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Summary

Checkpoint inhibition immunotherapy has revolutionized cancer treatment, but many patients 

show resistance. Here we perform integrative transcriptomic and proteomic analyses on 

emerging immuno-oncology targets across multiple clinical cohorts of melanoma under anti-

PD-1 treatment, on both bulk and single-cell levels. We reveal a surprising role of tumor-

intrinsic SIRPA in enhancing antitumor immunity, in contrast to its well-established role as 

a major inhibitory immune modulator in macrophages. The loss of SIRPA expression is a 

marker of melanoma de-differentiation, a key phenotype linked to immunotherapy efficacy. 

Inhibition of SIRPA in melanoma cells abrogates tumor-killing by activated CD8+ T cells in 

a co-culture system. Mice bearing SIRPA-deficient melanoma tumors show no response to 

anti-PD-L1 treatment, whereas melanoma-specific SIRPA overexpression significantly enhances 

immunotherapy response. Mechanistically, SIRPA is regulated by its pseudogene, SIRPAP1. 
Our results suggest a complicated role of SIRPA in the tumor ecosystem, highlighting cell type-

dependent antagonistic effects of the same target on immunotherapy.
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eTOC Blurb

Zhou et al. reveal that tumor-intrinsic SIRPA can enhance the sensitivity to anti-PD-1 treatment in 

melanoma patients, whereas macrophage SIRPA has a well-established role as a major inhibitory 

modulator in antitumor immunity. This study highlights that the same target in different cell types 

can have antagonistic effects on immunotherapy.

Graphical Abstract

Introduction

Checkpoint inhibition immunotherapy has become one of the most successful strategies 

for cancer treatment and functions through the stimulation of the patient’s immune system 

(Hammerbacher and Snyder, 2017; Liu and Mardis, 2017). Many cancer patients, even 

those with advanced refractory cancers, show beneficial clinical responses, sometimes long-

lasting ones, to checkpoint inhibitors targeting programmed death-1 (PD-1), programmed 

death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen 4 (CTLA-4) (Hodi et al., 

2010; Postow et al., 2015; Topalian et al., 2012). In particular, PD-1/PD-L1 blockades have 

achieved the most success in clinical development (Tan et al., 2020). However, the response 

rate varies by cancer type, ranging from ~10% to ~60% (Ansell et al., 2015; Yarchoan et al., 

2017), and the average objective response rate is only ~26% across all cancer types (Shen 

et al., 2020). Combination therapy is a promising approach to overcoming PD-1/PD-L1 

resistance and increasing the response rate (Zhang et al., 2020a). A recent study shows 
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that ~80% of active trials in PD-1/PD-L1 blockades are testing combination regimens with 

other cancer therapies, such as immuno-oncology agents (Upadhaya et al., 2021). The 

daunting complexity of the human immune system and increased toxicity associated with 

combination therapy, however, necessitates the identification of key factors affecting the 

immunotherapy response and elucidating synergistic/antagonistic effects of different agents 

in the context of the whole tumor ecosystem (Bagaev et al., 2021; Ho et al., 2022; Newell et 

al., 2022).

In recent years, several studies have generated transcriptomic or proteomic profiles 

of clinical patient cohorts under anti-PD-1 treatment, which provide rich resources 

to characterize key regulators affecting immunotherapy response. However, it remains 

challenging to digest these data to make translational impacts for several reasons. First, 

due to limited sample sizes of clinical cohorts, the datasets obtained are often underpowered 

to detect key changes, especially given the multiple-testing burden in a genome-wide survey. 

To overcome this, it would be more powerful to focus on a subset of clinically actionable 

targets and assess the signal robustness across multiple cohorts. Second, clinical samples 

have highly heterogeneous cell compositions that confer additional complexity in analysis 

(Zaitsev et al., 2022): bulk samples reflect the average of mixed cell types, while single-

cell data usually have very limited patient representativeness. Therefore, it is essential to 

perform complementary bulk sample and single-cell analyses and borrow the information 

from each other (Davis-Marcisak et al., 2021). Last but not least, pure clinical phenotype-

driven association analyses often generate statistically significant but biologically trivial 

hits. It is also important to consider the pattern of potential targets in disease progression 

or lineage plasticity. The convergent hits of the above two analyses would give more 

creditable hypotheses for subsequent investigation. With these considerations in mind, we 

focused on the anti-PD-1 treated patient cohorts of melanoma, the frontier of checkpoint 

inhibition immunotherapy, and performed an integrative analysis of bulk and single-cell 

data across multiple clinical cohorts, to obtain insights that can maximize the benefits of 

immunotherapy.

Results

High SIRPA expression correlates with response to PD-1 blockade in bulk samples

To identify effective therapies that can potentially overcome the resistance to checkpoint 

inhibitors, we focused on a set of emerging immuno-oncology target genes and performed 

an integrative analysis across five melanoma patient cohorts under anti-PD-1 treatment (four 

with available transcriptomic data and one with proteomic data) (Figure 1A). We collected 

60 immuno-oncology target genes that have active agents tested in ≥ 10 active clinical trials 

(Table S1). Given these highly actionable targets, for each of the five patient cohorts, we 

performed two parallel analyses: (i) differential expression analysis between responding and 

non-responding groups; and (ii) patient survival analysis between high expression and low 

expression groups of each gene (Figure 1A). Through the differential expression analysis, 

seven genes showed significant expression-response correlations in multiple cohorts (P ≤ 

0.05, FDR ≤ 0.15, Figure 1B). Among these genes, SIRPA showed the most consistent 

pattern in the differential expression analysis across different patient cohorts (Figure 1C).
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SIRPA is an emerging target in the cancer immunotherapy (Uger and Johnson, 2020; Xiang 

et al., 2021). The protein product of SIRPA, signal regulatory protein α1 (SIRPα), also 

known as CD172a or SHPS-1, is a multifunctional transmembrane glycoprotein (Barclay 

and Brown, 2006). SIRPα was thought to be selectively expressed on myeloid cells 

(e.g., macrophages, dendritic cells, and neutrophils) and neurons (Adams et al., 1998). 

But recently, many tumor cell lines have been shown to express SIRPα on their surface 

(Yamasaki et al., 2007; Yanagita et al., 2017). SIPRα exerts its effects through interaction 

with its ligand CD47, a transmembrane glycoprotein, ubiquitously expressed in different 

cell types and often overexpressed in solid and hematological tumors. Our results revealed 

that tumor samples with high SIRPA expression were significantly more sensitive to PD-1 

blockade not only at the RNA level (P = 0.01, and FDR < 0.15 in the Hugo cohort, and 

P = 0.05 in the Gide and Liu cohorts, Figure 1D) but also the protein level (P = 0.01 

and FDR < 0.15 in the Harel cohort, Figure 1E). Furthermore, patient survival analyses in 

multiple cohorts showed that the patient group with high SIRPA expression had a better 

prognosis than that with low SIRPA expression (log-rank test, P = 0.016 in the Hugo cohort, 

Figure 1D; P = 0.026 in the Harel cohort, Figure 1E). Among the five cohorts assessed, the 

Riaz cohort is the only one that did not show any significant patterns in tumor response or 

patient survival analyses, likely because (i) this cohort has a small sample size and (ii) the 

majority of the patients underwent complicated treatments. To further evaluate its potential 

as an immunotherapy biomarker, we found that SIRPA expression showed no correlation 

with response to other therapies such as BRAF inhibitors (Figure S1A, S1B), established 

ICB biomarkers such as tumor mutation burden (Figure S1C), or prognosis in the general 

patient population (Figure S1D). These results suggest a positive and unique role of SIRPA 
in tumors responding to anti-PD-1 immunotherapy.

High SIRPA expression in anti-PD-1 responding tumors comes from tumor cells

SIRPα on macrophages, interacting with CD47 on tumor cells or T cells, was recently 

established as the first macrophage checkpoint (Chao et al., 2019; Jalil et al., 2020; Uger 

and Johnson, 2020). Since the interaction between SIRPα-bearing macrophages and CD47-

positive tumor cells triggers a “do not eat me” signaling cascade to inhibit the phagocytosis 

of tumor cells, the blockade of such an interaction would lead to efficient phagocytosis 

of tumor cells by macrophages. In light of this mechanism, several clinical trials were 

launched to target the SIRPα-CD47 interaction, alone or in combination with the anti-PD-1 

treatment (Jalil et al., 2020), for a number of cancer types, including melanoma. However, 

this specific paradigm seemingly contradicts the SIRPA-related favorable response to the 

anti-PD-1 treatment we observed here.

To resolve this paradox, one key question is which cells contribute to the high expression 

of SIRPA in anti-PD-1-responding tumors since all the above analyses were based on 

bulk samples consisting of a mixture of tumor cells and various non-tumor cells. Since 

tumor cells constitute a substantial proportion of a bulk tissue sample, as demonstrated 

by tumor purity often >70% both in the surveyed melanoma dataset (Hugo et al., 

2016) and a larger pan-cancer cohort (Aran et al., 2015), we hypothesized that the 

difference in SIRPA expression level between patients with distinct clinical benefits could 

mainly reflect a tumor-intrinsic SIRPA pattern. To validate this, we collected multiple 
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single-cell RNA-seq (scRNA-seq) datasets from melanoma patients with diverse clinical 

backgrounds, where the expression patterns of SIRPA can be investigated in individual cell 

populations. First, we performed the analysis based on two published scRNA-seq datasets 

of melanoma patients (Jerby-Arnon et al., 2018; Smalley et al., 2021). In the Jerby-Arnon 

dataset, we found that SIRPA mRNA expression was comparably enriched in melanoma, 

macrophages, and monocyte cells while completely depleted in stromal, endothelial, and 

non-monocyte immune cells (Figure 2A–C). We observed the same phenomenon in another 

scRNA-seq dataset of distant melanoma metastases (Smalley et al., 2021), suggesting 

a stable and abundant expression of SIRPA in melanoma cells even after developing a 

secondary malignant growth, regardless of the metastatic site (Figure 2D–F). Importantly, 

although tumor cells were primarily clustered by patients, indicating significant inter-patient 

transcriptomic heterogeneity, considerable SIRPA expression was detected in most of the 

patients, demonstrating a ubiquitous presence of SIRPA in melanoma cells. Consistent with 

the findings in human patient samples, melanoma cell lines are among those with the highest 

SIRPA expression at both RNA and protein levels across >20 lineages (Figure S2A, B). 

