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Abstract
Background  Prognosis of nephrotic syndrome has been evaluated based on pathological diagnosis, whereas its clinical course 
is monitored using objective items and the treatment strategy is largely the same. We examined whether the entire natural 
history of nephrotic syndrome could be evaluated using objective common clinical items.
Methods  Machine learning clustering was performed on 205 cases from the Japan Nephrotic Syndrome Cohort Study, 
whose clinical parameters, serum creatinine, serum albumin, dipstick hematuria, and proteinuria were traceable after kid-
ney biopsy at 5 measured points up to 2 years. The clinical patterns of time-series data were learned using long short-term 
memory (LSTM)-encoder–decoder architecture, an unsupervised machine learning classifier. Clinical clusters were defined 
as Gaussian mixture distributions in a two-dimensional scatter plot based on the highest log-likelihood.
Results  Time-series data of nephrotic syndrome were classified into four clusters. Patients in the fourth cluster showed the 
increase in serum creatinine in the later part of the follow-up period. Patients in both the third and fourth clusters were ini-
tially high in both hematuria and proteinuria, whereas a lack of decline in the urinary protein level preceded the worsening 
of kidney function in fourth cluster. The original diseases of fourth cluster included all the disease studied in this cohort.
Conclusions  Four kinds of clinical courses were identified in nephrotic syndrome. This classified clinical course may help 
objectively grasp the actual condition or treatment resistance of individual patients with nephrotic syndrome.
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Introduction

Nephrotic syndrome is characteristic by massive proteinuria, 
edema, and hypoalbuminemia [1]. Nephrotic syndrome is 
often poor in prognosis and complicated with a wide vari-
ety of adverse events, including end-stage kidney disease 
(ESKD) [2, 3], thromboembolism [4], infection [5], malig-
nancy [6], cardiovascular disease (CVD) [7], and mortality 

[8]. Primary nephrotic syndrome is the major cause of 
nephrotic syndrome, which includes minimal change disease 
(MCD), membranous nephropathy (MN), and focal segmen-
tal glomerulosclerosis (FSGS) [9]. The reported incidences 
of MCD, MN, and FSGS were 0.2–0.8, 0.3–1.4, and 0.2–1.1 
per 100,000 person-years, respectively [10] .

The overall prognosis of nephrotic syndrome has not been 
evaluated based on objective clinical items. Currently, key 
clinical information and decisions, such as prediction of the 
prognosis and determination of treatment strategy, rely on 
kidney biopsy, and pathological diagnosis has difficulty in 
eliminating subjectivity. The fact that kidney biopsy is rarely 
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performed repeatedly, due to its risk and tendency to be pro-
cedurally cumbersome, also suggests that it is preferable to 
explore objective methods to monitor nephrotic syndrome. 
Usually, the clinical course of nephrotic syndrome is fol-
lowed by physiologic findings and laboratory test values. 
The treatment strategy for nephrotic syndrome is often 
common and mainly utilizes immunosuppressive therapy 
[11]. Therefore, objective estimation of the clinical course 
of nephrotic syndrome provides an opportunity to handle 
nephrotic syndrome in common and helps in the decision 
for immunosuppressive therapy.

Nephrotic syndrome is a representative rare and intrac-
table disease. Rare and intractable diseases share common 
problems in research and development. Smaller patient 
populations yield limited information on diseases, and 
multifactorial pathogenesis may result in a complex set 
of symptoms. It is necessary to overcome this problem to 
elucidate the natural history of rare and intractable disease, 
including nephrotic syndrome. Deep learning is a method 
of artificial intelligence technology that may help to unravel 
potential patterns of multiple factors. Deep learning meth-
ods have been applied in the analysis of clinical patterns 
of several diseases from complex combinations of clinical 
parameters. Additionally, an autoencoder (self-encoder), an 
unsupervised machine learning method, is suitable for learn-
ing objectively and without bias, even with a small number 
of cases [12–15]. A complementary combination of deep 
learning methods helps to detect clinical patterns of rare and 
intractable diseases.

In this study, we aimed to mathematically classify the 
clinical course of nephrotic syndrome based on machine 
learning algorithms using clinical variables. The Japan 
Nephrotic Syndrome Cohort Study (JNSCS) aims to clarify 
the clinical course of nephrotic syndrome [16]. Through 
machine learning in this cohort, we elucidated the variations 
in the clinical course of nephrotic syndrome.

