Skip to main content
. Author manuscript; available in PMC: 2023 Nov 14.
Published in final edited form as: Cancer Cell. 2022 Nov 3;40(11):1324–1340.e8. doi: 10.1016/j.ccell.2022.10.012

KEY RESOURCES TABLE.

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
CD172a (SIRPa)-FITC, human Miltenyi Biotec Inc 130-099-896
REA Control-FITC Miltenyi Biotec Inc 130-113-449
Anti-SIRPα antibody Abcam ab8120
hFAB Rhodamine anti-GAPDH Primary Antibody Bio-Rad Laboratories 12004168
hFAB™ Rhodamine anti-Actin Primary Antibody Bio-Rad Laboratories 12004163
Brilliant Violet 510™ anti-mouse CD172a (SIRPα) Biolegend 144032; RRID: AB_2810411
Brilliant Violet 510™ Rat IgG1, κ Isotype Ctrl Antibody Biolegend 400435
InVivoPlus rat IgG2b isotype control, anti-keyhole limpet hemocyanin Biolegend BP0090; RRID: AB_1107780
InVivoPlus anti-mouse PD-L1 (B7-H1) Bioxcell BP0101; RRID: AB_10949073
InVivoPlus anti-mouse/human/rat CD47 (IAP) Bioxcell MIAP410; RRID: AB_2687806
InVivoMAb mouse IgG1 isotype control, Bioxcell MOPC-21;RRID: AB_1107784
Anti-CD47 mIAP430 Absolute Antibdody AB00738-7.1
Bacterial and virus strains
Endura™ Chemically Competent Cells Lucigen 60240-2
Chemicals, peptides, or recombinant proteins
jetPRIME® Versatile DNA/siRNA transfection reagent(0.75ml) Polyplus 114-07
A 33 mm diameter sterile syringe filter with a 0.45 μm pore size hydrophilic PVDF membrane EMD Millipore Corp SLHV033RS
Recombinant Mouse IL-2 Protein R&D System,lnc 402-ML
RIPA Lysis and Extraction Buffer Thermo Fisher 89901
Western Lightning® Plus-ECL, Enhanced Chemiluminescence Substrate PerkinElmer Inc. NEL103001EA
Pierce BCA Protein Assay Kit Thermo Fisher 23227
RPMI 1640 Fisher Scientific MT10040CV
DMEM with L-Glutamine, 4.5g/L Glucose and Sodium Pyruvate Fisher Scientific 10013CV
Penicillin-Streptomycin (10,000U/mL) Thermo Fisher 15140122
Trypsin-EDTA (0.05%), phenol red Thermo Fisher 25300120
InVivoPure pH 7.0 Dilution Buffer Bioxcell IP0070
InVivoPure pH 6.5 Dilution Buffer Bioxcell IP0065
GP100(25-33) ANASPEC AS-62589
Critical commercial assays
EasySep™ Mouse CD8+ T Cell Isolation Kit Stemcell 19853
CountBright Absolute Counting Beads, for flow cytometry Thermo Fisher C36950
Dynabeads™ Mouse T-Activator CD3/CD28 for T-Cell Expansion and Activation Thermo Fisher 11456D
Deposited data
Immuno-oncology targets (Figure 1A) Immuno-Oncology Landscape, Cancer Research Institute (online published on Sep 18, 2020) https://www.cancerresearch.org/scientists/immuno-oncology-landscape
Bulk proteomics data from anti-PD-1-treatment-responding and non-responding melanoma patients (Figure 1AC, E) Harel et al., 2019 https://www.sciencedirect.com/science/article/pii/S0092867419309006
Bulk RNA-seq data from anti-PD-1-treatment-responding and non-responding melanoma patients (Figure 1AD; Figure 2I; Figure S6A) Hugo et al., 2016 GEO: GSE78220
Bulk RNA-seq data from anti-PD-1-treatment-responding and non-responding melanoma patients (Figure 1AD) Gide et al., 2019 ENA: PRJEB23709
Bulk RNA-seq data from anti-PD-1-treatment-responding and non-responding melanoma patients (Figure 1AD) Riaz et al., 2017 GEO: GSE91061
