els of myocardial edema and/or fibrosis, they could become 
significant in diseases inducing mild changes, suggesting the 
need for sex-specific reference values for mapping parameters 
[79]. Another advantage of CMR in women as compared to 
SPECT is that CMR is devoid of breast attenuation artifacts 
[87]. Moreover, CMR is not associated with radiation expo-
sure and is therefore encouraged over ionizing techniques 
(SPECT, PET) in premenopausal women with intermediate-
to-high risk of CAD [88]. Nonetheless, a limitation of CMR 
in women is their higher rate of claustrophobia [89].

Nuclear imaging modalities

SPECT is the most common functional imaging technique 
for ischemia detection and risk stratification of women with 
stable CAD [90]. Despite overall high diagnostic accuracy 
in women [91], the detection of small areas of ischemia by 
SPECT-MPI can be limited in postmenopausal women who 
present with smaller left ventricular (LV) volumes, which 
in conjunction with the limited spatial resolution of SPECT 
induce image blurring [90]. In addition, SPECT-MPI cannot 
rule out CMVD [92] as it does not enable absolute quantifica-
tion of MBF due to its low resolution. Another limitation of 
SPECT in women is breast tissue attenuation which can mimic 
perfusion defects, classically in the anterior wall [93]. Several 
techniques help to reduce attenuation artifacts including image 
acquisition in prone position, breast bandage, and CT-based 
attenuation correction [94]. Combining CT with SPECT also 
allows quantifying intrathoracic fat and CACS, which provide 
incremental prognostic value for MACE in women [95].

Radiation exposure represents a major drawback of 
SPECT-MPI in young women [96], with an estimated expo-
sure of 2–8 mSv [66]. 99mTc should therefore be favored over 
201Tl because of its lower radiation exposure [88]. Addition-
ally, if stress imaging is normal, skipping rest acquisitions 
can decrease total radiation dose [97]. Highly sensitive cad-
mium-zinc-telluride-based detectors also allow the reduc-
tion of the amount of injected radiotracer and the associated 
radiation burden [98] while improving diagnostic accuracy in 
women with low-to-intermediate likelihood of CAD. Indeed, 
cadmium-zinc-telluride-based detectors reduce the percent-
age of artefactual perfusion defects, in particular those 
induced in the anterior wall by breast attenuation [99]. Simi-
larly, PET-MPI is associated with a lower radiation exposure 
than SPECT [100]. Additionally, PET’s higher spatial resolu-
tion compared to SPECT reduces the rate of false negatives 
in women that are related to smaller LV size [90]. Moreover, 
PET-MPI (using either 13N-NH3, 82Rb, or 15O-H2O) enables 
absolute quantification of myocardial perfusion, i.e., MBF 
and coronary flow reserve (CFR), which are key elements 
of CMVD [101]. Of note, MBF values at rest are higher and 
CFR values are lower in women than in men [102], and the 
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predictive value of PET-derived MBF and CFR for MACE is 
lower in women than in men [103, 104]. On the other hand, a 
blunted heart rate response after pharmacological stress for 
13N-NH3-PET-MPI is a predictor of reduced CFR in women 
with suspected myocardial ischemia, but not in men [105]. 
More recently, 18F-flurpiridaz has emerged as a promising 
tracer for PET-MPI evaluation of MBF [106]. 18F-flurpiridaz-
PET-MPI presents higher specificity than SPECT-MPI for 
the detection of CAD in women [107], which could be related 
to the preserved diagnostic performances of 18F-flurpiridaz-
PET-MPI in patients with small ventricles [108]. Similar to 
SPECT-MPI, CT performed in combination with PET-MPI 
also helps correct breast attenuation artifacts [109].

With regard to plaque imaging, several studies have estab-
lished the ability of vascular 18F-sodium fluoride PET (18F-
NaF PET) to document the early stages of plaque microcal-
cification [110] and to predict the progression of coronary 
plaques [111]. Interestingly, the intensity of 18F-NaF uptake 
in atherosclerotic plaques of CVD-free patients is lower in 
women than in men [112], which seems consistent with the 
lower burden of calcified plaque in this population. Conse-
quently, studies are needed to identify specific features of 
plaque progression other than calcification in the female 
population.

Heart failure in women

The presentation of HF can be acute or chronic. Three types 
of chronic HF are distinguished based on LV ejection fraction 
(LVEF): HF with reduced LVEF (≤ 40%, HFrEF), HF with 
mildly reduced LVEF (41–49%, HFmrEF, previously HF 
with midrange reduced EF), and HFpEF (≥ 50%) [113, 114]. 
Women in general display a higher LVEF than men, this dif-
ference becoming more pronounced with age. Indeed, a sub-
stantial decrease in LV end-systolic volume in aging women 
accounts for a concomitant increase in LVEF [113, 115]. It is 
therefore conceivable that women with 51% ≤ LVEF ≤ 59% 
in fact present early stages of HFrEF [116] and are wrongly 
categorized as HFpEF [113]. Interestingly, supra-normal 
LVEF (≥ 65%) is associated with an increased risk of death 
in women, but not in men [117, 118].

In Western countries, HFpEF affects 5% of the popula-
tion aged ≥ 60 years and represents more than half of all 
HF-related hospitalizations [119]. HFpEF displays a clear 
female overrepresentation with a ~ 2:1 ratio [12]. Besides 
female sex, risk factors for HFpEF include advanced 
age > 70 years, metabolic syndrome, and atrial fibrillation 
[120]. All these factors induce a systemic proinflammatory 
state, which favors CMVD. The latter is accompanied by 
a reduction of nitric oxide and G protein activities, which 
triggers myocardial hypertrophy and fibrosis, and in turn 
LV diastolic dysfunction [121]. The central role of CMVD 
in the pathophysiology of HFpEF could explain the female 

overrepresentation in this entity [6]. HFpEF can also be the 
manifestation of specific cardiomyopathies, such as inherited 
or acquired infiltrative cardiomyopathies (including cardiac 
amyloidosis), restrictive cardiomyopathies, myocarditis, 
or genetic cardiomyopathies [120]. Notably, women with 
HFpEF have a better prognosis than men with HFpEF, with 
less mortality despite a higher re-hospitalization rate, which 
could possibly reflect a sex difference in spironolactone 
treatment impact on all-cause mortality [122].