Finally, we analyzed a single-cell proteomics dataset of a melanoma cell line (WM989) and 

a monocyte cell line (U937) (Leduc et al., 2022) and found that SIRPA was expressed at a 

ubiquitously high level in both cell types, indicating that SIRPA expression is constitutive of 

the melanoma cell state (Figure 2G, H).

We next aimed to elucidate the exact contribution of tumor cells and macrophages to high 

SIRPA signals in tumors responding to anti-PD-1 treatment. As there is no single-cell profile 

of both cell types in the bulk sample cohorts surveyed, we first applied a computational 

deconvolution algorithm, CIBERSORTx (Newman et al., 2019) to the bulk RNA-seq dataset 

of Hugo et al., to infer tumor- and macrophage-specific gene expression profiles for each 

sample, using the Tirosh scRNA-seq dataset (Tirosh et al., 2016) as a cell signature reference 

(Figure 2I). We found that SIRPA was significantly up-regulated in melanoma cells of 

patients responding to anti-PD-1 treatment (P = 0.022, Figure 2I) but significantly down-

regulated in macrophages for the responding group (P = 0.033, Figure 2I). To further 

confirm this pattern, we obtained another two scRNA-seq datasets that respectively surveyed 

tumor and macrophage transcriptomes in melanoma patients receiving anti-PD-1 treatment. 

With the first dataset (Jerby-Arnon et al., 2018), we showed that SIRPA was expressed less 

abundantly in the melanoma cells of the post-treatment resistant group compared to the 

treatment-naïve group (P = 8.5×10−4, Figure 2J). In the second dataset (Sade-Feldman et al., 

2018), we found that SIRPA was significantly down-regulated in macrophages responding 

to anti-PD-1 therapy (P = 1.1×10−7, Figure 2K). Collectively, these results, from both 

deconvoluted bulk samples and single-cell profiling data, suggest that the high expression 

of SIRPA correlated to anti-PD-1 treatment response is due to melanoma cells rather than 

macrophages.

SIRPA is a melanocytic marker that decreases during melanoma progression

Having established the clinically relevant, high expression of SIRPA in melanoma cells, we 

sought to further explore its role in melanoma biology. Because cellular de-differentiation 

is a key axis of the melanoma phenotype (Agaimy et al., 2016; Kohler et al., 2017; 

Riesenberg et al., 2015), we asked whether the SIRPA expression dynamics reside in 
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a meaningful topology along the melanoma de-differentiation trajectory. To address this 

question, we analyzed an RNA-seq dataset comprising a panel of human melanoma cell 

lines spanning four consecutive differentiation stages, namely, un-differentiated, neural 

crest-like, transitory, and melanocytic (Tsoi et al., 2018). Intriguingly, SIRPA expression 

appears to be a monotonically increasing function of the melanoma differentiation status, as 

readily visualized in the embedded PCA space, with the most differentiated melanoma cells 

showing the strongest expression of SIRPA (Figure 3A, B). We further measured the SIRPα 
protein expression using reverse phase protein arrays (RPPAs) in an independent collection 

of 48 melanoma cell lines with parallel publicly available RNA-seq and quantitative 

proteomics data. After scoring each cell line for differentiation status using a signature 

derived from a previous study (Tsoi et al., 2018), we found a very strong correlation between 

SIRPα protein abundance and melanoma differentiation (Figure 3C–E). Melanocytes are 

known to be the cell of origin of melanoma tumors (Gupta et al., 2005; Kohler et al., 2017; 

Moon et al., 2017). Thus, we hypothesized that SIRPA would show a similar pattern of 

expression on a melanocyte maturation trajectory. Indeed, based on an RNA-seq dataset 

derived from cultured human melanocytes and their progenitors (Mica et al., 2013), we 

showed that the high-expression status of SIRPA is gradually instituted as melanocytes reach 

maturity (Figure 3F, G).

Bridging the tumorigenic melanoma de-differentiation process and the physiological 

melanocytic differentiation process, we next aimed to monitor SIRPA expression in a setting 

where melanocyte-to-melanoma transformation is captured. A recent study on the stepwise 

introduction of oncogenic mutations into primary human melanocytes generated scRNA-seq 

data on genetically distinct melanoma cellular models (Hodis et al., 2022) (Figure S3A). 

This allowed us to query SIRPA expression along a phylogenetically related trajectory 

of melanoma from its normal cell of origin and associate SIRPA expression shifts with 

key oncogenic events. Using well-established melanocytic markers (e.g., PMEL, MLANA, 

MITF, and TYR) to form a reference for the differentiation program, we observed that this 

highly matched SIRPA expression changes between the populations, including a drop when 

cells obtained replicative immortality through a TERT promoter mutation and an increase 

when a PTEN exon mutation led to MITF duplication (Figure S3B).

Finally, to validate our findings on the in vitro SIRPA expression dynamics in melanocytes 

and melanoma cells in real-world physiological and pathological contexts, we further 

performed two analyses on data from human samples. First, we analyzed a scRNA-seq 

dataset of human skin samples across three developmental stages (Belote et al., 2021): 

fetal, neonatal, and adult. Consistent with the in vitro data, we found a ubiquitous 

expression pattern of SIRPA in melanocytes of all developmental stages (Figure 3H–J). 

Interestingly, SIRPA expression was exclusive to melanocytes, emphasizing its important 

role in establishing the identity of this cell type. A pseudo-time trajectory-based analysis 

of fetal-stage melanocytes during the establishment of their identity further characterized 

SIRPA as a marker gene of melanocytic maturation (Figure S3C). Second, we re-analyzed 

TCGA cutaneous melanoma cohort (n = 472) with a specific focus on the association 

between SIRPA expression and well-established pathological/clinical features. We found 

that the expression level of SIRPA was highly negatively correlated with melanoma tumor 

de-differentiation (Figure 3K), consistent with our observation in the cell line data. Together, 
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these results support that SIRPA is a melanocytic marker whose loss is a hallmark of 

melanoma progression.

SIRPA loss confers anti-PD-L1 resistance through the interaction of tumor cells and CD8+ 

T cells

Melanoma de-differentiation is a known mechanism of resistance to T cell-mediated 

immunotherapy through loss of melanocytic antigens, which has been shown in both mice 

(Landsberg et al., 2012) and humans (Mehta et al., 2018). Based on our observations 

that SIRPA, a previously under-studied melanocytic antigen gene, showed strong positive 

correlations with both anti-PD-1 immunotherapy response and melanoma differentiation 

status, we hypothesized that SIRPA is directly involved in enhancing T cell-mediated 

immunotherapy, and its loss then serves as a mediator of immunotherapy resistance that 

accompanies the attenuation of melanocytic identity.

To identify a possible molecular mechanism for this phenotype, we first focused on the 

canonical SIRPα-CD47 interaction model. According to the current research paradigm, 

this interaction provides an antiphagocytic signal that modulates the crosstalk between 

macrophages and tumor cells (Morrissey et al., 2020; Takizawa and Manz, 2007; 

Willingham et al., 2012). However, given our findings on SIRPA expression prevailing 

in tumor cells and a widespread presence of CD47 in all major immune cell populations 

(Figure S4A–D), SIRPα-CD47 interaction may contribute to the communication among 

alternative cell-type combinations. To identify the donor and receptor cell populations 

that host SIRPα and CD47 in the melanoma ecosystem, we analyzed a melanoma spatial 

transcriptome dataset (Thrane et al., 2018), where the localization of the tumor, stromal, and 

immune cells was determined using H&E staining (Figure 4A) and was consistent with our 

gene expression-based deconvolution results (Figure 2I). The juxtaposition of slide-wide cell 

population distributions and the expression patterns of SIRPA and CD47 showed enrichment 

of SIRPA in melanoma cells and its co-localization with CD47 in T cells (Figure 4A). Given 

that tumor-intrinsic SIRPA overexpression in patient samples correlates with a favorable 

response to PD-1 blockade therapy, we hypothesized that such an effect is caused by an 

enhanced SIRPα-CD47 communication between melanoma cells and T cells. To test this 

hypothesis, we inferred a SIRPα-CD47 interaction score using CellPhoneDB (Efremova et 

al., 2020) based on the co-expression patterns of SIRPA in melanoma cells and CD47 in 

CD8+ T cells in the Tirosh scRNA-seq dataset (Tirosh et al., 2016). Indeed, we observed a 

significant SIRPα-CD47 interaction score between melanoma cells and CD8+ T cells (P = 

0.008, permutation test, Figure 4B).

To directly examine the effect of SIRPA on T cell-dependent tumor immune responses, 

we designed a co-culture system and performed cytotoxic T cell killing assays (Figure 

4C). We established two stable cell lines with verified SIRPα knockdown (KD) and 

overexpression (OE) (Figure 4D) and confirmed that SIRPA perturbation in tumor cells 

had no impact on in vitro tumor growth during the co-culture experiment (Figure S4E). We 

then co-cultured these cells with activated cytotoxic CD8+ T cells for 24 h. We found that 

cytotoxic T cells killed tumor cells with SIRPα overexpression more efficiently compared 

to the non-targeting controls (NTC), whereas tumor cells with the loss of SIRPα were more 
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resistant to T cell-mediated killing (Figure 4E). This suggests a positive role of SIRPα on 

the tumor cell surface in T cell-mediated tumor cytotoxicity. To further confirm the role 

of SIRPA in the context of anti-PD-1/PD-L1 treatment, we added an anti-mouse PD-L1 

antibody into the co-culture system and observed that the difference in T cell killing effect 

was even more striking (Figure 4F) than in the setting without the antibody (Figure 4E). 