Methods

Participants

The JNSCS is a multicenter cohort study of primary 
nephrotic syndrome with a 5-year follow-up period. The 
main purpose is to elucidate the incidence rates of major 
clinical outcomes and to assess the effectiveness of immu-
nosuppressive therapy in Japan. Details of the study design 
were previously described [16]. Briefly, 374 nephrotic 
patients who were diagnosed with primary nephrotic syn-
drome by kidney biopsy during the entry period between 
2009 and 2010 in 55 hospitals were registered in the JNSCS. 
The diagnosis of primary nephrotic syndrome was based 
on the clinical and histopathological characteristics [17]. 

Nephrotic patients with minor glomerular abnormalities by 
light microscopy were diagnosed with MCD. The diagnosis 
of MN was made by the detection of granular deposits of 
mainly IgG along the glomerular capillary walls by immu-
nofluorescence microscopy with or without thickening of 
the glomerular capillary wall by light microscopy. FSGS 
included five variants: collapsing, tip, cellular, perihilar, and 
not-otherwise specified variants [18]. Other glomerulone-
phritis included membranoproliferative glomerulonephritis, 
mesangial proliferative glomerulonephritis, endocapillary 
proliferative glomerulonephritis, and crescentic glomerulo-
nephritis membranoproliferative glomerulonephritis.

The study protocol of JNSCS was approved by the ethics 
committee of Osaka University Hospital (approval number 
17035–4) and the institutional review board of each par-
ticipating hospital. All procedures performed in the present 
study were in accordance with the Declaration of Helsinki.

Unsupervised machine learning classifier

In this study, the long short-term memory (LSTM)-
encoder–decoder architecture, an unsupervised machine 
learning classifier, was applied. To classify the severity of 
the clinical course of patients, an existing disease type clas-
sification is necessary as the objective variable in supervised 
machine learning. Since disease classification is generally 
based on clinical information at the time of initial diagnosis, 
the predicting of aggravation is not always accurate. Such 
teacher data itself can form a learning bias and may hin-
der the objective classification of clinical course variation 
patterns. The unsupervised machine learning-based time-
dependent analysis has the advantage of objective classifica-
tion of the clinical course.

The first step of this architecture is to apply the LSTM 
neural network [19]. LSTM learns the fluctuation pattern of 
time-series data consisting of multiple clinical items based 
on the relationship between measurement points. LSTM can 
learn the relationship both before and after the measure-
ment point, as well as the relationship between the values 
of subsequent measurement points. This makes it possible 
to characterize and classify clinical courses consisting of 
clinical items such as multiple values and clinical findings.

The second step is to apply an autoencoder. An autoen-
coder is a learning model that makes the input and output 
the same, and is a neural network widely used for dimen-
sional compression and feature extraction. The compressed 
dimensions can be visualized as a scatter plot with one case 
as one point if the intermediate layer is two-dimensional 
or three-dimensional [20]. This intermediate layer is called 
the feature space, which is considered to reflect the features 
including the interaction between multiple items. In the 
feature space, cases with common or similar features form 
clusters. An autoencoder reduces the entropy of the data 
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distribution, i.e., clutter and noise of information [21]. By 
reducing the entropy, the data distribution range in the fea-
ture space becomes narrower and clusters are more likely 
to be recognized. This feature of the autoencoder potenti-
ates the gradual reduction of the degree of freedom of the 
neural network, and is useful for preventing overfitting by 
reducing the number of weighting factors to learn. Using 
this characteristic, clinical courses are objectively classified 
based on item variation patterns. The resultant encoded fea-
tures represent the time-series variation patterns of clinical 
items learned by LSTMs. Further information is available 
at https://​github.​com/​cran2​367/​under​stand​ing-​lstm-​autoe​
ncoder#​readme.

Statistics

For the LSTM-encoder–decoder architecture, the input val-
ues of the encoder have 5 dimensions (5 items), followed 
by the output dimensions of 24 in the first layer of LSTM, 
12 in the second fully bonded layer, and 2 in the third layer 
of LSTM. The decoder restores the input values in the 
reverse order of the encoder. The mean square error was 
used for the loss function. Learnings were performed in 5 
sets with the conditions of 4 epochs per set, 1,000 learnings 
per epoch, and a batch size of 10 data points. Learning was 
not performed in more than the number of epochs where 
no significant reduction in loss was observed. The learning 
result was defined by the Gaussian mixture distribution in 
the cluster in the two-dimensional scatter plot [22]. Each 
case was assigned to the cluster with the highest log-likeli-
hood. Python version 3.7.5 was used for the analysis. The 
LSTM-encoder–decoder architecture was built with Torch 
1.7.1. The GaussianMixture module of scikit-learn 0.22.2 
was used to estimate the parameters of the Gaussian mixture 
distribution [23]. The specifications of the computer used 
were 64 bit/Core i9-9900 K/Intel Z370 Express/DDR4-2400 
S.O. DIMM (PC4-19,200) 32 GB(16 GB × 2)/GeForce RTX 
2080 8 GB GDDR6.