HFrEF in women is less frequently of ischemic origin than 
in men; and if so, it is more often related to CMVD than to 
epicardial stenosis [12]. A specific cause of acute HFrEF with 
female overrepresentation includes TTC-related acute HF 
[123]. TTC consists of acute and transient systolic LV dysfunc-
tion developing in the direct aftermath of emotional or physi-
cal stress, though sometimes no clear trigger can be identified 
[123]. Given its association with emotional stress, neurogenic 
myocardial stunning mediated by stress-induced catechola-
mine release has been suggested to be the most likely causa-
tive mechanism of TTC. Nevertheless, multivessel coronary 
spasms, impaired coronary microcirculation, or inflammatory 
processes have been proposed as alternative mechanisms [124]. 
TTC is predominantly a female postmenopausal disease with 
women representing 90% of cases of which 80% are diagnosed 
after the age of 50 [123]. TTC classically mimics ACS with ST-
elevation and increased troponin; hence, TTC is a differential 
diagnosis of MINOCA [28]. TTC can also present as acute 
HF or less frequently be asymptomatic [123]. The hallmark 
feature of TTC is a reversible LV apical ballooning, although 
inverted midventricular, basal, and focal forms have also been 
described [123].

Other female-associated causes of acute HF are breast 
cancer treatment-related cardiomyopathy, and female-spe-
cific cardiomyopathies such as PPCM [12], which will be 
discussed in the respective sections of this review.

Noninvasive imaging plays a key role in the manage-
ment of both acute and chronic HF [125, 126] (Table 2). 
Although the general diagnostic strategy is similar between 
both sexes, certain aspects need to be considered in women, 
related either to the choice of imaging modality to assess 
cardiac function, or to the etiologies of HF (Fig. 3).

Imaging‑related specificities in heart failure

Assessment of cardiac function and volumes

While echocardiography is the first-line exam to assess car-
diac function [127], it may be technically limited in women 
because of a smaller acoustic window related to breast inter-
ference and higher prevalence of a concave-shaped chest 
wall in women [128]. CMR is therefore a valid alternative 
to echocardiography for imaging of cardiac volumes [125]. 
CMR is considered the reference standard to measure right 
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and left chamber volumes and mass [125], to assess both 
systolic and diastolic functions, determine HF etiology, and 
look for complications in HFrEF [129] as well as in HFpEF 
[130]. Noteworthy, sex differences exist in the normal values 
of cardiac chambers, with lower left and right ventricular and 

atrial volumes as well as LV mass in women as compared to 
men, even after correcting for body surface area [131].

Based on local practices and availability of technologies, 
an alternative method is 2D-gated equilibrium radionuclide 
angiocardiography (ERNA), which robustly determines 

Fig. 3   Proposed diagnostic algorithm for women with suspected 
heart failure. In both acute and chronic HF, TTE is the frontline test 
for the evaluation of cardiac contractility and chamber volumes, in 
addition to cardiac biomarkers (troponin and brain natriuretic pep-
tide) [114]. Because of TTE’s potential limitations in women, CMR 
is a useful alternative [127] to assess systolic and diastolic func-
tion and determine the type of HF. In chronic HF, ERNA is another 
option [132, 136], although no longer mentioned in the latest Euro-
pean Society of Cardiology guidelines [114]. In case of HFrEF, the 
lower rate of ischemic origin in women stresses the importance of 
CMR with LGE to evaluate alternative etiologies, such as DCM, 
HCM, VHD [142], ARVC [144], myocarditis, sarcoidosis, and infil-
trative diseases. CCTA is also well suited to rule out CAD in women 
with HFrEF given its high specificity [47]. In selected cardiomyo-
pathies, nuclear imaging is useful for the etiological workup, such 
as bone scintigraphy and 123I-MIBG SPECT for cardiac amyloido-
sis [140], 18F-FDG PET in inflammatory diseases, and nuclear MPI, 
123I-MIBG SPECT, and 18F-FDG PET in TTC [147]. In women 
with dyspnea and preserved systolic LVEF, an in-depth screen-

ing for HFpEF must be considered, based on the four-step algo-
rithm previously mentioned and established by the ESC [120, 130]. 
Abbreviations:  18F-FDG: Fluor-18-fluorodeoxyglucose;  123I-MIBG: 
iodine-123-meta-iodobenzylguanidine; ARVC: arrhythmogenic right 
ventricular cardiomyopathy;  CAD: coronary artery disease; CCTA​
: coronary computed tomography angiography; CAD CMR: car-
diac magnetic resonance;  CTRCD: cancer therapy-related cardiac 
dysfunction;  DCM: dilated cardiomyopathy; ERNA: equilibrium 
radionuclide angiocardiography;  HCM: hypertrophic cardiomyopa-
thy; HF: heart failure; HFpEF: heart failure with preserved ejection 
fraction; HFrEF: heart failure with reduced ejection fraction; ICA: 
invasive coronary angiography; LA: left atrium; LGE: late gadolin-
ium enhancement; LV: left ventricular; LVEDP: left ventricular end-
diastolic pressure; LVEF: left ventricular ejection fraction; mPCWP: 
mean pulmonary capillary wedge pressure; MPI: myocardial perfu-
sion imaging; PET: positron emission tomography; PPCM: peri-
partum cardiomyopathy; SPECT: single-photon emission computed 
tomography; TTC​: Takotsubo cardiomyopathy; TTE: transthoracic 
echocardiography; VHD: valvular heart disease
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LVEF [132]. However, scintigraphy tends to underestimate 
the value of LVEF compared to CMR in both sexes [133].