The same results were observed when adopting an additional SIRPA-knockdown cell line 

with an extended co-culture time of 96 h (Figure S4F, G). To rule out the possibility 

that SIRPA perturbation leads to expression changes of melanoma differentiation antigens 

(MDA), which directly mediate the immunogenicity of melanoma cells (Pitcovski et al., 

2017), we profiled the transcriptomes of SIRPA-KD and SIRPA-OE B16F10 cells and found 

no significant expression changes of six well-established MDA-encoding genes, PMEL, 

TYR, TYRP1, DCT, MLANA, and MITF (Figure 4G). To provide more direct support for 

the proposed immunostimulatory activity of SIRPA via CD47-mediated interactions with 

CD8+ T cells, we utilized two antibodies capable of blocking the SIRPα-CD47 interaction, 

MIAP410 and MIAP430 (Han et al., 2000; Willingham et al., 2012), to pretreat the T 

cells before the co-culture and tested whether this blockade would affect T cell-mediated 

cytotoxicity. The results showed that the tumor-killing effect was hampered in T cells with 

CD47 blocked, and the effect was enhanced in the culture with SIRPA-overexpressing 

melanoma cells (Figure 4H). Taken together, these results suggest that melanoma-intrinsic 

SIRPA can effectively trigger T cell immunogenicity through CD47 interaction in PD-1/PD-

L1 blockade immunotherapy.

Tumor-intrinsic SIRPA enhances the antitumor response of checkpoint blockade in mice

To investigate whether melanoma-intrinsic SIRPA affects the efficacy of checkpoint 

inhibition immunotherapy in vivo, we utilized the well-established B16F10 murine 

melanoma model. We subcutaneously inoculated B16F10 cells with different SIRPA 
perturbations-overexpression (mSIRPA-OE), knockdown (mSIRPA-KD), and non-target 

control (NTC)- into C57BL/6J mice. We implemented a two-step randomization strategy 

to ensure homogenous tumor volumes before treatment with anti-mPD-L1 or isotype control 

(Figure 5A). Compared to tumors treated with isotype control, tumors overexpressing 

SIRPA showed the most remarkable response to anti-PD-L1 treatment, both at specific time 

points and across time points (P < 10−3); NTC tumors showed a moderate but significant 

response to the treatment (P < 10−2); whereas tumors bearing SIRPA knockdown essentially 

exhibited no response (Figure 5B, C, Figure S5). We next examined the tumor volume 

changes from baseline (anti-mPD-L1 vs. isotype control) at a single mouse scale. At 

different time points (day 10, 12, 14, and 16), the three mouse groups showed distinct tumor-

volume change rates from each other: all the mice in the mSIRPA-OE group consistently 

benefited from anti-mPD-L1 treatment and showed considerable tumor shrinkage, and in 

some cases, tumors even disappeared completely; most mice in the NTC group showed 

response to the treatment, but in a small proportion of mice, the tumor size increased; in 

sharp contrast to mSIRPA-OE, approximately half of the mice in the mSIRPA-KD group 

suffered from tumor expansion (Figure 5D, E). Finally, we examined the impact of different 

SIRPA perturbations on animal survival. The mSIRPA-OE mice treated with anti-mPD-L1 

showed a much better prognosis than those treated with isotype control (log-rank test, P < 

10−4), and the median survival time increased from 14 days to 20 days; NTC mice showed 
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a marginally significant survival benefit (log-rank test, P < 0.08); mSIRPA-KD mice showed 

no difference at all (log-rank test, P < 0.8) (Figure 5F). Collectively, these results provide 

strong evidence supporting a positive role of tumor-intrinsic SIRPA in PD-1/PD-L1 induced, 

T-cell-mediated antitumor immunity.

SIRPα expression is positively regulated by SIRPAP1 in melanoma

To identify potential regulators that affect the heterogeneity of SIRPα protein expression 

in melanoma patients, we quantified SIRPα protein expression in 349 TCGA melanoma 

samples using RPPAs and then performed an association analysis with other TCGA 

molecular profiling data, including DNA methylation, somatic mutation, somatic copy-

number alteration, and the expression of its endogenous pseudogene, SIRPAP1. Among 

the three cis-regulatory features, SIRPA gene amplification showed a significant positive 

correlation, but the effect size was limited (Figure 6A, B). In the Hugo cohort (Hugo et al., 

2016), SIRPA gene amplification showed no relation to SIRPA expression (Figure S6A). 

Intriguingly, SIRPAP1 RNA expression was strongly correlated with SIRPα expression 

(Figure 6A, C). We further confirmed this pattern in CCLE melanoma cancer cell lines 

(Figure S6B) based on quantitative proteomics data. These results suggest that SIRPAP1 is a 

key noncoding regulator for SIRPα.

To dissect the competitive relationship between SIRPA and SIRPAP1 and its mediators, we 

conducted a miRNA-centered analysis (Figure S6C). We adopted three common miRNA 

target prediction tools, RNAhybrid (Kruger and Rehmsmeier, 2006), miRDB (Wong and 

Wang, 2015), and TarPmiR (Ding et al., 2016), to identify potential miRNAs and their 

corresponding target sites shared by SIRPA and SIRPAP1. We then performed an association 

analysis on the expression levels between the miRNA candidates and SIRPA or SIRPAP1 
using TCGA melanoma data. We identified three miRNAs, let-7a-2–3p, miR-149–3p, and 

miR-3154, that targeted the homologous regions of SIRPA and SIRPAP1 and exhibited a 

significantly negative correlation with both of their expression levels (Figure 6D, S6D). 

In particular, let-7a-2–3p showed the strongest anti-correlation with SIRPA/SIRPAP1 
expression (Figure 6E, F). These results suggest that the co-regulation of SIRPA and 

SIRPAP1 in melanoma is mediated by a group of miRNAs.

To test whether SIRPAP1 can causally regulate SIRPα expression in melanoma cells 

and whether such regulation can affect the protein abundance on the cell surface, we 

overexpressed SIRPAP1 in A375 melanoma cells (Figure 6G) and measured the total and 

membrane-anchored SIRPα level by western blot and flow cytometry, respectively (Figure 

6H, I). Indeed, we found that the SIRPAP1 overexpression greatly increased the total and 

cell surface SIRPα level. To further confirm this observation, we utilized the CRISPR/Cas9 

synergistic activation mediator (SAM) system to transcriptionally activate SIRPAP1 in A375 

cells (Figure 6J). We observed the same increased protein expression after induced SIRPAP1 
overexpression (Figure 6K, L). Thus, we established SIRPAP1 as a positive regulator of the 

SIRPα expression on the surface of melanoma cells.

Taken together, we propose a model of tumor-intrinsic SIRPα-mediated immunotherapy 

response (Figure 7). Specifically, multiple mechanisms contribute to SIRPα expression 

heterogeneity, including SIRPAP1 as a ceRNA to upregulate SIRPA. The tumor cells with 

Zhou et al. Page 9

Cancer Cell. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



high SIRPα expression on the surface then interact with CD47 on CD8+ T cells. Such 

interaction may enhance cell-cell adhesion between tumor cells and CD8+ T cells, thereby 

facilitating T cell killing activity. As a result, patients whose tumors carry a high expression 

of SIRPA show favorable responses to anti-PD-1 immunotherapy.

Discussion

Checkpoint inhibition immunotherapy has revolutionized cancer treatment via leveraging 

the cytotoxic potential of the human immune cells, especially cytotoxic T cells. Yet, we 

still have a very limited ability to predict patients’ responses to immunotherapy. In this 

study, focusing on emerging immune-oncology targets, we developed an integrative analysis 

strategy to prioritize actionable targets in combination with anti-PD-1/PD-L1 therapy. 

Combining bulk and single-cell RNA-seq datasets from melanoma patients, we showed 

that high SIRPA expression correlated with a favorable response to anti-PD-1 treatment and 

that it is melanoma cells, rather than macrophages, that contribute to the observed pattern. 

Through both in vivo and in vitro experiments, we further demonstrated that tumor-intrinsic 

SIRPA promotes T cell-mediated immunotherapy response. This is in sharp contrast to the 

well-established role of SIRPA as a major inhibitory immune modulator in macrophages.

Although the CD47-SIRPα signaling axis is an innate immune checkpoint in cancer, durable 

antitumor responses require an adaptive immune cell stimulation (Sockolosky et al., 2016). 

Several studies suggest the synergic effect of the anti-CD47-SIRPα signaling axis and 

anti-PD-1/PD-L1 therapy in syngeneic mouse models (Kuo et al., 2020; Sockolosky et 

al., 2016; Yanagita et al., 2017). Our results from the analysis of clinical patient cohorts 

and functional assays reveal a positive role of tumor-intrinsic SIRPA in the activated T 

cell-mediated cytotoxicity. Interestingly, a recent study identified a functional subpopulation 

of SIRPA+ CD8+ T cells in humans and mice during chronic immune exhaustion, and they 

show that these T cells kill the CD47+ target more efficiently compared to the SIRPA− 

CD8+ T cells both in vivo and in vitro (Myers et al., 2019). Similarly, our data showed 

that tumor cells with SIRPA overexpression were sensitive to cytotoxic T-cell-mediated 

killing. One possible mechanism is that CD47-SIRPα interaction stabilizes cell-to-cell 

contacts and cytolytic synapses. The strength of cell-to-cell interaction is determined not 

only by the affinity between the receptor and the ligand but also by their avidity. As the 

spanning distance of the end-to-end bound CD47-SIRPα complex (~14 nm) is very similar 

to TCR-MHC, CD28-CD86, and CD40-CD40L, tumor cells or CD8+ T cells bearing more 

SIRPα could have stronger and longer interactions with cells expressing CD47, leading to 

a more cytotoxicity effect (Myers et al., 2019). Furthermore, another study shows that the 

interaction of SIRPα on dendritic cells and CD47 on T cells is important for the T-cell 

activation (Seiffert et al., 2001). Thus, these studies and ours collectively suggest that any 

disruption to the interaction between SIRPα and CD47 may affect T cell activation and the 

related antitumor activity.

The CD47-SIRPα signaling axis is a hot topic in the field of immunotherapy and has 

been under intensive clinical investigation. Results from multiple initial clinical trials show 

that monotherapy with anti-CD47 exhibited varied efficacy between different cancer types 

(Huang et al., 2017; Zhang et al., 2020b). The ubiquitous expression of CD47 on all cell 
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types may contribute to the low efficiency and side effect of the monotherapy. Given the 

notion that SIRPA is predominately expressed in neurons, dendritic cells, and macrophages, 

some clinical trials were initiated to evaluate the possibility of SIRPA as an alternative 

target. However, we found that many different types of cancer cells expressed SIRPA. Some 

cancer cells, for example, melanoma cells, express as much SIPRA as tumor-associated 

macrophages. Given the dual role of SIRPA in immunotherapy response, we would like to 

emphasize that it is the overall net effect that determines the clinical benefits.

