Skip to main content
. 2022 Feb 8;32(4):652–663. doi: 10.1007/s10926-022-10026-x

Table 3.

Fit indices for latent class analysis (N = 1224)

Model LL BIC AIC AIC3 Npar Df P value BLRT Entropy R2
1-Cluster − 16,673,248 33,559,793 33,406,497 33,436,497 30 1194 0.000
2-Cluster − 14,296,688 29,027,078 28,715,375 28,776,375 61 1163 0.000 0.920
3-Cluster − 13,280,713 27,215,535 26,745,426 26,837,426 92 1132 0.000 0.888
4-Cluster − 12,767,201 26,408,918 25,780,403 25,903,403 123 1101 0.000 0.900
5-Cluster − 12,457,432 26,009,785 25,222,863 25,376,863 154 1070 0.000 0.885
6-Cluster − 12,275,281 25,865,890 24,920,562 25,105,562 185 1039 0.006 0.870
7-Cluster − 12,132,601 25,800,935 24,697,202 24,913,202 216 1008 0.012 0.870
8-Cluster − 12,013,512 25,783,163 24,521,023 24,768,023 247 977 0.010 0.876
9-Cluster − 11,923,138 25,822,823 24,402,277 24,680,277 278 946 0.024 0.877
10-Cluster − 11,830,282 25,857,516 24,278,563 24,587,563 309 915 0.016 0.877

LL log likelihood, BIC Bayesian information criterion, AIC Aikake information criterion, AIC3 Aikake information criterion 3, Npar numbers of para-meters, BLRT bootstrap likelihood ratio test