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SUMMARY

Cancer associated fibroblasts (CAFs) are integral to the solid tumor microenvironment. Once 

thought to be a relatively uniform population of matrix-producing cells, single-cell RNA-

sequencing has revealed diverse CAF phenotypes. Here, we further probed CAF heterogeneity 

with a comprehensive multi-omics approach. Using paired, same-cell chromatin accessibility 

and transcriptome analysis, we provided an integrated analysis of CAF subpopulations over 

a complex spatial transcriptomic and proteomic landscape to identify three superclusters – 

steady state-like (SSL), mechanoresponsive (MR) and immunomodulatory (IM) CAFs. These 

superclusters were recapitulated across multiple tissue types and species. Selective disruption 

of underlying mechanical force or immune checkpoint inhibition therapy resulted in shifts in 

CAF subpopulation distributions and impacted tumor growth. As such, the balance among CAF 

superclusters may have considerable translational implications. Collectively, this research expands 

our understanding of CAF biology, identifying regulatory pathways in CAF differentiation and 

elucidating therapeutic targets in a species- and tumor-agnostic manner.

eTOC:

Foster et al. integrate epigenomic, transcriptomic and proteomic changes in cancer 

associated fibroblasts (CAFs) both spatially and temporally through tumor development. CAF 

superclusters – steady state-like (SSL), mechanoresponsive (MR), and immunomodulatory 

(IM) – are recapitulated across tissue types and species. Immunotherapy or disruption of 

mechanotransduction shifts CAF distributions, suggesting a “push-pull” dynamic.
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INTRODUCTION

Solid tumors contribute to over 80% of cancer deaths. For most solid tumor types, treatment 

involves a combination of chemotherapy, radiation, and surgery. Approaches that target 

multiple cell types in the tumor microenvironment (TME) improve therapeutic efficacy. 

The TME is composed of transformed cancer cells along with non-transformed stromal 

cells including immune cells, endothelial cells, pericytes, and cancer associated fibroblasts 

(CAFs) (Foster et al., 2018; Ligorio et al., 2019; Norton et al., 2020). Clinically, solid 

tumors are often identified by their firm texture compared with benign parenchyma. 

This is attributable to CAFs, which secrete extracellular matrix (ECM) components (e.g., 

collagens), generating a dense fibrotic network (desmoplasia) in the tumor (Drifka et al., 

2016).

Despite their abundance in solid tumors, CAFs are not targeted in mainstream cancer 

therapy. This is primarily because CAF heterogeneity and functions remain incompletely 

understood (Helms et al., 2021). CAFs can facilitate tumor proliferation, invasion, and 

metastasis, and are often associated with a poor prognosis (Park et al., 2020). However, 

indiscriminate CAF depletion can accelerate tumor progression (Ozdemir et al., 2014). Such 

paradoxical observations of CAF function support the need for further investigation of this 

complex cell population.
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CAF heterogeneity is perhaps best characterized in terms of cell surface marker expression. 

They express canonical fibroblast-associated markers; however, there is no single marker 

that is shared by all CAFs (Sahai et al., 2020). CAF heterogeneity at the transcriptomic 

level is less well characterized. Further, it has yet to be determined whether individual 

CAF subpopulations are preserved across tumor types/sites and species, although previous 

analyses suggest shared phenotypes (Buechler et al., 2021).

Here, we investigate CAF single-cell gene expression and chromatin accessibility in 

conjunction with spatial transcriptomics across multiple solid tumor types and species, 

with the aim of identifying commonalities that may represent therapeutic targets. We 

show that CAF subpopulations fall into three broad categories – steady state-like (SSL), 

mechanoresponsive (MR), and immunomodulatory (IM). Each of these categories is 

comprised of distinct subtypes, governed by specific changes in chromatin accessibility, 

and spatially distinct. We validate these results functionally: fibroblast-specific disruption 

of mechanotransduction leads to increased SSL CAFs and more aggressive tumor biology. 

Alternatively, exposure to immune checkpoint inhibition results in a reduction in SSL CAFs 

and a proportional increase in IM CAFs in patients with treatment responses. These results 

suggest a “push-pull” dynamic among CAF superclusters, the balance of which suggests 

translational implications. Taken together, our data help to define the CAF biology spatial 

dynamics, identify regulatory pathways in CAF differentiation, delineate CAF subpopulation 

functions, elucidate novel CAF-specific therapeutic targets in a species- and tumor-agnostic 

manner, and provide a multimodal -omics framework for future studies in cancer biology.