Specifically, our study may have significant clinical implications for SIRPα-related 

therapies (Figure 7). First, for indication selection, the effect of SIRPα blockade may 

depend on the relative abundance of tumor-intrinsic SIRPα in a given cancer lineage. 

In cancer types such as melanoma, where tumor-intrinsic SIRPα expression is high, the 

blockade may significantly dampen tumor-killing mediated by CD8+ T cells; whereas in 

other cancer types such as breast cancer and lymphoma, where SIRPA expression is much 

lower, the efficacy of SIRPα blockade in preclinical models (Gauttier et al., 2020; Ring et 

al., 2017) likely reflects a dominant role of macrophage-mediated phagocytosis of tumor 

cells. Therefore, the relative abundance of SIRPA in tumor cells must be considered when 

choosing suitable cancer types for anti-SIRPα treatment. Second, to stratify patients for 

better immunotherapy response within a cancer type, tumor-specific SIRPA expression may 

be a more effective biomarker than the bulk-level SIRPA expression, as the latter would be 

confounded by signals from different cell components within a tumor. Currently, biomarker 

identification is largely based on the analysis of bulk-level expression data, and more 

efforts should be made to assess cell-type-specific gene expression signatures as potential 

biomarkers. Finally, for drug development, we propose that antibodies that specifically bind 

to SIRPα on the surface of macrophages would be more effective. For that purpose, it would 

be of particular interest to design bispecific antibodies that can simultaneously bind to two 

different types of antigens, one to target macrophage-specific antigens and the other to target 

SIRPα.

Our study highlights cell type-dependent antagonistic effects of the same target on 

immunotherapy, an issue largely ignored in the field. Besides SIRPA, tumor-intrinsic PD-1 

and CTLA-4 have been reported (Wang et al., 2020; Zhang et al., 2019). The unexpected 

expression of these immune checkpoints on the surface of tumor cells may antagonize or 

agonize the immune cells’ antitumor activity (Kleffel et al., 2015; Zhang et al., 2019). 

Considering the high fraction of tumor cells in the tumor ecosystem, it would be critical to 

systematically elucidate the effects of immunotherapeutic targets in different cell types and 

take this into account in the design of clinical studies.

STAR Methods

Resource Availability

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Han Liang (hliang1@mdanderson.org).

Material Availability—This study did not generate new unique reagents.
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Data and Code Availability—The newly generated bulk RNA-seq data of B16F10 

cells with SIRPA perturbations are available at Gene Expression Omnibus (GEO) with an 

accession number GSE211226; and SIRPα RPPA data of TCGA-SKCM and CCLE samples 

are available at TCPA data portal (https://tcpaportal.org). The source and accession numbers 

for previously published datasets used in this study are as follows: bulk RNA-seq data 

from melanoma patients under anti-PD-1 treatment: GEO, GSE78220 and GSE91061, ENA, 

PRJEB23709, and dbGaP, phs000452.v3.p1; whole-exome sequencing data of melanoma 

patients under anti-PD-1 treatment, SRA: SRP090294 and SRP067938; bulk proteomics 

data from melanoma patients under anti-PD-1 treatment, Harel et al.; bulk RNA-seq 

data from melanoma patients under BRAFi treatment, GEO, GSE50509 and GSE99898; 

TCGA genomic data and clinical data, NCI Genome Data Commons; single-cell RNA-

seq data of melanoma patients, GEO, GSE115978, GSE70630, GSE174401, GSE120575; 

single-cell proteomics data from human melanoma and monocyte cell lines, Leduc et 

al., 2022; CCLE quantitative mass spectrometry data, Nusinow et al., 2020; CCLE gene 

expression data, CCLE data portal (https://portals.broadinstitute.org/ccle); bulk RNA-seq 

data of patient-derived melanoma cell lines, GEO, GSE80829; bulk RNA-seq data of in 
vitro differentiating melanocytes derived from ESC/iPSC, GEO: GSE45227; single-cell 

RNA-seq data from human normal skin samples of different developmental stages, GEO: 

GSE151091; Single-cell RNA-seq data from stepwise-edited melanoma cell lines, Single 

Cell Portal: SCP1334; spatial transcriptomics data from treatment-naïve melanoma patients, 

http://www.spatialomics.org/SpatialDB; DICE immune cell type gene expression data, 

https://dice-database.org; bulk proteomics data from human hematopoietic cell populations 

sorted from peripheral blood, http://www.immprot.org. Code used for all processing and 

analysis is available upon request.

Experimental Model and Subject Details

Cell lines—B16F10, A375, and HEK293T cells were cultured in complete DMEM media 

(10% FBS and 50U/mL Penicillin-Streptomycin). B16F10 cells with SIRPA perturbation 

and A375 cells stably expressing SIRPAP1 were cultured in complete DMEM media 

supplemented with 2 ug/mL puromycin. A375 cells stably integrated with synergistic 

activation mediator (SAM) dCas9 and effector components were cultured as described 

previously (Konermann et al., 2015). CD8+ T cells isolated from Pmel-1 mice were cultured 

in complete RPMI-164 media supplemented with 10% FBS, 20 mM HEPES, 1 mM sodium 

pyruvate, 0.05 mM 2-mercaptoethanol, and 2mM L-glutamine. All cell lines prepared at 

MD Anderson Cancer Center were confirmed by short tandem repeat analysis and were 

periodically tested for mycobacterium contamination at the MD Anderson Characterized 

Cell Line Core.

Mice—We purchased 6–8 weeks old C57BL/6J female mice from the Jackson Laboratory 

(#000664). All animal experiments and procedures were performed according to the 

protocol approved by the Institutional Animal Care and Use Committee at the University 

of Texas MD Anderson Cancer Center. Our sample size predetermination experiments 

indicated that ≥15 mice were needed in each group to detect the expected effect. In the 

experiment, all the animals were randomized before tumor inoculation; and three days after 

inoculation, mice with established tumors were randomized again before the treatment.
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Method Details

Expression plasmids—The full-length human SIRPAP1 and mouse Sirpa were 

synthesized by Epoch Life Science and cloned into pDONR221. The sequences of the two 

genes were verified by Sanger Sequencing. The expression clones were generated via the LR 

Clonase Reaction between the Entry clone and the pLenti CMV Puro DEST (w118–1). The 

pLenti CMV Puro DEST was a gift from Eric Campeau & Paul Kaufman (Addgene plasmid 

# 17452; http://n2t.net/addgene:17452; RRID: Addgene_17452) (Campeau et al., 2009).

Generation of stable cell lines—HEK293T cells were co-transfected with lentiviral 

vectors encoding the gene of interest or shRNAs together with packaging vectors pCMV-

dR8.2 dvpr and pCMV-VSV-G using JetPRIME. At 48 h post-transfection, the supernatant 

was collected and filtered using a sterile syringe filter with a 0.45 μm pore size hydrophilic 

PVDF membrane. The filtered supernatant was applied to infect the target cells for 18 h. 

The infected cells were selected using the appropriate antibiotics for a week before the 

conduction of the experiments.

Generation of CRISPR gene activation system—Lentivectors encoding dCAS9-

VP64, MS2-P65-HSF1, and lenti-sgRNA(MS2) zeo backbone were gifts from Feng Zhang 

(Konermann et al., 2015). Human A375 cells stably expressing dCAS9-VP64, MS2-P65-

HSF1 were infected with lentivirus expressing gRNA. We designed gRNAs to target 700 bp 

upstream of SIRPAP1’s transcription start site.

Curation of immuno-oncology targets—We collected the immuno-oncology (IO) 

targets listed in Global Immuno-Ontology Drug Development Pipeline 2020, a pdf file 

downloaded by selecting “Specific sheets from this dashboard” and “2020”). Then, we 

mapped the collected 508 IO targets (504 non-redundant names) to HGNC-approved 

symbols by HGNC multi-symbol checker (https://www.genenames.org/tools/multi-symbol-

checker/). We manually reviewed the mapped gene symbols, filled blanks if a proper gene 

symbol could be found in GeneCards (https://genecards.org), and then excluded IO targets 

without gene symbols. Next, we merged redundant target names by summing the numbers of 

clinical trials from each record. Lastly, we focused on those IO targets with at least 10 active 

agents/clinical trials and obtained 60 IO targets for the subsequent analyses.

Integrative analysis of bulk transcriptomic and proteomic data from anti-PD-1 
treatment patient cohorts—To collect suitable datasets, we first reviewed all available 

anti-PD-1 trial studies in the literature and at the website of Tumor Immune Dysfunction and 

Exclusion (TIDE; http://tide.dfci.harvard.edu). We collected the anti-PD1 treated melanoma 

patient cohorts with available RNA-seq or proteomic data, leading to four transcriptomic 

datasets (Gide et al., 2019; Hugo et al., 2016; Liu et al., 2019; Riaz et al., 2017) as well as 

one proteomic dataset (Harel et al., 2019) (see Key Resources Table). We followed quality 

control of the samples from each study and then removed samples collected from sites other 

than skin to exclude potential confounders in survival analysis. In particular, seven non-skin 

samples were removed from the 41 anti-PD1 treated samples from the Gide dataset; two 

unqualified and 33 non-skin samples were removed from the 121 samples of the Liu dataset; 

7 unqualified samples were removed from the 74 samples of the Harel dataset. Next, to 
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analyze RNA-seq data, we used gene annotation (version 37) from GENCODE. Then, we 

adopted Salmon v1.4.0 to obtain read counts and TPMs for each dataset using the default 

parameter setting. We developed an integrative analytic procedure combining proteomic 

and transcriptomic data with the treatment response and survival information. Specifically, 

we computed expression-response and expression-survival associations in anti-PD-1-treated 

melanoma patients and then examined the concordance of the two associations to evaluate 

the combinational potential of an active IO target for anti-PD-1 therapy in melanoma. First, 

we performed differential expression analysis. For transcriptomic data, we adopted three 

well-established methods (DE-seq2/edgeR/limma) to detect differentially expressed (DE) 

genes between the responding and non-responding patients given anti-PD-1 treatment. To 

identify the most robust differentially expressed IO targets, we then constructed a consensus 

set of DE features by overlapping the three DE lists (P ≤ 0.05 and FDR ≤ 0.15 among 

all three tests with two-sided testing). To detect differential signals more sensitively, we 

also computed P values with one-sided testing (P’) to identify significant associations. For 

proteomic data, we used the Mann-Whitney U test (MW test), incorporating a permutation 

procedure to identify DE proteins. For each protein, we randomly shuffled the sample 

labels and calculated U scores of the MW test 10,000 times to obtain the background 

distribution and re-computed a P-value. Proteins with a P-value < 0.05 were defined as 

DE proteins. Second, we retained the IO targets that were differentially expressed in at 

least two patient cohorts. Third, we adopted a log-rank test (by ggsurvplot with the option 

log.rank.weights=“n” to identify early survival differences) for survival analysis. For each 

candidate IO target, the patients in a cohort were divided into high- and low- expression 

groups based on the median expression. We then computed the association between the 

overall survival rate and the expression groups. Lastly, we examined the concordance 

between DE and survival analyses to identify the IO targets showing a consistent pattern 

in terms of tumor response and patient survival rate.