CCTA also accurately assesses LVEF [134]. Despite this, 
concerns related to radiation exposure in women limit the 
use of CCTA and ERNA to patients with low echogenicity 
and contraindications to CMR [135, 136]. Also, due to the 
increasing use of prospective electrocardiogram (ECG) gat-
ing, which has resulted in lower radiation dose and better 
image quality [137], assessment of LV volumes by CCTA 
is no longer ubiquitously available.

Differential diagnosis of heart failure etiologies

Heart failure with preserved ejection fraction

The European Society of Cardiology (ESC) proposes a 
four-step algorithm to diagnose HFpEF [120]. First, women 

with dyspnea (especially on exertion) or orthopnea should 
undergo a pretest evaluation. This consists of screening for 
HFpEF risk factors such as obesity, metabolic syndrome/
diabetes mellitus, physical inactivity, and arterial hyperten-
sion, recording ECG in search for atrial fibrillation (a highly 
predictive criteria for HFpEF) [138], and performing echo-
cardiography or CMR showing LVEF ≥ 50%, non-dilated 
LV, concentric hypertrophy, and left atrial enlargement [120, 
139] (Case 3). If the presentation is suggestive of HFpEF, 
an echocardiographic score is calculated based on a series 
of major and minor criteria which will not be detailed here 
[120]. In case the score does not allow ruling in or ruling out 
the diagnosis of HFpEF, a 3rd step consists of considering 
diastolic dysfunction assessed by stress echocardiography, 
which alongside preserved LVEF is a cardinal feature of 
HFpEF [120, 139]. If the diagnosis still remains uncertain, 
invasive hemodynamic measurements using left and right 
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Case 3   Chronic dyspnea in a 71-year-old woman.  A 71-year-old 
woman with a history of WHO grade 3 obesity (body-mass-index 
40.1  kg/m2) and type 2 diabetes was referred for worsening dysp-
nea (NYHA grade II-III). Clinically no other signs of congestion or 
fluid retention were observed. The ECG showed normofrequent atrial 
fibrillation (A). The NT-proBNP values were increased (1190 ng/L, 
N < 738  ng/L). Echocardiography displayed a preserved LVEF 
(60%) with concentric hypertrophic remodeling and type II dias-
tolic dysfunction. CMR confirmed the preserved LVEF (55%) with 
a non-dilated (B, LV end-diastolic volume: 98 mL, N = 77–158 mL; 
C, LV end-systolic volume: 44  mL, N = 37–48  mL) hypertrophic 
LV (indexed LV mass = 58  g/m2, N < 55.9  g/m2), In addition, LGE 
imaging showed no scar (D) and a dilatedLA was detected (23 cm2, 
N < 16.0 cm2; E and F, white contouring). Rest/stress perfusion 
showed no sign of ischemia or scar. Consequently, the diagnosis of 
HFpEF was established, and an appropriate therapy consisting of 
diuretics and angiotensin-converting enzymes inhibitor was initiated. 
Interestingly, new FDA-approved classes of medication, i.e., nepri-

lysin inhibitor and empagliflozin [231], have recently been shown 
to reduce cardiovascular mortality and rate of re-hospitalization for 
HFpEF patients, with an effect of neprilysin inhibitor persisting for 
higher LVEF values in women than in men [232]. Comorbidities that 
are associated with inflammation, such as hypertension, diabetes, and 
obesity, play a central role in the development of HFpEF, particularly 
in women [233]. In addition, a systolic LV dysfunction is increas-
ingly recognized as being a single aspect of HF, which can also result 
from diastolic dysfunction as reflected in this case. Therefore, HFpEF 
should always be kept in mind in women with dyspnea and comorbid-
ities that favor inflammation. Abbreviations: CMR: cardiac magnetic 
resonance; ECG: electrocardiogram; FDA: Food and Drug Adminis-
tration; HF: heart failure; HFpEF: heart failure with preserved ejec-
tion fraction; LA: left atrium; LGE: left gadolinium enhancement; LV: 
left ventricle; LVEF: left ventricular ejection fraction; N: normal; NT-
proBNP: N-terminal brain natriuretic peptide; WHO: World Health 
Organization
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heart catheterization are recommended with measurement 
of LV end-diastolic pressure and mean pulmonary capillary 
wedge pressure [120]. Once HFpEF is confirmed, the final 
step consists of an etiological workup. Given that CMVD 
is present in most patients with HFpEF [6], PET-MPI 
with calculation of CFR and MBF is recommended [120]. 
CMR detects most of the specific etiologies (ischemic car-
diomyopathy, myocarditis, or restrictive cardiomyopathies), 
while CCTA can be most useful to evidence CAD [130]. 
In selected cases, bone scintigraphy and 123I-meta-iodoben-
zylguanidine (123I-MIBG) scintigraphy are useful to detect 
cardiac amyloidosis [140].

Heart failure with reduced ejection fraction

In case of HFrEF, the lower rate of ischemic origin in women 
stresses the importance of CMR with LGE and T1/T2 map-
ping techniques to establish alternative etiologies, such as 
dilated cardiomyopathy (DCM), hypertrophic cardiomyopa-
thy (HCM), valvular heart disease (VHD) [141–143], and 
arrhythmogenic right ventricular cardiomyopathy [144].