Bulk RNA-seq data from anti-PD-1-treatment-responding and non-responding melanoma patients (Figure 1AD) Liu et al., 2019 dbGaP: phs000452.v3.p1
Bulk RNA-seq data from BRAFi-treatment-responding and non-responding melanoma patients (Figure S1A, B) Rizos et al., 2014 GEO: GSE50509
Bulk RNA-seq data from BRAFi-treatment-responding and non-responding melanoma patients (Figure S1A, B) Kakavand et al., 2017 GEO: GSE99898
Tumor mutation burden in melanoma patients (Figure S1C) Wang et al., 2019 https://elifesciences.org/articles/49020
Survival data in TCGA melanoma patients (Figure S1D) The Cancer Genome Atlas (TCGA) https://gdc.cancer.gov/about-data/publications/pancanatlas
Single-cell RNA-seq data from pre- and post-anti-PD-1-treatment melanoma patients (Figure 2AC, J) Jerby-Arnon et al., 2018 GEO: GSE115978
Single-cell RNA-seq data from treatment-naïve melanoma patients (Figure 2I; Figure 4B) Tirosh et al., 2016 GEO: GSE70630
Single-cell RNA-seq data from metastatic melanoma patients (Figure 2DF) Smalley et al., 2021 GEO: GSE174401
Single-cell proteomics data from human melanoma and monocyte cell lines (Figure 2G, H) Leduc et al., 2022 https://scp.slavovlab.net/Leduc_et_al_2022
Single-cell RNA-seq data from anti-PD-1-treatment-responding and -non-responding melanoma patients (Figure 2K) Sade-Feldman et al., 2018 GEO: GSE120575
CCLE quantitative mass spectrometry data (Figure S2A; Figure 3E) Nusinow et al., 2020 https://www.sciencedirect.com/science/article/pii/S0092867419313856
CCLE gene expression data (Figure S2B; Figure 3C) Cancer Cell Line Encyclopedia https://portals.broadinstitute.org/ccle
SIRPα RPPA data in melanoma cell lines (Figure 3D) This study https://tcpaportal.org
Bulk RNA-seq data of patient-derived melanoma cell lines (Figure 3AC) Tsoi et al., 2018 GEO: GSE80829
Bulk RNA-seq data of in vitro differentiating melanocytes derived from ESC/iPSC (Figure 3F, G) Mica et al., 2013 GEO: GSE45227
Single-cell RNA-seq data from human normal skin samples of different developmental stages (Figure 3HJ; Figure S3C) Belote et al., 2020 GEO: GSE151091
Single-cell RNA-seq data from stepwise-edited melanoma cell lines (Figure S3A, B) Hodis et al., 2022 Single Cell Portal: SCP1334
Spatial transcriptomics data from treatment-naïve melanoma patients (Figure 4A) Thrane et al., 2018 http://www.spatialomics.org/SpatialDB/download.php
DICE immune cell type gene expression data (Figure S4A, B) Schmiedel et al., 2018 https://dice-database.org
Bulk proteomics data from human hematopoietic cell populations sorted from peripheral blood (Figure S4C, D) Rieckmann et al., 2017 http://www.immprot.org
Bulk RNA-seq data of B16F10 cells with SIRPA perturbations This study GEO: GSE211226
SIRPα RPPA data in TCGA-SKCM samples (Figure 6AC; Figure S6B) This study https://tcpaportal.org
TCGA-SKCM RNA-seq data (bam files; Figure 3K; Figure 6DF; Figure S6B) The Cancer Genome Atlas (TCGA) https://tcga-data.nci.nih.gov/docs/publications/tcga
Processed TCGA SCNA data (Figure 6A, B) The Cancer Genome Atlas (TCGA) Synapse: syn5049520.1