Analysis of single-cell RNA-seq data of melanoma and normal skin samples
—We downloaded gene expression profiles of single cells in raw counts (UMIs for data 

generated with droplet-based platforms) along with clustering annotations and clinical 

metadata from the Gene Expression Omnibus (GEO) and Single Cell Portal (SCP; see 

Key Resources Table). No quality control was further applied beyond what was already 

conducted by the original studies. We followed the Scanpy workflow (Wolf et al., 2018) 

for downstream analyses. Specifically, we 1) applied the log1pCP10K normalization to 

the raw counts, 2) selected highly variable genes, 3) regressed out the effects of the total 

count per cell and the percentage of mitochondrial gene count, 4) calculated the first 50 

principal components, 5) applied Harmony (Korsunsky et al., 2019) to remove sample-level 

batch effects, 6) reduced the data dimension through Uniform Manifold Approximation 

and Projection (UMAP), 7) clustered the single cells using an unsupervised graph-based 

clustering algorithm (Leiden), 8) identified cluster-specific marker genes using Student’s 

t-test, and 9) annotated the clusters based on the expression patterns of literature-derived 

marker genes along with referring to the annotations from the original studies.

Pseudo-time trajectory analysis of melanocyte scRNA-seq data—We extracted 

the single-cell gene expression profiles of the human melanocytes at the fetal stage from the 
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original dataset to build a pseudo-time trajectory. The data were normalized and processed 

following the same scRNA-seq data analysis procedure described above. Force Atlas was 

applied to generate a graph layout of the cells, upon which a differentiation progression was 

inferred by Diffusion Pseudo-time with the root set to be the cells with the lowest expression 

levels of canonical melanocytic lineage gene markers, including PMEL, MITF, and TYR. 

SIRPA expression was then visualized along the same trajectory to be compared against the 

differentiation progression.

Analysis of single-cell proteomics data of human melanoma and monocyte 
cell lines—We downloaded protein expression profiles of single cells in log-normalized 

and batch-corrected units from the Single-cell Proteomics Data Repository (see Key 

Resources Table). Data processing and analysis were conducted using the same procedure as 

in scRNA-seq analysis.

In-silico inference of cell-type-specific gene expression from bulk samples
—To computationally enumerate seven cell types, namely, tumor cells, T cells, B cells, 

macrophages, natural killer cells, fibroblasts, and endothelial cells, from bulk melanoma 

RNA-seq samples from Hugo et al., we used CIBERSORTx to estimate their relative 

fractions. Following estimations by the CIBERSORTx algorithm, we constructed gene 

expression signature matrices for the seven cell types based on the scRNA-seq from Tirosh 

et al. Briefly, for each of the desired cell types, half of all the single cells were randomly 

selected without replacement and merged into a mega cell with average TPM values. 

Such random combinations were conducted 10 times to generate replicates for each cell 

type and were used as an input for a DE gene analysis to identify cell-type signature 

genes. Specifically, aggregated gene expression replicates of each cell type were compared 

against replicates of all other cell types using a Mann-Whitney U test, and the top 200 

genes with an adjusted P-value < 0.01 and the highest log2FC were defined as signature 

genes. The average expression levels of these genes across all single cells were pooled 

into a final signature matrix for that cell type. We excluded 671 genes involved in the 

cell cycle (GO:0007049), 108 genes involved in ribosome biogenesis (GO:0042254), 21 

genes involved in cell apoptosis (GO:0008637), and 37 genes mapped to the mitochondrial 

genome. With the signature matrices as a reference, we first ran the “Impute Cell Fractions” 

task in CIBERSORTx to estimate the relative fractions of the cell types within each bulk 

RNA-seq sample and then the “Impute Cell Expression” task with the “High-Resolution” 

mode to obtain sample-specific expression profiles of all cell types.

Analysis of melanoma spatial transcriptomic data—Spatial transcriptomic data of 

a stage III cutaneous malignant melanoma sample was downloaded from SpatialDB (http://

www.spatialomics.org/SpatialDB/). To decompose the spatial distribution of tumor cells and 

immune cells from the expression data, we first queried the top 200 marker genes of each 

of the seven cell types (see above) surveyed in the scRNA-seq study by Tirosh et al. We 

then used GSVA to compute cell-type signature scores for all the dots, which quantified 

the enrichment or depletion of each of the cell populations at each position. Based on 

the concordance between transcriptome-deconvoluted and H&E staining-informed cell type 

Zhou et al. Page 15

Cancer Cell. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.spatialomics.org/SpatialDB/
http://www.spatialomics.org/SpatialDB/


distributions, the cell type-specific expression patterns of SIRPA and CD47 were visualized 

across the slide.

Estimation of cell-cell communication using single-cell RNA-seq data—The 

melanoma patients’ scRNA-seq data from Tirosh et al. were used to evaluate the confidence 

in SIRPα-CD47-mediated cell-cell communication between melanoma cells and CD8+ T 

cells based on their co-expression patterns. We ranked all T cells by the expression level of 

CD4 and CD8 and extracted the gene expression profiles of the top 1,044 CD8+ T cells that 

were completely depleted of CD4. These cells were then combined with all melanoma cells 

in the TPM scale as input to CellPhoneDB.

Generation and analysis of SIRPA-perturbed B16F10 RNA-seq data—For RNA-

seq experiments, total RNA was extracted from mSIRPA KD, OE, or control B16F10 

cells using the Qiagen RNeasy Mini kit according to the manufacturer’s instructions and 

were subjected to mRNA paired-end sequencing at Novogene Co., LTD. Each cell line 

had three biological repeats. We employed a similar processing pipeline to the integrative 

analysis of public datasets to analyze the B16F10 data. Briefly, we (i) performed quality 

control of RNA-seq raw reads using MultiQC, (ii) pseudo-aligned reads to GENCODE 

mm39 mouse reference genome and obtained read counts and TPM using Salmon, (iii) 

identified differentially expressed genes in each condition through log2 fold changes and 

adjusted p-values using DESeq2, and (iv) focused on the changes of six well-established 

MDA-encoding genes, namely PMEL, TYR, TYRP1, DCT, MLANA, and MITF.

Profiling of SIRPα protein expression in TCGA melanoma and CCLE samples
—We quantified SIRPα protein expression in 349 TCGA melanoma samples and 48 CCLE 

melanoma samples using a reverse phase protein array at the RPPA core facility at MD 

Anderson. The SIRPα antibodies (Abcam, Cat # ab8120) were validated by comparison 

with immunoblotting, as previously described (Hennessy et al., 2010; Li et al., 2017). 

Briefly, lysates were manually serial-diluted in 5 two-fold dilutions with lysis buffer and 

printed on nitrocellulose-coated slides using an Aushon Biosystems 2470 arrayer. Slides 

were probed with validated primary antibodies. Signals were captured by Dako GenePoint 

Tyramide Signal Amplification System (Agilent, Cat. # K0620). Stained RPPA slides 

were first quantified using ArrayPro (Media Cybernetics) to generate signal intensities. 

The raw data were further normalized by SuperCurve, median polish, and replicate-based 

normalization (Akbani et al., 2014; Ju et al., 2015) for downstream analyses.

Analysis of potential regulators of SIRPα protein expression—To identify 

potential regulators of SIRPα expression, we integrated the SIRPα protein expression of 

TCGA-SKCM samples with other TCGA-SKCM molecular profiles (DNA methylation, 

mutation, somatic copy-number alteration, and pseudogene expression) that were 

obtained from the TCGA Pan-Cancer Atlas website (https://gdc.cancer.gov/about-data/

publications/pancanatlas), except for pseudogene expression. For the pseudogene 

SIRPAP1, we downloaded TCGA-SKCM bam files from the GDC data portal (https://

portal.gdc.cancer.gov/), extracted uniquely mapped reads, and computed RPM by using 

featureCounts. Then, we used multiple statistical methods to examine associations between 
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SIRPα protein expression and other types of molecular data. For categorical variables 

such as wild-type versus mutant, we performed two-sample Wilcoxon tests (Mann-Whitney 

tests). For continuous variables, including DNA methylation and SIRPAP1, we computed 

Spearman’s rank correlation. To understand whether copy-number alternation of SIRPA 
affects the gene expression in the Hugo anti-PD1-treated patient cohort, we downloaded 

the whole-exome sequencing data of Hugo et al. and mapped them to human reference 

genome GRCh37 with the BWA-MEM algorithm (version 0.7.17). Picard (version 2.23.8) 

was used to mark duplications. The R package PureCN was used to estimate sample purity 

and ploidy. All normal samples were combined to build a reference panel, against which 

each tumor sample was compared to infer integer and categorical copy numbers using the 

cnvkit package (version 0.9.6). We categorized “Amp” for integer somatic copy number > 

3, “Del” for integer somatic copy number < 1, and all others are considered somatic copy 

number neutral (“N”).

MicroRNA analysis—We employed three miRNA-mRNA interaction prediction tools, 

RNAhybrid, miRDB, and TarPmiR, which use different methodologies to infer miRNA 

targets, to search for miRNAs that potentially bind to the shared regions of SIRPA and 

SIRPAP1 transcripts. We first built a union set of miRNAs combining the results from 

all three tools and then used an additional filter that relied on the co-expression between 

SIRPA/SIRPAP1 and the miRNAs across patient samples of the TCGA melanoma cohort. 

With these two filters, we identified the miRNAs as potential mediators of the competitive 

endogenous mechanism that governed SIRPA-SIRPAP1 coordination (Figure S6C).