Takotsubo cardiomyopathy

Although invasive imaging establishes the diagnosis of 
TTC in most cases, by ruling out coronary obstruction 
and showing the hallmark wall motion abnormality [145], 
multimodality imaging plays a key role in the diagnosis 
of TTC [146]. Echocardiography is the first-line exam, 
displaying the characteristic LV wall motion abnormality 
generally extending beyond a coronary territory. ICA is 
often required owing to the MI-like presentation of TTC, 
showing normal coronary arteries. Alternatively, CCTA 
can be performed in stable patients, ruling out CAD with 
high confidence. CMR with LGE and mapping techniques 
is a particularly comprehensive tool, revealing the typical 
kinetic abnormalities, myocardial edema (with increased 
T2-weighted signal and T1 mapping values), excluding 
differential diagnosis (particularly MINOCA and myocar-
ditis), and detecting complications such as LV thrombi. 
Often overlooked, nuclear imaging tools can also establish 
the diagnosis, particularly in the subacute phase when wall 
motion has normalized thereby misleading other imaging 
tools (Case 4). In the subacute phase, nuclear MPI shows 
preserved perfusion, while 123I-MIBG and 18F-fluorode-
oxyglucose (18F-FDG) uptakes remain reduced despite 
normalization of ventricular kinetics [147]. Interestingly, 
6-Fluoro-[18F]-l-3,4-dihydroxyphenylalanine (18F-DOPA) 
PET-based studies have documented an age-dependent 
increase in 18F-DOPA uptake in the LV apex of women, 
which was not present in men, indicating an enhanced 
sympathetic activity which could account for the higher 
susceptibility of postmenopausal women to TTC [18].

Pregnancy

To date, heart diseases affect up to 4% of all pregnant 
women and 16% of pregnant women with preexisting car-
diac conditions [148], rendering CVD the leading cause of 
maternal morbidity [149]. The latter represents one-third of 
all pregnancy-related maternal deaths [150]. This alarming 
situation has been in part attributed to the growing number 
of pregnancies in women aged > 35 years and to the pro-
longed survival of women with congenital heart diseases 
reaching childbearing age [149]. Additionally, pregnancy 
complications such as hypertensive disorders, preterm deliv-
ery, and gestational diabetes occur more often in pregnant 
women > 40 years [151] and increase subsequent cardio-
vascular risk [152]. Consequently, evidence-based recom-
mendations for pregnant women at increased cardiovascular 
risk have been established, in which cardiac imaging plays a 
central role [153, 154].

Pregnancy-related heart disease can be caused by a pre-
existing maternal condition that is either first diagnosed or 
has worsened during pregnancy [148, 154] or by a condition 
newly acquired during pregnancy [155] such as PPCM (Case 
5) or peripartum SCAD (Case 6).

Challenges of cardiac imaging in pregnant women

Two main challenges must be addressed when imaging preg-
nant women: (1) distinguishing pathological conditions from 
the physiological changes occurring during pregnancy; and 
(2) finding the optimal trade-off between radiation exposure 
and image quality [156].

During pregnancy, physiological adaptive cardiovascular 
changes occur [149]. These changes consist mainly of an 
increase in LV end-diastolic volume, LV mass, and cardiac 
output [157]. In addition, one out of four pregnant women 
shows an increase in LV trabeculation, which can mimic 
LV non-compaction cardiomyopathy [158]. Pregnancy is 
also associated with tachycardia [157], which can represent 
a technical limitation for ECG gating.

Radiation exposure during pregnancy increases the risk 
of breast cancer in the mother [159] and may induce miscar-
riage, malformation, or fetal cancer [160]. Consequently, 
pregnant women should preferentially undergo non-ionizing 
imaging, i.e., echocardiography or non-contrast-enhanced 
CMR [161]. It is nevertheless recommended to avoid mag-
netic resonance imaging > 1.5 Tesla due to concerns related 
to heating effect, especially during the 1st trimester [69]. 
Additionally, fetal exposure to gadolinium at whatever stage 
of pregnancy increases the risk of stillbirth or neonatal death 
and should be limited to the only cases when the expected 
benefits clearly outweigh the risks [162].

If necessary, and in agreement with a fully informed 
patient, ionizing techniques should not be withheld from 
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Case 4   Sixty-year-old woman for routine checkup.  A 60-year-old 
woman with severe hypercholesterolemia presented to the cardiol-
ogy outpatient clinic for a routine evaluation. The resting ECG (A, 
V3 lead) showed a loss of R-wave progression and biphasic T-waves 
in the anterior precordial and lateral leads, respectively. Echocardi-
ography (B) revealed isolated apical akinesia with preserved LVEF. 
Subsequent ICA was normal (C). ECG-gated 99mTc-MPI-SPECT 
performed 7  days later showed normal LV stress/rest perfusion, but 
reduced end-systolic thickening and antero-apical hypokinesia (D, 
horizontal and vertical long axes, polar maps). TTC was hypothesized 
and, 2  weeks after the perfusion scan, the patient underwent ECG-
gated 123I-MIBG SPECT (E) and 18F-FDG PET/CT (F), showing a 
concordant alteration of adrenergic innervation (E, yellow arrow-
heads) and glucose metabolism (F, red arrowheads) in apical and 
anterior LV wall. A careful patient questioning revealed significant 