RESULTS

Unlike primary tumor cells, which show distinct transcriptional and epigenomic programs in 

accordance with tumor type and tissue of origin (e.g., breast versus colon) (Figure 1A – left 

panel), the extent to which CAF signatures are recapitulated across solid tumor types and 

species has yet to be elucidated (Figure 1A – right panel).

Mouse endogenous breast CAFs are heterogeneous

CAFs are a heterogeneous cell population with a multitude of functions in the 

tumor microenvironment. To comprehensively delineate CAF heterogeneity by examining 

individual fibroblast transcriptional programs, we conducted single-cell RNA-seq (scRNA-

seq) of tumor samples from syngeneic tumor-bearing mice using an endogenous mouse 

breast cancer model (MMTV::PyMT). (Figure 1B). Modularity-optimized clustering of the 

resulting dataset identified seven transcriptionally-defined populations, which we ascribed as 

B-cells, T-cells, Macrophages, Granulocytes, Epithelial Cells, Endothelial Cells, and CAFs 

(Figure 1C – left panel).

Based on in silico fibroblast selection, CAFs were re-clustered to delineate six mouse breast 

(MBr) CAF subgroups (Clusters 0–5) (Figure 1C – right panel, Table S1) (Januszyk et al., 

2020). Cluster mBrRNA-1 demonstrated expression of Pi16, Dpp4, Dpt, and Cd34, closely 

aligning with recent descriptions of a stemlike phenotype in steady-state tissue (Buechler 

et al., 2021). mBrRNA-3 exhibited similarly high expression of Pi16 and Dpp4 with lower 

expression of extracellular matrix (ECM) constituents, particularly collagen, compared to 
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mBrRNA-1 (Figure 1D). However, mBrRNA-3 was associated with higher cytokine and 

growth factor expression, such as Bmp1, Bmp3, and Wnt2 (Figure 1D). Given the overlap in 

Pi16 and Dpp4 expression, we termed these groups steady state-like (SSL) fibroblasts.

Clusters mBrRNA-2, 4, and 5 demonstrated markedly elevated expression of 

mechanosensitive signaling mediators and ECM components. mBrRNA-2 CAFs selectively 

expressed genes associated with mechanotransduction and focal adhesion kinase (FAK) 

pathway signaling, including Mgp, Gas6, Postn, and Fosb (Figure 1D). MBr-4 was 

associated with Lrrc15 and Spp1 expression, implicated in CAF pathophysiology, as 

well as high expression of ECM components (Dominguez et al., 2020; Nallasamy et 

al., 2021) (Figure 1D). mBrRNA-5 also demonstrated expression of fibrosis-associated 

factors, including Thbs2, Fsp1, Col6a1, and Cdh11 (Figure 1D). Supporting the functional 

association of mBrRNA-4 and mBrRNA-5 with mBrRNA-2, the former cells also showed 

upregulation of “Focal Adhesion”, “Integrin Binding”, “Protein Binding Involved in Cell-

Matrix Adhesion”, and “Focal Adhesion-PI3K-akt-mTOR-signaling” pathways (Figure 

S1A). Taken together, we named these groups mechanoresponsive (MR) fibroblasts.

mBrRNA-0 CAFs were characterized by contributions to multiple inflammatory pathways. 

Interestingly, this included elements of both type II interferon and IL1 signaling. IL1-

associated genes, such as Il1r1, Myd88, Il6st, and Cxcl1, were consistent with other 

descriptions of inflammatory CAFs (Biffi et al., 2019; Dominguez et al., 2020; Elyada et 

al., 2019). However, mBrRNA-0 was also enriched for IFNg-associated genes, particularly 

those relevant to antigen presentation, including Ifngr1, B2m, Cd74, H2-D1, and H2-K1. 

Finally, mBrRNA-0 cells strongly expressed Cxcl12, a regulator of cancer cell growth and 

local immune response (Figure 1D) (Biasci et al., 2020). This cluster likely modulates a 

diverse array of inflammatory elements in the microenvironment, and we therefore refer to 

this group as immunomodulatory (IM) fibroblasts. This is supported by pathway analysis 

showing upregulation of “Cytokine-mediated signaling pathway”, “Regulation of Acute 

Inflammatory Response”, and “Complement Activation” pathways (Figure S1A).