Flow cytometry analysis—The surface expression of SIRPα on B16F10 and A375 cells 

was examined by flow cytometry as described previously (Motegi et al., 2003). Briefly, 

cells were washed by PBS twice and then detached from the culture dishes by treatment 

with 0.05% Trypsin-EDTA. 1×106 cells were resuspended in 100 ul staining buffer (pH 7.2 

PBS, 0.5% bovine serum albumin (BSA), and 2 mM EDTA). 10 ul FITC-conjugated SIRPα 
antibody was added to the cell suspension. Cells were incubated with the antibody for 10 

min in the dark in the refrigerator (4°C), washed twice with PBS, and then analyzed by a 

BD FACSCelesta™ cytometer. Data were analyzed using the Flowjo software (version 10.7 

Flowjo).

T cell killing assay based on co-cultures of B16F10 and T cells—We performed 

T cell killing assays as described previously (Pan et al., 2018). Briefly, CD8+ T cells were 

isolated from the spleen of Pmel-1 transgenic mice using the EasySep mouse CD8+ T 

cell isolation kit according to the manufacturer’s protocol. Freshly isolated CD8+ T cells 

were then activated with anti-CD3/CD28 beads according to the manufacturer’s protocol. 20 

ng/ml mouse IL-2 was added to the culture medium. T cells were in vitro stimulated for 

at least 6 days before the co-culture with B16F10 cells. B16F10 cells (1×105) were plated 

into a well of 6-well plate. The next day, cells were pulsed with 1 μM gp10025−33 for 2 

h. After that, the in vitro activated Pmel-1 T cells were added into co-culture with tumor 

cells at 0, 50%, or 100% of the number of tumor cells. We added 10ug/ml anti-mPD-L1 

to the co-culture system together with T cells. For CD47 blockade treatments, the indicated 

antibodies (10ug/ml) were pre-incubated with T cells for 2 h. Then, the T cells were washed 
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with PBS twice and added to the B16F10 cells. Each condition had 3 replicates. At 24 h 

after co-culture, the tumor cells were washed with PBS and then detached from the culture 

dishes by treatment with 0.05% Trypsin-EDTA. Before flow cytometry analysis, 10 ul of 

CountBright™ absolute counting beads were added to each sample. The samples were run 

through the flow cytometer and set to stop after 500 beads were acquired. The number of 

tumor cells in each sample was computed based on the reference beads. The average cell 

number in each condition was normalized to its corresponding no-T-cell control to get the 

relative cell viability proportion. The experiments were repeated three times using T cells 

from three separate mice. In each experiment, each condition was measured in triplicate. The 

relative cell survival in each condition was normalized to its corresponding no-T-cell control 

of each cell type within the experiment. The controls’ relative cell survival was set as 1. The 

error bar represents the standard error. For 96 h co-culture experiments, the B16F10 cells 

were not pulsed with 1uM gp10025–33. The in vitro activated Pmel-1 T cells were added into 

co-culture with tumor cells at 0, 50%, or 100% of the number of tumor cells. At 96 h after 

co-culture, the tumor cells were counted by flow cytometer as described previously.

Cell growth assay—On day 0, B16F10 cells (1×104) with different SIPRA perturbations 

were seeded into one well of 6 well plates. At different time points, cancer cells were 

detached from the plates by the treatment with 0.05% Trypsin-EDTA and counted using 

Cellometer Auto T4. Each condition has 3 repeats. The error bar represents the standard 

deviation.

Immunoblotting—These experiments were performed as described previously (Xu et al., 

2019). The cells were lysed in RIPA buffer. Protein concentrations were measured using 

the Pierce BCA protein assay kit. Cell lysates were boiled and separated on a 10% SDS-

PAGE gel. The proteins were transferred to a PVDF membrane, which was then incubated 

with specific primary antibodies followed by horseradish peroxidase-conjugated secondary 

antibodies. The protein expression was detected with an ECL western blot detection kit. The 

membranes were imaged with the ChemiDoc MP Imaging System.

In vivo experiments using B16F10 cells—B16F10 syngeneic mouse melanoma 

models were performed as described previously (Overwijk and Restifo, 2001; Pan et al., 

2018). Briefly, all the animals were randomized before tumor inoculation. Then 0.4×106 

control (non-targeting knockdown RNA), mSIRPA-KD, or mSIRPA-OE B16F10 cells were 

subcutaneously injected into 7–8 weeks old female C57BL/6 mice (The Jackson Laboratory 

#000664). Three days after inoculation, mice in each condition with established tumors 

were randomized again before the treatment. For each condition of mice implanted with 

control, mSIRPA-KD or mSIRPA-OE B16F10 tumor cells, two treatments were performed: 

anti-mPD-L1 and isotype control antibody. Specifically, αPD-L1 (clone B7-H1, #BP0101, 

200μg/mice) or isotype control antibodies (clone LTF-2, #BP0090, 200 ug/mouse) mAbs 

were administered on days 3, 7, 10, 14, and 17. Accordingly, there were six groups: 

control tumors treated with isotype antibody (n = 17); mSIRPA-KD tumors treated with 

isotype antibody (n = 15); mSIRPA-OE tumors treated with isotype antibody (n = 17); 

control tumors treated with anti-mPD-L1 (n = 17); mSIRPA-KD tumors treated with anti-

mPD-L1 (n = 17); and mSIRPA-OE tumors treated with anti-mPD-L1 (n = 17). Tumors 
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were measured 3–6 times a week, beginning on day 10 after inoculation, until either the 

survival endpoint (37 days) was reached or no palpable tumor remained. Tumor volumes 

were calculated using the formula for a hemiellipsoid (volume = length×width×height/2). 

Mice were sacrificed when tumors reached 20 mm in diameter or 1500 mm3 in volume.

Quantification and Statistical Analysis

We performed quantification and statistical analysis using GraphPad Prism 6, R (version 3.4) 

and python (version 3.6). Detailed descriptions of statistical tests are provided in the Method 

Details section and the respective figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• High SIRPA expression correlates with response to anti-PD-1 treatment in 

melanoma

• The loss of SIRPA expression is a key marker of melanoma de-differentiation

• Tumor-specific SIRPA overexpression enhances anti-PD-L1 response

• Multiple mechanisms affect SIRPA heterogeneity, including SIRPAP1 co-

regulation
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Figure 1. An integrative IO-target analysis across anti-PD-1 patient cohorts
(A) The overall procedure of our integrative IO-target analysis. The bar plot indicates 

the number of active clinical trials per target. (B) Venn diagram showing the overlap of 

differentially expressed (DE) genes identified in five anti-PD-1-treated melanoma patient 

cohorts. (C) A summarized plot showing seven DE genes identified in at least two cohorts; 

red and dark-blue, strong significance with FDR ≤ 0.15; pink, regular significance with P’ ≤ 

0.05; * indicates their concordance with the results of survival analysis. (D, E) Boxplots and 

Kaplan-Meier (KM) plots showing the associations between the mRNA- (D) and protein-
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level (E) expressions of the top candidate gene, SIRPA, and anti-PD-1 responses or patient 

survival times in the anti-PD-1 response cohorts. For box plots, the middle line in the box 

is the mean, the bottom and top of the box are the first and third quartiles, and the whiskers 

extend to the 1.5× interquartile range of the lower and the upper quartiles, respectively. 

To assess the differences in SIRPA mRNA expression between anti-PD-1 responding and 

non-responding groups robustly, three differential expression tests, DESeq2, edgeR, and 

limma, were used. All three tests yielded strong significant results (P ≤ 0.05 with FDR ≤ 

0.15), and the most significant two-sided P value from the three is shown on the boxplot. 

Otherwise, one-sided P’ values are shown to indicate marginal significance. To assess the 

difference in SIRPα protein expression, the Mann-Whitney U test was used, and the P-value 

from a permutated random distribution is shown on the boxplot. For Kaplan-Meier plots, 

patients were split into two equal-size groups with the median as the cutoff. Log-rank tests 

were used to assess the difference in patient survival times between the two groups. See also 

Figure S1 and Table S1.
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Figure 2. SIRPA expression in tumor cells and macrophages in melanoma patient samples
(A, B) UMAP plot visualizing cell type annotations (A) and SIRPA expression (B) in 

single cells of a melanoma patient cohort from Jerby-Arnon et al. (C) Top panel, a heatmap 

showing the proportion of cells positive for four melanoma gene markers in all melanoma 

cells of each patient. Middle panel, a heatmap showing the proportion of SIRPA+ cells in 

different cell types of each patient. Right panel, a bar plot showing the proportion of SIRPA+ 

cells in different cell types where cells from all patients are combined. (D-F) Same as (A-C) 

but for another melanoma patient cohort from Smalley et al. (G) UMAP plot visualizing 
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protein expression levels of six melanoma markers (top panel) and six monocyte markers 

(bottom panel) in single cells of a melanoma cell line (top panel) and a monocyte cell line 

(bottom panel), respectively. (H) UMAP plot visualizing SIRPα protein expression level in 

the two cell lines as mentioned in (G). (B, E, G, H) The color key indicates normalized 

mRNA expression for a gene of interest. (C, F) The color key indicates the proportion of 

positive cells. (I) Left panel, the workflow of deconvoluting bulk gene expression profiles 

into cell type-specific gene expression profiles. Right panel, violin plots showing differential 

SIRPA expression by deconvolution between responding and non-responding groups in 

melanoma cells and macrophages, respectively. R, responding to anti-PD-1 therapy; NR, 

non-responding. (J, K) Violin plots showing differential SIRPA expression by scRNA-seq 

between anti-PD-1 treatment-naïve and post-treatment resistant groups in melanoma cells (J) 

or between responding and non-responding groups in macrophages (K). (I, J, K) Each violin 

plot shows the data distribution using a kernel density estimation. The width of the violin 

plot represents a probability that the data points will take on the given value, and the top and 

bottom lines indicate the maximal and minimal data values. The bottom and top of the inner 

box are the first and third quartiles, and the whiskers extend to the 1.5× interquartile range of 

the lower and the upper quartiles, respectively. See also Figure S2.
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Figure 3. SIRPA expression dynamics in melanocyte maturation and melanoma de-
differentiation
(A, B) PCA projection of human melanoma cell lines from Tsoi et al., based on gene 

expression profiles and colored by de-differentiation stages (A) or normalized SIRPA 
expression level (B). (C-E) PCA projection of human melanoma cell lines from CCLE, 

based on gene expression profiles and colored by differentiation score (C), SIRPα protein 

by RPPA (D), or SIRPα protein expression by quantitative proteomics (E). (F, G) PCA 

projection of in vitro differentiating human melanocytes from Mica et al., based on 

gene expression profiles and colored by differentiation time (F) or normalized SIRPA 
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expression level (G). (H-J) Two-dimensional t-SNE projection of human skin single cells 

from Belote et al., colored by cell type (H), developmental stage (I), and normalized 