Processed TCGA DNA methylation, mutation, and miRNA expression data (Figure 6A, CG) The Cancer Genome Atlas (TCGA) https://gdc.cancer.gov/about-data/publications/pancanatlas
Whole-exome sequencing data from anti-PD-1-treatment-responding and non-responding melanoma patients (Figure S6A) Hugo et al., 2016 SRA: SRP090294 and SRP067938
Experimental models: Cell lines
HEK293T MD Anderson Characterized Cell Line Core Facility HEK293T
A375 MD Anderson Characterized Cell Line Core Facility A375M
A375-dCas9-SAM This study N/A
B16F10 ATCC CRL-6475
Experimental models: Organisms/strains
Mouse:B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J The Jackson Laboratory JAX:005023; RRID:IMSR_JAX:005023
Mouse:C57BL/6J The Jackson Laboratory JAX:000664; RRID:IMSR_JAX:005023
Oligonucleotides
Scramble gRNA-F: 5’-CACCGGTATTACTGATATTGGTGGG-3’ This study N/A
Scrambel gRNA-R: 5’-AAACCCCACCAATATCAGTAATACC-3’ This study N/A
SIRPAP1-1-F: 5’-CACCGGTAGGGTCGCGAGACGGATG -3’ This study N/A
SIRPAP1-1-R: 5’-AAACCATCCGTCTCGCGACCCTACC-3’ This study N/A
Recombinant DNA
pCMV-VSV-G Addgene 8454; RRID:Addgene_8454
pCMV-dR8.2 dvpr Addgene 8455; RRID:Addgene_8455
lenti sgRNA(MS2)_zeo backbone Addgene 61427; RRID:Addgene_61427
lenti dCAS-VP64_Blast Addgene 61425; RRID:Addgene_61425
lentiMPH v2 Addgene 89308; RRID:Addgene_89308
plenti-CMV-Puro-Dest Addgene 17452; RRID:Addgene_17452
pDONR221-Human SIRPAP1 Epoch Life Science GS65919
pDONR221-Mouse SIRPA Epoch Life Science GS68006
plenti-CMV-Puro-Human SIRPAP1 This study N/A
plenti-CMV-Puro-Mouse SIRPA This study N/A
MISSION® pLKO.1-puro Non-Target shRNA Control Plasmid DNA Sigma-Aldrich SHC016-1EA
SHCLNG MISSION shRNA-1 Sigma-Aldrich TRCN0000029914
SHCLNG MISSION shRNA-2 Sigma-Aldrich TRCN0000055053
SHCLNG MISSION shRNA-3 Sigma-Aldrich TRCN0000029915
SHCLNG MISSION shRNA-4 Sigma-Aldrich TRCN0000029916
SHCLNG MISSION shRNA-5 Sigma-Aldrich TRCN0000029917
Software and Algorithms
FlowJo10.0.7 FlowJo LLC https://www.flowjo.com; RRID:SCR_008520
Salmon v1.4.0 Patro et al., 2017 https://combine-lab.github.io/salmon/
Subread v2.0.1 Liao et al., 2014 http://subread.sourceforge.net/; RRID:SCR_009803
CIBERSORTx Newman et al., 2019 https://cibersortx.stanford.edu/index.php
GSVA Hanzelmann et al., 2013 https://pypi.org/project/GSVA/; RRID:SCR_021058
RNAhybrid Krüger et al., 2006 https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid; RRID:SCR_003252
miRDB Chen et al., 2020 http://www.mirdb.org/; RRID:SCR_010848
TarPmiR Ding et al., 2016 http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/
CellPhoneDB Efremova et al., 2020 https://www.cellphonedb.org/; RRID:SCR_017054
Scanpy Wolf et al., 2018 https://scanpy.readthedocs.io/en/stable/; RRID:SCR_018139
tSNE van der Maaten and Hinton, 2008 https://github.com/DmitryUlyanov/Multicore-TSNE
Python v3.6 Python, 2015 https://python.org; RRID:SCR_008394
R v3.6 The R Foundation https://www.r-project.org; RRID:SCR_001905
Prism 6 GraphPad https://www.graphpad.com/scientific-software/prism/; RRID:SCR_002798
BioRender BioRender https://app.biorender.com/; RRID:SCR_018361