stress exposure at work triggering the (clinically silent) TTC. The 
resolution of the workplace conflict coincided with the recovery of 
LV apical kinetics documented by echocardiography 3 months later. 
TTC is often caused by severe emotional stress. If segmental LV wall 
motion disorders are present, an adrenergic cause must be considered. 
In this context, nuclear medicine provides a specific imaging pattern, 
useful to reach the diagnosis. Abbreviations: 18F-FDG:  Fluor-18- 
radiolabeled fluorodeoxyglucose; 99mTc: 99mTechnetium; 123I-MIBG: 
123I-meta-iodobenzylguanidine; CT: computed tomography; ECG: 
electrocardiogram; ICA: invasive coronary angiography; LV: left 
ventricle; LVEF: left ventricular ejection fraction; MPI: myocardial 
perfusion imaging; PET: positron emission tomography; SPECT: 
single-photon emission computed tomography; TTC​: Takotsubo car-
diomyopathy
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pregnant patients, together with or in replacement of non-
ionizing techniques [162]. Indeed, although no threshold 
exists below which there would be no risk for the fetus 
(stochastic effect), the risk associated with fetal radia-
tion < 100 milliGray is considered negligible, which is 
beyond the usual radiation doses of diagnostic imag-
ing [163, 164]. The as low as reasonably achievable 
(ALARA) dose should always be the guiding principle 
(ideally < 50 milliGray [165]) while preserving image 
quality. This can be achieved by preferentially resorting 
to non-ionizing imaging, by optimizing CT parameters 
(preferential use of low voltage and of high pitch, care-
ful selection of tube current, use of novel reconstruction 
algorithms, avoiding multiple phases imaging), and for 
nuclear imaging by opting for radiotracers with shorter 
half-life (99mTc rather than 201Tl [166]) and reducing the 

injected radiotracer activity [66, 167]. In case scintigra-
phy is performed, breastfeeding needs to be interrupted 
for > 12 h after the study due to the excretion of the radi-
otracer in the maternal milk [136].

Positioning during image acquisition is also impor-
tant. Indeed, in the supine position, the gravid uterus can 
compress the inferior vena cava which may affect cardiac 
output; to prevent this, pregnant women should undergo 
imaging in the left lateral tilt position [168].

Specific cardiac diseases in pregnancy

Peripartum cardiomyopathy

The incidence of PPCM is 1 per 1000–4000 live births in 
Western countries, but its incidence varies depending on 
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Case 5   Non-sustained ventricular tachyarrhythmia and dyspnea in a 
31-year-old woman.  A 31-year-old primiparous woman with a his-
tory of polycystic ovary syndrome and obesity (body mass index 
33 kg/m2) and no family history of CVD was referred to hospital for 
a planned caesarian section. Her pregnancy has been complicated 
by hypertension and gestational diabetes. The aftermath of delivery 
was marked by episodes of non-sustained ventricular tachyarrhyth-
mia and dyspnea. Troponin and NT-proBNP were within normal 
range. An echocardiography revealed a mildly reduced LVEF (40%) 
without regional wall motion abnormalities and relevant valvular 
abnormality, as well as normal right-sided cardiac cavities. CMR 
was performed confirming a mildly reduced LVEF of 42% (panels 
A and B) with no regional component, particularly no pattern sug-
gestive of TTC. LV and RV were non-dilated (respectively, LV end-
diastolic volume 85 mL/m2, N: 66–101 mL/m2; and RV-end-diastolic 
volume 80 mL/m2, N: 65–111 mL/m2), hence excluding preexisting 
cardiomyopathies and DCM. No myocardial LGE was detected (C), 
excluding necrosis, and pharmacological stress revealed no ischemia 

(D). T1 (E) and T2 (F) mapping of the LV myocardium were normal, 
1247 ms (N: 1222 ± 42 ms) and 39 ms (N: 38 ± 2.3 ms), respectively, 
thus excluding scar and edema/myocarditis. Based on the timing of 
the disease (early postpartum) and other cardiomyopathies being 
excluded, the diagnosis of PPCM was made. Dyspnea during or in 
the direct aftermath of pregnancy is a common situation, which can 
result either from hemodynamic adaptations to pregnancy or from 
complications. The differential diagnosis in this setting includes pul-
monary embolism and PPCM. Key to the diagnosis of PPCM is the 
timing of the disease and the absence of previous cardiomyopathies. 
Advanced noninvasive imaging is helpful in this setting, to establish 
LV systolic dysfunction and to rule out concurrent cardiomyopathies. 
Abbreviations: CVD: cardiovascular disease; CMR: cardiac magnetic 
resonance; DCM: dilated cardiomyopathy; LGE: late gadolinium 
enhancement; LV: left ventricle; LVEF: left ventricular ejection frac-
tion;  N: normal; NT-proBNP: N-terminal brain natriuretic peptide; 
PPCM: peripartum cardiomyopathy; RV: right ventricle; TTC​: Takot-
subo cardiomyopathy
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predisposing factors including age > 30 years, black ethnic-
ity, preeclampsia, hypertension, and multiparity [169]. Sev-
eral pathophysiological hypotheses have been proposed to 
account for the development of PPCM (vascular, hormonal, 
and genetic) [170], but the exact underlying causes remain 
debated.

PPCM is defined as symptomatic LV systolic dysfunc-
tion with LVEF < 45%, developing either in the last month 
of pregnancy or in the 5 months following its end in women 
with no previously documented cardiac disease [171]. A 
simplified definition describes PPCM as an idiopathic HF 
developing towards the end of pregnancy or in the months 
following delivery [172]. This definition limits the risk of 
PPCM being under-diagnosed by too stringent timeframe 

cutoffs. Noteworthy, LVEF can be preserved or mildly 
impaired in early stages of PPCM [173]. Given the broad-
ness of the diagnostic criteria, PPCM is in practice an exclu-
sion diagnosis, retained after ruling out other cardiomyopa-
thies and preexisting heart diseases, especially DCM that 
shares common clinical and genetic features with PPCM 
[174, 175]. The time of onset can help distinguishing both 
entities. DCM develops preferentially during late pregnancy, 
whereas PPCM usually occurs in the early weeks after deliv-
ery [176]. DCM must also be considered in case of familial 
history or preexisting LV dysfunction [177].