SIRPA expression level (J). The color key indicates the normalized SIRPA expression (A, 

B, F, G, J), differentiation score (C), SIRPα protein expression by RPPA (D), or SIRPα 
protein expression by quantitative proteomics (E). (K) Top panel, a scatterplot of TCGA 

melanoma (TCGA-SKCM) samples ranked by SIRPA expression level. Bottom panel, 

heatmap showing biological and clinical features of ordered TCGA-SKCM samples. The 

Kruskal-Wallis test was used to compute P values for the association of SIRPA expression 

with de-differentiation stages, mutational subtypes, and tumor sites. The Spearman’s rank 

correlation was used to evaluate the association of SIRPA expression with tumor stage and 

tumor purity. See also Figure S3.
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Figure 4. Effect of SIRPα inhibition on T-cell-mediated antitumor response in melanoma cells
(A) Hematoxylin and eosin (H&E) stained tissue image of a melanoma biopsy (left panel, 

adopted from Fig. 3A in Thrane et al.) with the slide-wide distribution of cell type signature 

scores (middle panel), and the expression patterns of SIRPA and CD47 (right panel). The 

color key indicates signature score or normalized gene expression. (B) Histogram showing 

the distribution of receptor-ligand interaction scores for SIRPA in melanoma cells and CD47 
in CD8+ T cells computed from the random shuffling of cell type labels. The red dotted line 

denotes the real score corresponding to the co-expression pattern of SIRPA in melanoma 
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cells and CD47 in CD8+ T cells of the Tirosh cohort. (C) A co-culture system quantifying 

tumor cell viability upon perturbations. (D) Smoothed histograms showing cell surface 

SIRPα expression detected by flow cytometry after SIRPA perturbation, knockdown (KD), 

or overexpression (OE). The knockdown cell lines were constructed by multiple shRNAs. 

SIRPA KD-E, showing the most robust knockdown efficiency, was selected for downstream 

experiments. Isotype and B16F10 NTC are the negative and positive controls, respectively. 

(E, F) Line charts showing relative survival rates of tumor cells at 24 h in co-cultures of 

different ratios of B16F10 and CD8+ T cells (Pmel-1) without (E) and with (F) the addition 

of mouse anti-PD-L1 antibody (mPD-L1). (G) Bar plot showing gene expression levels of 

SIRPA along with six melanoma differentiation antigens in B16F10 cells with SIRPA KD, 

OE, or control. sig., log2 fold change > 1 and adjusted P < 0.05 by DESeq2; ns., log2 fold 

change < 1 or adjusted P > 0.05 by DESeq2. (H) Bar plots showing relative survival rates of 

tumor cells at 24h in co-cultures with CD8+ T cells (Pmel-1) pre-treated with MIAP410 or 

MIAP430 antibodies to block CD47-SIRPα interaction. (E, F, H) The results are based on 

three independent mouse experiments, each with three replicates, and the error bars indicate 

mean ± SEM. P values are based on Student’s t-test; *, P < 0.05; **, P < 0.01; ***, P < 

0.001. See also Figure S4.
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Figure 5. Effects of SIRPα expression levels on anti-PD-L1 treatment response in mice
(A) A graphic description of the mouse experiment design. Left panel, the workflow; 

right panel, the schedule of tumor inoculation and treatments. Three tumor cell lines, 

NTC, mSIRPA-OE, and mSIRPA-KD were inoculated, followed by two treatments, Isotype 

control, and mPD-L1. In total, six mouse groups were tested and compared. (B, C) Curves 

showing the tumor growth in 16 days for each mouse group. Averaged tumor volumes of the 

six mouse groups are shown in one plot for a universal comparison (B). The effects of the 

mPD-L1 antibody on tumor volumes are shown in the three tumor cell lines (C). Student’s 
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t-tests (two-sided) were used to compare the mouse groups of different treatments at each 

time point. Paired Student’s t-tests (two-sided) were used to compare the two curves within 

each tumor cell line based on the averaged tumor volumes. The error bars indicate mean ± 

SEM. (D) Waterfall plots visualizing the tumor volume changes from the baseline (Isotype 

control) after mPD-L1 antibody treatment for every single mouse of the three tumor cell 

lines on days 10, 12, 14, and 16. Student’s t-tests (two-sided) were used to compare the 

mouse groups of different cell lines. (E) Boxplots showing averaged changes from baseline 

of the four time points for each tumor cell line. The middle line in the box is the median, 

the bottom and top of the box are the first and third quartiles, and the whiskers extend to 

the 1.5× interquartile range of the lower and the upper quartiles, respectively. The three 

groups were compared by using paired Student’s t-tests (two-sided). (F) Kaplan-Meier plots 

showing the mice survival rate upon anti-PD-L1 treatment for each tumor cell line. The 

difference between curves was tested by log-rank tests. (C-E) *, P < 0.05; **, P < 0.01; ***, 

P < 0.001; ****, P < 0.0001. See also Figure S5.
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Figure 6. Regulation of SIRPα protein expression in melanoma patients
(A-C) Summarized plot showing possible regulations of SIRPα protein expression across 

TCGA-SKCM patients assayed by RPPA in this study, including SIRPA DNA methylation, 

somatic mutation, somatic copy-number alteration (SCNA), and SIRPAP1 expression. (A) 

Top panel, barplot of TCGA-SKCM samples ranked by SIRPα protein expression. Color 

keys indicate normalized levels for SIRPα protein expression, SIRPA DNA methylation, 

and SIPRAP1 expression, respectively. Bottom panel, heatmap showing different regulatory 

features. (B) Boxplots showing the association between gene amplification and SIRPα 
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protein expression. Patient samples with somatic copy number with log2 transformation 

> 1 are denoted as amplified, and the others as non-amplified. The middle line in the 

box is the median, the bottom and top of the box are the first and third quartiles, 

and the whiskers extend to the 1.5× interquartile range of the lower and the upper 

quartiles, respectively. (C) Scatterplot showing the correlation between SIRPα and SIRPAP1 
RNA expression. The correlation coefficient and P-value are based on Spearman’s rank 

correlation. (D) Correlation plot showing the miRNAs which are negatively correlated with 

SIRPA expression in TCGA-SKCM samples. The color bar represents Spearman’s rank 

correlation coefficient. (E, F) Scatterplots showing the correlations between let-7a-2–3p and 

SIRPA (E) or SIRPAP1 (F) expression. (G) Cartoon summary of SIRPAP1 overexpression 

by lentivirus transduction. (H, I) Western blot (H) and Flow cytometry (I) of SIRPα protein 

expression upon vector-based SIRPAP1 overexpression. (J) Cartoon summary of SIRPAP1 
overexpression by CRISPR/Cas9 SAM system. (K, L) Western blot (K) and flow cytometry 

(L) of SIRPα protein expression upon CRISPR/Cas9-based SIRPAP1 overexpression. See 

also Figure S6.
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Figure 7. The proposed model of SIRPα-mediated T-cell-centric immunotherapy response
The proposed model consists of three consecutive layers, from the molecular mechanism 

to impacts on clinical outcomes. The left and right sides show the contrasting situations 

of SIRPA high expression vs. SIRPA low expression in tumor cells. On the left side, 

within tumor cells, SIRPAP1 upregulates SIRPA by functioning as a competing endogenous 

RNA; within the tumor microenvironment (TME), SIRPα on the surface of tumor cells 

interacts with CD47 on CD8+ T cells to enhance cell-cell adhesion between these two cell 

types; and consequently, the enhanced cell-cell interaction increases the T cell killing effect, 
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leading to a better response to anti-PD-1/PD-L1 therapy. In contrast, on the right side, 

tumor cells with low SIRPA expression have moderate cell-cell adhesion with CD8+ T cells, 

thereby rendering resistance to anti-PD-1/PD-L1 therapy. The bottom panels show clinical 

implications of the proposed model in terms of indication for treatment, immunotherapy 

biomarker, and therapeutic development.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD172a (SIRPa)-FITC, human Miltenyi Biotec Inc 130-099-896

REA Control-FITC Miltenyi Biotec Inc 130-113-449

Anti-SIRPα antibody Abcam ab8120

hFAB Rhodamine anti-GAPDH Primary Antibody Bio-Rad Laboratories 12004168

hFAB™ Rhodamine anti-Actin Primary Antibody Bio-Rad Laboratories 12004163

Brilliant Violet 510™ anti-mouse CD172a (SIRPα) Biolegend 144032; RRID: AB_2810411

Brilliant Violet 510™ Rat IgG1, κ Isotype Ctrl Antibody Biolegend 400435

InVivoPlus rat IgG2b isotype control, anti-keyhole limpet hemocyanin Biolegend BP0090; RRID: AB_1107780

InVivoPlus anti-mouse PD-L1 (B7-H1) Bioxcell BP0101; RRID: AB_10949073

InVivoPlus anti-mouse/human/rat CD47 (IAP) Bioxcell MIAP410; RRID: AB_2687806

InVivoMAb mouse IgG1 isotype control, Bioxcell MOPC-21;RRID: AB_1107784

Anti-CD47 mIAP430 Absolute Antibdody AB00738-7.1

Bacterial and virus strains

Endura™ Chemically Competent Cells Lucigen 60240-2

Chemicals, peptides, or recombinant proteins

jetPRIME® Versatile DNA/siRNA transfection reagent(0.75ml) Polyplus 114-07

A 33 mm diameter sterile syringe filter with a 0.45 μm pore size 
hydrophilic PVDF membrane EMD Millipore Corp SLHV033RS

Recombinant Mouse IL-2 Protein R&D System,lnc 402-ML

RIPA Lysis and Extraction Buffer Thermo Fisher 89901

Western Lightning® Plus-ECL, Enhanced Chemiluminescence Substrate PerkinElmer Inc. NEL103001EA