Results

The background demographics of the participants are 
shown in Table 1. Machine learning classification (clus-
tering) was performed on 205 patients, whose clinical 
parameters were completely traceable at 5 measured points 
after kidney biopsy for up to 2 years (Fig. 1, Tables 1 and 
2, Supplementary Tables S1 and S2). The time-points 
included 1, 3, 6, 12, and 24 months after kidney biopsy. 
The participants consisted of 90 (43.9%), 77 (37.6%), 18 
(8.8%), and 9 (4.4%) patients with MCD, MN, FGS, and 
IgA nephropathy, respectively.

Based on these data, we investigated the clinical time 
course of nephrotic syndrome. To learn the fluctuation 
pattern of time-series data consisting of multiple clini-
cal items based on the relationship between measurement 
points, we utilized the LSTM neural network (Fig. 2). 
LSTM has an advantage in the modeling of time-series 
data. LSTM can learn the relationship before and after the 
measurement point and the relationship between the values 
of subsequent measurement points. This makes it possible 
to characterize and classify clinical courses consisting of 
multiple values and conclusions of doctors. To learn and 
sort the characteristics of the clinical course, we utilized 
the autoencoder (self-encoder), an unsupervised machine 
learning method. An autoencoder is a learning model for 
dimensional compression whereby the equalization of 
input and output is optimized. Compressed dimensions 
are visualized as a scatter plot for the cluster analysis, 
where formed clusters represent the variations of the clini-
cal course.

The clinical parameters included serum creatinine, 
serum albumin, dipstick hematuria and proteinuria, and 
urine protein per creatinine ratio. This selection was based 
on the following concept; (i) fluctuating items, but not 
solid ones such as age and sex, which can parallelly change 
with the clinical course, and (ii) items used to monitor 

Table 1   Original kidney diseases for each cluster classified by deep learning

C1 through C4 correspond to the clusters classified in Fig. 2

C1 C2 C3 C4 Total

Age (median (25, 75%)) 43.5 (29.0–65.5) 61.0 (47.5–70.5) 66.0 (45.0–75.0) 65.0 (58.0–75.0) 58.0 (38.0–72.0)
Sex (man, woman) 44–41 35–17 17–15 21–15 217–157
Minimal change nephrotic syndrome 70 10 8 2 90
Membranous nephropathy 9 26 24 18 77
Focal segmental glomerulosclerosis 5 5 0 8 18
Membranous proliferative glomerulonephritis 1 2 0 4 7
IgA nephropathy 0 6 0 3 9
Mesangial proliferative glomerulonephritis 0 3 0 1 4
Total 85 52 32 36 205

https://github.com/cran2367/understanding-lstm-autoencoder#readme
https://github.com/cran2367/understanding-lstm-autoencoder#readme
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clinical course are selected. Treatment of steroid greatly 
affects the clinical course of nephrotic syndrome, and a 
fraction of patients with nephrotic syndrome is treated 
with steroid before the kidney biopsy. To avoid the treat-
ment bias, analysis was performed using data after kidney 
biopsy. Both dipstick proteinuria and urine protein per cre-
atinine ratio are included, since they occasionally show 
the discrepancy [24]. Using unsupervised machine learn-
ing, time-series data of nephrotic syndrome are generally 

classified into four clusters (C1, C2, C3, and C4; Fig. 3). 
The clusters were defined as Gaussian mixture distribu-
tions in a two-dimensional scatter plot (in two-dimensional 
feature space), and each case was assumed to belong to the 
cluster with the highest log-likelihood.

The mean values of each clinical item for each cluster are 
shown in chronological order (Fig. 4). Based on the initial 
values of clinical items and the course of each cluster, the 
severity of disease was observed to increase in order from 

Fig. 1.   Analyzed patients in this 
study. The measurement points 
were five measurement points 
up to 2 years. Clinical param-
eters included serum creatinine, 
serum albumin, qualitative 
hematuria, qualitative pro-
teinuria, and urine protein per 
creatinine ratio. Machine learn-
ing classification was performed 
on 205 patients using clinical 
parameters. Separately, clas-
sification was also performed 
on 186 patients who received 
steroids or immunosuppressive 
drugs

Table 2   Blood and urine test 
values at the time of kidney 
biopsy for each cluster classified 
by deep learning