PPCM is usually reversible within 6 months after ter-
mination of pregnancy [178]. Factors associated with a 
lower rate of 12-month event-free survival or reduced LV 
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Case 6   Intermittent retrosternal pain in a 30-year-old woman, 
6 weeks postpartum. A 30-year-old female patient, 6 weeks postpar-
tum after an uncomplicated pregnancy with no prior medical history 
or CVRFs, presented to the emergency department for intermittent 
retrosternal pain which had evolved over 2 weeks. Admission workup 
revealed a mildly elevated troponin (0.64 µg/L, N < 0.10 µg/L) while 
the ECG showed no abnormality suggestive of myocardial ischemia. 
The patient, being at low clinical likelihood of CAD, was referred for 
CCTA using a triple rule-out setting. The diagnoses of pulmonary 
embolism and aortic dissection were excluded. Coronary analysis 
showed no evidence of calcification or stenosis but revealed a com-
plete occlusion of the distal segment of the left anterior descend-
ing artery (A, yellow arrowhead, volume rendering reconstruction 
of the heart and the coronary tree), compatible with either a SCAD 
or a thrombotic occlusion. The patient was referred for urgent ICA 
which confirmed the diagnosis of SCAD (B-D, red arrowheads), 
without signs of regional or diffuse hypokinesia in the ventriculogra-
phy. A conservative strategy was initiated, combining anticoagulation 
with dual antiplatelet therapy. After the acute episode, a whole-body 
angio-magnetic resonance imaging was performed that found no evi-
dence of fibromuscular dysplasia. Genetic analysis ruled out genetic 

disorders. ICA was repeated after 6  weeks, confirming spontaneous 
partial revascularization of the dissected artery with persistence of a 
50% residual stenosis with TIMI III post-stenotic flow (E, blue arrow-
head), treated conservatively by continuation of dual antiplatelet ther-
apy. 13N-NH3-PET-MPI was also realized, showing no signs of scar 
or ischemia (F, horizontal and vertical long axes, at rest and stress). 
Although rare, SCAD is a classical cause of ACS in the late stages 
of pregnancy and in the early postpartum period. Therefore, SCAD 
should be suspected in young women without cardiovascular risk fac-
tors presenting with ACS or cardiac arrest. While CCTA is preferred 
in hemodynamically stable patients, ICA is often required to establish 
the diagnosis. Noninvasive imaging can also be useful to screen for 
predisposing vascular diseases and to exclude differential diagnosis 
of chest pain in young women, such as pulmonary embolism. Abbre-
viations: 13N-NH3: asnitrogen-13-radiolabeled ammonia; ACS: acute 
coronary syndrome; CAD: coronary artery disease; CCTA​: coronary 
computed tomography angiography; CVRF: cardiovascular risk fac-
tor; ECG: electrocardiogram; ICA: invasive coronary angiography; 
MPI: myocardial perfusion imaging; PET; positron emission tomog-
raphy; SCAD: spontaneous coronary artery dissection; TIMI: throm-
bolysis in myocardial infarction score
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functional recovery are LVEF < 30% at diagnosis, LV end-
diastolic diameter > 60 mm, an involvement of the right 
ventricle (RV), and evidence of myocardial edema on CMR 
[179–181].

The frontline imaging exam is echocardiography [181]. 
CMR also accurately measures cardiac volumes, and T2 
imaging characterizes myocardial edema in postpartum 
women [182]. Moreover, CMR excludes differential diag-
nosis, such as myocarditis, TTC, and DCM, and reveals 
stigmas of previous cardiomyopathies [141, 154, 171, 181]. 
CMR can also identify LV thrombi, a classical complica-
tion of PPCM [183]. LGE can evidence myocardial scar-
ring (in postpartum women when gadolinium can safely 
be used), which is associated with worse outcomes [184]. 
CMR screens for predictors of impaired prognosis such 
as RV involvement [180], and mid-myocardial local LGE 
[185] although the prognostic value of LGE in PPCM is 
debated [179, 181]. CMR can further be used to monitor 
functional recovery, thereby guiding the therapeutic strategy 
[154, 177] which consists of cautious use of conventional 
HF medications, taking into account the risk to the child 
during pregnancy or related to breastfeeding, as well as of 
bromocriptine [186].

Ionizing techniques are usually not needed to diagnose 
PPCM. However, they can be useful to exclude other causes 
of dyspnea and HF during pregnancy, mainly pulmonary 
embolism and CAD [181].

Spontaneous coronary artery dissection

SCAD is an important cause of MI, especially in young 
and middle-aged women, and during pregnancy [187]. 
The reasons behind this sex dimorphism are not clear and 
could be linked to sex hormones as well as distinct sus-
ceptibility genes [187]. Although no sex chromosome-
related gene has been identified, the overrepresentation 
of women in SCAD raises the question whether genes 
with estrogen response elements are implicated in the 
pathophysiology of this condition [187]. In pregnant 
women, the risk of SCAD is particularly high in the first 
week postpartum [188]. While the diagnosis is usually 
made by ICA, optical coherence tomography (OCT) and 
intravascular ultrasound are helpful in cases of uncer-
tainty or to guide revascularization [187]. CCTA can 
show abrupt luminal interruption [187] and should be 
preferred in hemodynamically stable women, owing to 
the risk of aggravating the dissection by contrast injec-
tion in the coronary ostium during ICA [187]. CCTA 
typical findings include an intimo-medial flap, lumen 
narrowing, or even occlusion, caused by thrombosis or 
intramural hematoma [189].