Importantly, the distribution of these subgroups was highly similar among tumors analyzed 

from different mice (Figure 1E) (Zhao et al., 2021). Given that our transcriptomic 

results supported functionally-significant CAF heterogeneity, we assessed the relative 

differentiation states of these CAF subgroups using CytoTRACE, a computational tool that 

leverages transcriptional diversity to order cells based on developmental potential (Figure 

1F) (Gulati et al., 2020). Lineage progression among CAFs has yet to be well-defined (Sahai 

et al., 2020). This analysis suggested that MR CAFs may represent a less differentiated state 

relative to IM CAFs.

Next, we applied CellChat, a tool to understand cell-cell interactions in a given niche using 

single-cell gene expression data (Jin et al., 2021). This analysis suggested two “master” 

patterns of CAF behavior – Pattern 1 highlights the MR fibroblast subgroups (mBrRNA-2, 

4, and 5) and Pattern 2 was associated with the IM and SSL subgroups (mBrRNA-0, 1, 

and 3) (Figure S1B – left panel). Mechanotransduction-related pathways, including GAS, 

PERIOSTIN, THBS, and SPP1, drive Pattern 1 CAFs, whereas cytokine signaling such as 

CCL, CXCL, and IL1 drive Pattern 2 (Figure S1B – right panel). Pattern 1 CAF subgroup 
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cells interact more with each other and with ECM proteins (Figure S1C), while Pattern 2 

CAF subgroup cell interactions favor immune cells (Figure S1D).

Changes in chromatin accessibility complement transcriptional phenotypes of CAF 
subpopulations

To evaluate the epigenomic changes associated with fibroblast activation in the context 

of solid tumors, we conducted scATAC-seq in parallel with our scRNA-seq assays for 

endogenous mBr tumors (mBrATAC). We identified considerable heterogeneity in chromatin 

accessibility profiles among individual CAFs, which were clustered into four epigenomically 

distinct subgroups using a Louvain-based modularity optimization in the ArchR platform 

(Granja et al., 2021) (Figure 2A). We then performed cross-platform integration to 

link mBr scATAC-seq data with the mBr scRNA-seq data using ArchR’s unconstrained 

implementation of Seurat’s label transfer algorithm (Granja et al., 2021). This resulted 

in four of our initial six scRNA-seq clusters mapping strongly to our scATAC-profiled 

cell groups (Figure 2B). To minimize nomenclature confusion, mBr scATAC-seq clusters 

were named based on the corresponding mBr scRNA cluster. The clusters with fewer cells 

(mBrRNA- 3 and 5) did not map clearly to the scATAC-seq data, potentially due to the 

presence of fewer transcription factors at a gene expression level compared to the other 

clusters. Alternatively, these groups may be underrepresented in our scATAC-seq dataset.

We first examined the epigenomic landscape of mBrATAC-1, which showed elevated 

chromatin accessibility proximal to SSL genes, including Dpp4, Ly6a, and Cd34 (Figure 

2C–D). mBrATAC-0 demonstrated chromatin accessibility proximal to IM genes, such as 

Cxcl12, Il6, and Ccl19 (Figure 2C–E). While mBrATAC-1 demonstrated specific accessibility 

peaks and transcription factor footprinting in association with the Gata1 locus, mBrATAC-0 

exhibited a comparable pattern at the Stat1 locus (Figure S2). These transcription factors 

are associated with stemness and inflammation, respectively, among other known functions. 

In the MR clusters, mBrATAC-4 showed significantly elevated accessibility proximal to 

Gas6, Yap, and Acta2 supporting a myofibroblast phenotype (Figure 2C–E). mBrATAC-2 

was associated with accessibility proximal to FAK (Ptk2) as well as integrins and 

MR matrix factors such as Postn, Thbs1, Timp2, Fsp1, and Pdgfra. mBrATAC-2 lineage-

specific transcription factors included Fos, Fosb, Junb, and Jund, all of which are related 

to mechanotransduction, as well as Runx1 and Runx2. These patterns of chromatin 

accessibility support the aforementioned SSL, IM, and MR CAF super-clusters, suggesting 

CAF heterogeneity may be determined, in part, at the chromatin level.

Multiome analysis follows parallel scRNA-seq/scATAC-seq derived fibroblast clusters 
throughout tumor development

To further correlate gene expression and chromatin accessibility changes in CAFs through 

the course of tumor development, simultaneous measurements were obtained using the 

Chromium Single Cell Multiome platform (10x Genomics) for three conditions: non-tumor 

mammary parenchyma, early mouse breast tumors, and late breast tumors (Figure 2F). 