C1 through C4 correspond to the clusters classified in Fig. 2. Values, means (SD)

C1 C2 C3 C4 Total

Creatinine, mg/dL 0.99 (0.57) 1.18 (0.71) 1.20 (0.98) 1.34 (0.79) 1.12 (0.72)
Albumin, g/dL 1.68 (0.64) 2.14 (0.61) 1.94 (0.57) 2.02 (0.58) 1.88 (0.64)
Hematuria, qualitative 1.58 (1.35) 2.37 (1.27) 2.28 (1.17) 2.89 (1.20) 2.08 (1.37)
Proteinuria, qualitative 4.29 (0.84) 4.15 (1.00) 4.48 (0.50) 4.15 (0.59) 4.26 (0.82)
Urine protein, g/gram creatinine 7.51 (3.83) 7.18 (4.23) 8.11 (4.73) 10.25 (6.46) 7.94 (4.63)

Fig. 2   Long short-term memory 
(LSTM)-encoder–decoder 
architecture for multiparameter 
analysis. Input values for three 
items are shown at n measure-
ment points. In this study, five 
items and five measurement 
points were used as input 
values. Encoded features are 
regarded to represent the time-
series variation patterns of clini-
cal items learned by LSTMs. 
The features are expressed as 
a two-dimensional or three-
dimensional vector, and can be 
represented by a scatter plot 
with one case as one point
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C1 to C4 (Figs. 2 and 3). Patients in the C4 cluster showed 
an increase in serum creatinine in the later part of the follow-
up period. Patients in both the C3 and C4 clusters were ini-
tially high in both hematuria and proteinuria, whereas the 
lack of a decline in the urinary protein level preceded the 
worsening of kidney function in C4.

The distribution of the original kidney diseases in each 
cluster is shown in Table 1. The largest number of cases 
was clustered to C1, whose main disease was minimal 
change disease. The distribution of minimal change dis-
ease decreased with the shift of clusters from C1 to C4. 
Cases of membranous nephropathy were distributed in each 
cluster. C3 consisted exclusively of minimal change disease 
and membranous nephropathy. The original diseases of C4 
ranged from all the diseases studied in this cohort. An ini-
tially and persistently high proteinuria in each disease likely 
reflected resistance to treatment.

The average blood and urine test values at the time of 
kidney biopsy for each group are shown in Table 2. The 
profile was largely indifferent between clusters, suggesting 
the difficulty of clustering the clinical course at this point 
in time. Serum creatinine was slightly worsened with the 
cluster shift from C1 to C4. The most striking difference 
between C3 and C4 is proteinuria. Although there was no 
difference in daily urinary protein, the urinary protein per 
creatinine ratio was worse in C4.

Out of 205 cases, 19 cases were not treated with steroids 
or immunosuppressive drugs during the observational peri-
ods (Fig. 1). Since the reasons for this were uncertain, i.e., 
very old age and particular prognosis (either good or bad), 
we performed a sensitivity analysis after excluding these 
patients. In this analysis, hematuria in the C4 group showed 
a slightly higher value over the measurement period than in 
the other groups. In addition, the clinical course of persistent 
proteinuria followed by actual worsening of kidney func-
tion was largely replicated in this analysis (Supplementary 
Figure S1).

Discussion

In this study, the LSTM-encoder–decoder architecture clas-
sified the clinical course of nephrotic syndrome into four 
clusters. The classified clusters utilized objective and com-
mon clinical parameters, serum creatinine, serum albumin, 
dipstick hematuria, and proteinuria. The identified clusters 
showed characteristic clinical courses, which was not nec-
essarily characterized by the original diseases of nephrotic 
syndrome. These findings suggest the utility of objec-
tive clinical parameter-based clustering of patients with 
nephrotic syndrome to monitor their clinical course and to 
assess treatment resistance.

This study classified clinical courses according to an 
unsupervised learning model. Investigation of the changes 
in clinical items for each classified patient group made it 
possible to grasp the actual conditions of patients objec-
tively without information related to existing disease clas-
sifications. Some of the information obtained is considered 
rationale, since it is consistent with the medical findings 
known from conventional epidemiological and case studies, 
such as the relationship of proteinuria with serum albumin 
and serum creatinine. Some of the information obtained has 
not been clarified thus far, such as therapeutic resistance in 
persistent hematuria. If both hematuria and proteinuria are 
initially high and the urine protein per creatinine ratio does 
not decrease as seen in C4, there is a significant decline in 
renal function. The most striking difference between C3 and 
C4 is the urinary protein per creatinine ratio, while there 
is not much difference in daily urinary protein levels. A 
slightly higher level of protein per creatinine ratio was also 
observed in C4 patients before kidney biopsy. These results 
may indicate that the urinary protein per creatinine ratio is 
more sensitive in clustering the clinical course at the time 
of kidney biopsy.