Cancer

CVD is the leading cause of morbidity and mortality of 
cancer survivors, affecting one out of three patients [190]. 
Of note, female survivors of breast and cervix cancer face 
a 20–30% higher risk of cardiac deaths than the general 
population [190]. Detecting patients at risk for cardiotox-
icity allows early initiation of cardioprotective therapies or 
avoidance of highly cardiotoxic drugs, thereby alleviating 
the burden of CVD in cancer patients [191]. The links 
between the heart and neoplastic diseases can be direct 
(metastasis and primary tumors) or indirect, with the lat-
ter consisting mainly of cardiotoxicity related either to 
therapy or to circulating factors (such as amyloid deposits 
in amyloidosis or serotonin in carcinoid tumors) [192].

Female sex is one of the most important risk factors of 
cancer treatment-related cardiotoxicity [193]. Indeed, can-
cer drugs that are commonly associated with cardiotoxicity 
include anthracyclines, alkylating agents, platinum com-
pounds, monoclonal antibodies (notably trastuzumab), and 
antibody–drug conjugates, all of which are cornerstone 
treatments of female cancers [194]. In addition, hormonal 
treatments such as aromatase inhibitors specifically used 
in female hormone-dependent cancers might favor CVD 
[195]. Breast cancer is also associated with an increased 
risk of radiotherapy-induced cardiotoxicity due to its prox-
imity to the heart, a risk that is potentiated by the con-
comitant use of anthracyclines [196].

Different types of cancer‑related cardiovascular 
complications

Cancer therapy‑related cardiac dysfunction

Cancer therapy-related cardiac dysfunction (CTRCD) is 
the most common complication of cancer therapy (Case 7). 
CTRCD is defined as a drop in systolic LV function below the 
lower limit of normal (< 50% for the ESC, < 53% for the Euro-
pean Association of Cardiovascular Imaging) in the context 
of cancer treatment administration along with a > 10% decline 
from baseline value. Confirmation by repeating the study 
2–3 weeks after initial diagnosis must be obtained [197]. An 
additional mandatory criterion is a reduction in global longi-
tudinal strain (GLS) > 15% from baseline [197]. Guidelines 
do not distinguish male and female LVEF thresholds for the 
diagnosis of CTRCD. However, active breast cancer in chem-
otherapy-naïve patients is associated with increased strain 
amplitude and systolic strain rate [198]. This, in conjunction 
with the higher values of LVEF in postmenopausal women, 
highlights the need for specific cut-off values of LVEF and 
GLS in women to avoid missing early CTRCD signs.
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While endomyocardial biopsy is the gold standard to 
diagnose CTRCD, noninvasive imaging is the most com-
mon diagnostic tool. Echocardiography is the frontline exam 
to measure LVEF and GLS [199]. Nevertheless, echocar-
diography can be limited in women because of a smaller 
acoustic window related to breast interference, especially 
in case of implants, a common situation after breast cancer 
[200]. Breast implants and reconstructive surgery also limit 
the quality of apical-view-based GLS measurement [201]. 
CMR provides a more accurate and reproducible measure-
ment of ventricular volumes as well as of GLS than echo-
cardiography [202] and is not affected by breast artifacts 
[87]. Additionally, ECV and native T1 mapping can detect 
signs of myocardial fibrosis in women with breast cancer 
exposed to anthracycline [203]. Interestingly, CMR-derived 

LVEF and strain are predictive of subsequent CTRCD in 
early stage HER2 + breast cancer receiving sequential 
anthracycline/trastuzumab [204]. A baseline percentage 
of normal myocardium ≥ 80% on CMR, defined as the per-
centage of LV myocardium with strain less than or equal 
to − 17%, helps identifying women with breast cancer at risk 
of CTRCD [205]. In those who do develop cardiotoxicity, 
normal myocardium ≥ 50% is predictive of recovery [205]. 
Although promising for the detection of subclinical cardio-
toxicity, mapping techniques and ECV values tend to overlap 
between patients with and without CTRCD and need further 
evaluation [206]. Noteworthy, cancer itself and particularly 
breast cancer are associated with structural cardiac changes, 
such as smaller chamber sizes although without significantly 
affecting overall LVEF [198]. Additionally, breast cancer 
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Case 7   Acute onset of dyspnea in a 47-year-old woman with breast 
cancer.  A 74-year-old woman without CVRFs presented with a 
human epidermal growth factor receptor 2 (HER2)-positive, hor-
mone receptor (HR)-negative, locally advanced left-sided breast can-
cer with ipsilateral axillary lymph node extension (pT2N1M0, stage 
IIB). Given her age and the absence of indication for radiotherapy, 
she underwent surgical treatment by mastectomy and axillary lymph 
node dissection. Adjuvant chemotherapy was planned, consisting of 
4 cycles doxorubicin (60  mg/m2) plus cyclophosphamide (500  mg/
m2) and 12 cycles of weekly paclitaxel (75 mg/m2) plus trastuzumab 
(2 mg/kg) followed by 1 year of trastuzumab maintenance (3-weekly, 
6  mg/kg). Pre-treatment echocardiography showed a normal LVEF 
(65%) and a normal GLS (18%). Following the third cycle [cumu-
lative dose of anthracycline 180  mg/m2 (recommended maximum 
cumulative dose 400  mg/m2)], the patient presented with an acute 
onset of dyspnea requiring oxygen therapy. NT-proBNP and troponin 
I were increased (1026 ng/mL, ULN 738 ng/mL and 0.26 μg/L, ULN 
0.10 μg/L, respectively). Echocardiography showed decreased LVEF 
(45%) and GLS (13.8%, N > 15%). A Doxorubicin-induced CTRCD 
was suspected, and a CMR was performed confirming reduced LVEF 
(42%). B and C Balanced SSFP short-axis view of mid-LV. LGE 
sequences showed no sign of scar (D). Chemotherapy was withheld 
and HF treatments consisting of diuretic, betablockers, and angio-