Pierce BCA Protein Assay Kit Thermo Fisher 23227

RPMI 1640 Fisher Scientific MT10040CV

DMEM with L-Glutamine, 4.5g/L Glucose and Sodium Pyruvate Fisher Scientific 10013CV

Penicillin-Streptomycin (10,000U/mL) Thermo Fisher 15140122

Trypsin-EDTA (0.05%), phenol red Thermo Fisher 25300120

InVivoPure pH 7.0 Dilution Buffer Bioxcell IP0070

InVivoPure pH 6.5 Dilution Buffer Bioxcell IP0065

GP100(25-33) ANASPEC AS-62589

Critical commercial assays

EasySep™ Mouse CD8+ T Cell Isolation Kit Stemcell 19853

CountBright Absolute Counting Beads, for flow cytometry Thermo Fisher C36950

Dynabeads™ Mouse T-Activator CD3/CD28 for T-Cell Expansion and 
Activation

Thermo Fisher 11456D

Deposited data

Immuno-oncology targets (Figure 1A) Immuno-Oncology 
Landscape, Cancer 
Research Institute (online 

https://www.cancerresearch.org/
scientists/immuno-oncology-
landscape
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REAGENT or RESOURCE SOURCE IDENTIFIER

published on Sep 18, 
2020)

Bulk proteomics data from anti-PD-1-treatment-responding and non-
responding melanoma patients (Figure 1A–C, E)

Harel et al., 2019 https://www.sciencedirect.com/
science/article/pii/
S0092867419309006

Bulk RNA-seq data from anti-PD-1-treatment-responding and non-
responding melanoma patients (Figure 1A–D; Figure 2I; Figure S6A)

Hugo et al., 2016 GEO: GSE78220

Bulk RNA-seq data from anti-PD-1-treatment-responding and non-
responding melanoma patients (Figure 1A–D)

Gide et al., 2019 ENA: PRJEB23709

Bulk RNA-seq data from anti-PD-1-treatment-responding and non-
responding melanoma patients (Figure 1A–D)

Riaz et al., 2017 GEO: GSE91061

Bulk RNA-seq data from anti-PD-1-treatment-responding and non-
responding melanoma patients (Figure 1A–D)

Liu et al., 2019 dbGaP: phs000452.v3.p1

Bulk RNA-seq data from BRAFi-treatment-responding and non-
responding melanoma patients (Figure S1A, B)

Rizos et al., 2014 GEO: GSE50509

Bulk RNA-seq data from BRAFi-treatment-responding and non-
responding melanoma patients (Figure S1A, B)

Kakavand et al., 2017 GEO: GSE99898

Tumor mutation burden in melanoma patients (Figure S1C) Wang et al., 2019 https://elifesciences.org/articles/
49020

Survival data in TCGA melanoma patients (Figure S1D) The Cancer Genome 
Atlas (TCGA)

https://gdc.cancer.gov/about-data/
publications/pancanatlas

Single-cell RNA-seq data from pre- and post-anti-PD-1-treatment 
melanoma patients (Figure 2A–C, J)

Jerby-Arnon et al., 2018 GEO: GSE115978

Single-cell RNA-seq data from treatment-naïve melanoma patients (Figure 
2I; Figure 4B)

Tirosh et al., 2016 GEO: GSE70630

Single-cell RNA-seq data from metastatic melanoma patients (Figure 2D–
F)

Smalley et al., 2021 GEO: GSE174401

Single-cell proteomics data from human melanoma and monocyte cell 
lines (Figure 2G, H)

Leduc et al., 2022 https://scp.slavovlab.net/
Leduc_et_al_2022

Single-cell RNA-seq data from anti-PD-1-treatment-responding and -non-
responding melanoma patients (Figure 2K)

Sade-Feldman et al., 
2018

GEO: GSE120575

CCLE quantitative mass spectrometry data (Figure S2A; Figure 3E) Nusinow et al., 2020 https://www.sciencedirect.com/
science/article/pii/
S0092867419313856

CCLE gene expression data (Figure S2B; Figure 3C) Cancer Cell Line 
Encyclopedia

https://portals.broadinstitute.org/
ccle

SIRPα RPPA data in melanoma cell lines (Figure 3D) This study https://tcpaportal.org

Bulk RNA-seq data of patient-derived melanoma cell lines (Figure 3A–C) Tsoi et al., 2018 GEO: GSE80829

Bulk RNA-seq data of in vitro differentiating melanocytes derived from 
ESC/iPSC (Figure 3F, G)

Mica et al., 2013 GEO: GSE45227

Single-cell RNA-seq data from human normal skin samples of different 
developmental stages (Figure 3H–J; Figure S3C)

Belote et al., 2020 GEO: GSE151091

Single-cell RNA-seq data from stepwise-edited melanoma cell lines 
(Figure S3A, B)

Hodis et al., 2022 Single Cell Portal: SCP1334

Spatial transcriptomics data from treatment-naïve melanoma patients 
(Figure 4A)

Thrane et al., 2018 http://www.spatialomics.org/
SpatialDB/download.php

DICE immune cell type gene expression data (Figure S4A, B) Schmiedel et al., 2018 https://dice-database.org

Bulk proteomics data from human hematopoietic cell populations sorted 
from peripheral blood (Figure S4C, D)

Rieckmann et al., 2017 http://www.immprot.org

Bulk RNA-seq data of B16F10 cells with SIRPA perturbations This study GEO: GSE211226

SIRPα RPPA data in TCGA-SKCM samples (Figure 6A–C; Figure S6B) This study https://tcpaportal.org
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REAGENT or RESOURCE SOURCE IDENTIFIER

TCGA-SKCM RNA-seq data (bam files; Figure 3K; Figure 6D–F; Figure 
S6B)

The Cancer Genome 
Atlas (TCGA)

https://tcga-data.nci.nih.gov/docs/
publications/tcga

Processed TCGA SCNA data (Figure 6A, B) The Cancer Genome 
Atlas (TCGA)

Synapse: syn5049520.1

Processed TCGA DNA methylation, mutation, and miRNA expression 
data (Figure 6A, C–G)

The Cancer Genome 
Atlas (TCGA)

https://gdc.cancer.gov/about-data/
publications/pancanatlas

Whole-exome sequencing data from anti-PD-1-treatment-responding and 
non-responding melanoma patients (Figure S6A)

Hugo et al., 2016 SRA: SRP090294 and SRP067938

Experimental models: Cell lines

HEK293T MD Anderson 
Characterized Cell Line 
Core Facility

HEK293T

A375 MD Anderson 
Characterized Cell Line 
Core Facility

A375M

A375-dCas9-SAM This study N/A

B16F10 ATCC CRL-6475

Experimental models: Organisms/strains

Mouse:B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
The Jackson Laboratory

JAX:005023; 
RRID:IMSR_JAX:005023

Mouse:C57BL/6J
The Jackson Laboratory

JAX:000664; 
RRID:IMSR_JAX:005023

Oligonucleotides

Scramble gRNA-F: 5’-CACCGGTATTACTGATATTGGTGGG-3’ This study N/A

Scrambel gRNA-R: 5’-AAACCCCACCAATATCAGTAATACC-3’ This study N/A

SIRPAP1-1-F: 5’-CACCGGTAGGGTCGCGAGACGGATG -3’ This study N/A

SIRPAP1-1-R: 5’-AAACCATCCGTCTCGCGACCCTACC-3’ This study N/A

Recombinant DNA

pCMV-VSV-G Addgene 8454; RRID:Addgene_8454

pCMV-dR8.2 dvpr Addgene 8455; RRID:Addgene_8455

lenti sgRNA(MS2)_zeo backbone Addgene 61427; RRID:Addgene_61427

lenti dCAS-VP64_Blast Addgene 61425; RRID:Addgene_61425

lentiMPH v2 Addgene 89308; RRID:Addgene_89308

plenti-CMV-Puro-Dest Addgene 17452; RRID:Addgene_17452

pDONR221-Human SIRPAP1 Epoch Life Science GS65919

pDONR221-Mouse SIRPA Epoch Life Science GS68006

plenti-CMV-Puro-Human SIRPAP1 This study N/A

plenti-CMV-Puro-Mouse SIRPA This study N/A

MISSION® pLKO.1-puro Non-Target shRNA Control Plasmid DNA Sigma-Aldrich SHC016-1EA

SHCLNG MISSION shRNA-1 Sigma-Aldrich TRCN0000029914

SHCLNG MISSION shRNA-2 Sigma-Aldrich TRCN0000055053

SHCLNG MISSION shRNA-3 Sigma-Aldrich TRCN0000029915

SHCLNG MISSION shRNA-4 Sigma-Aldrich TRCN0000029916

SHCLNG MISSION shRNA-5 Sigma-Aldrich TRCN0000029917
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

FlowJo10.0.7
FlowJo LLC

https://www.flowjo.com; 
RRID:SCR_008520

Salmon v1.4.0 Patro et al., 2017 https://combine-lab.github.io/
salmon/

Subread v2.0.1 Liao et al., 2014 http://subread.sourceforge.net/; 
RRID:SCR_009803

CIBERSORTx Newman et al., 2019 https://cibersortx.stanford.edu/
index.php

GSVA Hanzelmann et al., 2013 https://pypi.org/project/GSVA/; 
RRID:SCR_021058

RNAhybrid Krüger et al., 2006 https://bibiserv.cebitec.uni-
bielefeld.de/rnahybrid; 
RRID:SCR_003252

miRDB Chen et al., 2020 http://www.mirdb.org/; 
RRID:SCR_010848

TarPmiR Ding et al., 2016 http://hulab.ucf.edu/research/
projects/miRNA/TarPmiR/

CellPhoneDB Efremova et al., 2020 https://www.cellphonedb.org/; 
RRID:SCR_017054

Scanpy Wolf et al., 2018 https://scanpy.readthedocs.io/en/
stable/; RRID:SCR_018139

tSNE van der Maaten and 
Hinton, 2008

https://github.com/DmitryUlyanov/
Multicore-TSNE

Python v3.6 Python, 2015 https://python.org; 
RRID:SCR_008394

R v3.6 The R Foundation https://www.r-project.org; 
RRID:SCR_001905

Prism 6 GraphPad https://www.graphpad.com/
scientific-software/prism/; 
RRID:SCR_002798

BioRender BioRender https://app.biorender.com/; 
RRID:SCR_018361
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