The characteristics of each original disease were captured 
by the cluster. Patients with MN were distributed through-
out the clusters, while patients with MCD were mainly 
distributed in C1. These distributions were in line with the 
relatively good responsibility to steroids in MCD and the 

Fig. 3   Classification of the natural course of nephrotic syndrome. 
Using unsupervised machine learning, time-series data of nephrotic 
syndrome are generally classified into four clusters (C1, C2, C3, and 
C4). The clusters were defined as Gaussian mixture distributions in a 
two-dimensional scatter plot (in two-dimensional feature space). The 
scale bar on the right of the scatter plot shows the log-likelihood. The 
log-likelihood was obtained over the entire two-dimensional feature 
space based on the centers (red dots) and variances calculated for the 
samples, and the contour lines were created by connecting points with 
the same log-likelihood. Each case is assumed to belong to the clus-
ter with the highest log-likelihood and red dots represent the average 
vector for each cluster. Based on the initial values of clinical items 
and the course of each cluster, the severity of disease was considered 
to increase in order from C1 to C4
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heterogeneous treatment resistance of MN [2], suggesting 
the validity of the estimation of clinical prognosis based on 
histopathological diagnosis. On the other hand, the diagnosis 
of original diseases alone was insufficient to cluster patients 
with worse prognosis. As represented by C4, a subset of 
patients with nephrotic syndrome were persistently worse 
in clinical parameters and showed treatment responsiveness. 
C4 included almost all types of original diseases. In other 
words, a certain portion of patients with each disease are 
likely poor in prognosis.

Based on the patient classification and its characteristics 
in this study, it is possible to search for new biomarkers 
related to the worsening and treatment resistance of primary 
nephrotic syndrome. It is difficult to distinguish between C3, 
which has a good course, and C4, which shows treatment 
resistance, based on the test values at the time of diagnosis, 
and lack of clarity on what kind of background the subject 
has. For the development of new therapies, it is necessary 
to investigate the characteristics of the patient group show-
ing treatment resistance more broadly. For example, it is 
expected that performing whole-exosome analysis of miR-
NAs [25] or further profiling of kidney biomarkers such as 

d-amino acids [26–28], long-term undetected enantiomers 
of amino acids, will not only lead to the discovery of use-
ful novel biomarkers, but also elucidate the mechanism of 
treatment resistance.

LSTM-autoencoder has an advantage in the classification 
of time-series information and in the detection of outliers. 
These features of LSTM-autoencoder have a high affinity in 
several fields of applied science such as monitoring energy 
usage status and quality control of industrial product manu-
facturing processes [12–15]. On the other hand, LSTM has 
just started to be utilized in analyses of the clinical course. 
These analyses were commonly performed in a supervised 
learning setting, for example, classification of diseases such 
as ICD9 from the test values of multiple measurement points 
of the target patient [29, 30]. Although supervised learning 
can support the diagnosis of existing disease classification 
[31], no effect can be expected beyond clarifying the diag-
nosis name. Especially in the field of rare and intractable 
disease, where the correlation between the existing disease 
classification and the progression of the disease state is not 
clear, it is necessary to elucidate a new classification of dis-
eases for more a suitable stratification of prognosis. In the 

Fig. 4   Mean values of each clinical item for each cluster for 205 cases are shown in chronological order. Hematuria and proteinuria are of quali-
tative values
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case of a disease area where the correlation between the 
existing disease classification and the progression of the 
disease state is not clear, no effect can be expected beyond 
clarifying the diagnosis name. For example, new informa-
tion cannot be provided for the development of treatments 
to prevent aggravation. The approach used in this study can 
provide new information on the development of therapeutics 
to prevent the aggravation of diseases.

This study has several limitations. The limited number 
of available patients may prevent a statistically meaningful 
analysis. Exclusion of patients untraceable at five measured 
points after kidney biopsy may form a selection bias. The 
current study classified, but did not predict, the prognosis of 
patients. Therefore, the features of each cluster could not be 
extracted in this analysis. For this purpose, novel biomark-
ers for nephrotic syndrome may be necessary as discussed, 
which will validate the results of this study.

In conclusion, this study identified four kinds of clini-
cal courses in nephrotic syndrome. This classified clinical 
course may help objective grasp of the actual condition or 
treatment resistance of individual patients with nephrotic 
syndrome.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10157-​022-​02256-3.
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