tensin-converting enzyme inhibitor were initiated, and control echo-
cardiography showed an increase of LVEF but persistence of mildly 
decreased GLS (E), indicating persistent subclinical cardiotoxicity. 
Any further exposure to doxorubicin was omitted. Continuation of 
the treatment with paclitaxel and trastuzumab was planned to be ini-
tiated when LVEF would recover to approximately 50% under regu-
lar echocardiographic and laboratory monitoring. With breast cancer 
becoming the most prevalent cancer worldwide in 2020 [234], a shift 
of the overall burden of cancer treatment-related cardiac complica-
tions towards women can be expected. Increasing awareness about 
the intertwining of cardiac diseases and cancer is therefore paramount 
to cardiac imagers. The detection of subclinical cardiotoxicity before 
the onset of heart failure using advanced imaging criteria, such as 
GLS, or obtaining cardiovascular information from oncological imag-
ing exams [213] could help to reduce the complications of cancer 
treatments and should therefore be part of the routine monitoring of 
patients undergoing potentially cardiotoxic therapies. Abbreviations: 
CMR: cardiac magnetic resonance; CTRCD: cancer treatment-related 
cardiac disease; CVRF: cardiovascular risk factor; GLS: global lon-
gitudinal strain;  HF: heart failure; LGE: late gadolinium enhance-
ment; LV: left ventricle; LVEF: left ventricular ejection fraction; NT-
proBNP: N-terminal brain natriuretic peptide; SSFP: steady-state free 
precession; ULN: upper limit of normal
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radiotherapy damages the coronary microvascular endothe-
lium, hence promoting CMVD [207], a situation where high-
resolution perfusion CMR could prove useful [74].

Alternatively, ERNA can be used to measure and moni-
tor LVEF [208]. However, it should be noted that, in breast 
cancer patients receiving trastuzumab, ERNA-derived 
LVEF values are lower than those of CMR [209]. Never-
theless, the use of scintigraphy in women suffers limita-
tions, related to breast tissue/implant attenuation, to the 
cumulative radiation exposure induced by serial follow-up, 
and to the fact that GLS cannot be derived from ERNA.

Cancer therapy‑related ischemic heart disease

Anticancer treatment can lead to other myocardial diseases 
including CAD. The risk of CAD is particularly increased 
in women with left breast cancer undergoing radiotherapy, 
which can induce fibrous stenosis of the left anterior descend-
ing artery, and accelerates progression of existing plaques 
[210]. Similarly, atherosclerosis progression is accelerated 
in patients receiving alkylating-like agents, fluoropyrimi-
dines, and platinum compounds (increasing the risk of arte-
rial thrombosis and vasospasm) [211]. Interestingly, CT 
scan used to plan radiotherapy for breast cancer also enables 
measuring CACS, an independent predictor of ischemic heart 
disease [212]. Furthermore, a recent study has shown that 
18F-FDG myocardial uptake pattern is predictive of altered 
myocardial perfusion. Using this information obtained from 
oncologic imaging exams might therefore be helpful in iden-
tifying patients at risk for future cardiovascular complications 
of anticancer therapy at an early stage [213].

Valvular heart disease

VHD in cancer patients consist mainly of treatment-induced 
fibrosis/calcification leading to stenosis/regurgitation [214], 
and of cardiac masses obstructing the valves [215]. The risk 
of iatrogenic VHD is particularly marked in patients under-
going radiotherapy [215], and those receiving anthracycline 
[215, 216], hence in women treated for breast cancer. Echo-
cardiography is the first-line modality to assess valve func-
tion [217]. CMR is the preferred alternative, particularly for 
regurgitant VHD [218]. CT is increasingly used in VHD, 
especially for the quantification of calcification and measure-
ment of valve orifice area in aortic stenosis [219].

Future directions

Lately, artificial intelligence (AI)-based machine learning 
(ML) techniques have emerged as a promising tool in the 
field of imaging, opening up unprecedented possibilities in 
cardiovascular imaging [220]. In a recent study, Baumann 

et al. compared the diagnostic performance of ML-based 
FFR-CT to detect lesion-specific ischemia between men and 
women [221]. ML-based FFR-CT correlated equally well 
with invasive FFR for both women and men. However, com-
pared to CCTA, the diagnostic performances for the detection 
of ischemia were significantly better in men only. A potential 
explanation could be that the smaller diameter of coronary 
arteries in women might affect FFR-CT calculation.

AI could also be beneficial in patients with HFpEF. In 
a subgroup of predominantly female HFpEF patients with 
few risk factors for the condition, ML techniques identified 
an iron overload state, thus providing the means to assess 
pathophysiological pathways for HFpEF in women [222].

The last decade has witnessed the development of PET 
probes targeting sex hormone receptors in women with 
gynecological cancers, such as 18F-fluoro-17β-estradiol and 
18F-fluoro-5α-dihydrotestosterone [223, 224]. Given the 
impact of sex hormones on cardiovascular health, the use of 
such probes potentially constitutes an interesting research 
tool in the field of gender-specific medicine.

Conclusion

This review highlights sex-specific considerations that are 
critical for selecting the most appropriate cardiac imaging 
modality—with particular focus on challenges and oppor-
tunities of contemporary CVD management in women. 
Indeed, awareness about female attributes in cardiac imag-
ing, considering technical implications and female-specific 
conditions, might help alleviate the burden of CVD in this 
subpopulation. Consequently, there is an urgent need for 
imaging guidelines that are tailored to women and men. 
While efforts have been made in this direction, substan-
tial knowledge gaps still exist. Future imaging studies and 
recommendations require the integration of sex as an algo-
rithm-modifying variable. In the era of precision medicine, 
accounting for sex disparities seems crucial to provide the 
best possible cardiovascular care to women and men.
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