Initial clustering revealed six transcriptionally and epigenomically distinct cell types: T-

cells, B-cells, myeloid cells, epithelial cells, endothelial cells, and CAFs (Figure 2G – left 

panel). Following in silico fibroblast selection, eight CAF clusters were identified (Figure 
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2G – right panel). Fibroblasts from nonmalignant mammary tissue were largely confined to 

mouse breast multiome (mBrMulti-) clusters 0, 2, and 4 (Figure S3A–B). The majority of 

cells in the remaining clusters were obtained from early breast tumors, while late tumors 

showed comparatively more epithelial cells with proportionately fewer CAFs, although these 

CAFs were similarly distributed across the 8 clusters (Figure S3A–B). Of note, we obtained 

relatively fewer cell numbers overall from the late tumor timepoint, likely due to loss of 

blood supply centrally as tumors progress.

Cells in mBrMulti-2 demonstrated a striking resemblance to the stemlike Pi16 signature, 

consistent with its presence in steady-state, nonmalignant breast tissue (Figure 2G–H, 

S3A–E) (Buechler et al., 2021). mBrMulti-0 included both CAFs and steady-state breast 

tissue fibroblasts enriched for the production of basement membrane components such as 

laminin and type IV collagens, as well as uniquely high expression of the disintegrin and 

metalloprotease domain (ADAM) family, suggesting a prominent role in migration and 

remodeling.

Progression to malignancy introduced mBrMulti-3, which was associated with 

mechanotransduction, ECM production, and less diverse transcriptional programming 

(Figure S3F). mBrMulti-3 also aligned with the Lrrc15 signature, previously found to 

be associated with malignancy (Buechler et al., 2021). mBrMulti-6 demonstrated the 

highest expression of Trps1, recently implicated in benign fibroblast regenerative behavior 

(Mascharak et al., 2022). mBrMulti-1 demonstrated overlapping gene expression patterns 

that placed these cells on a spectrum between mBrMulti-2 and mBrMulti-3, particularly in 

terms of ECM production. However, these cells demonstrated several unique attributes 

that distinguished them from either group. Specifically, mBrMulti-1 cells expressed genes 

associated with hyaluronic acid synthesis (Has1, Has2), as well as the homing receptor 

for hyaluronic acid, Cd44. mBrMulti-1 was also unique in the expression of IL1 responsive 

genes, such as Cxcl1, Il6, Ccl2, and Il1r1, often associated with traditional inflammatory 

CAFs (Biffi et al., 2019). However, high expression of ECM genes clearly separated these 

fibroblasts from the more immunomodulatory clusters.

The remaining clusters expressed fewer genes associated with ECM production and 

remodeling. mBrMulti-4 expressed genes traditionally associated with lymphocyte signaling, 

such as Lef1, Dock2, Il7r, and Ptpn22. These genes have also been described in fibroblasts 

during wound healing and tissue repair (Guo et al., 2022; Huang et al., 2002; Phan et al., 

2020; Spalinger et al., 2017). Remarkably, transcriptomic profiles of mBrMulti-5 strongly 

suggested a role in antigen presentation, demonstrating expression of Cd74, H2-Aa, Cd83, 

and Cd86. The capacity of CAFs to function as effective antigen presenting cells remains 

fiercely debated (Dominguez et al., 2020; Elyada et al., 2019).

We then compared our initial mouse breast scRNA-seq (mBrRNA) clusters to the mBrMulti 

timecourse using an anchor-based label transfer approach. The SSL clusters (mBrRNA-1 and 

mBrRNA-3) associated with cells from steady-state, nonmalignant tissue in the multiome 

analysis. Specifically, mBrMulti- 0 and mBrMulti-2 clusters were similar to the SSL mBrRNA 

clusters, supporting an association with non-perturbed tissue (Figure 2G, S3C–D) (Buechler 

et al., 2021). Clusters mBrMulti-1, 3, and 6 corresponded to the MR clusters (mBrRNA-2 
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and mBrRNA-4), indicative of a mechanoresponsive state. By contrast, the IM cluster 

mBrRNA-0 appeared to incorporate subpopulations of mBrMulti-4, 5, and 7. This may be 

due to the larger size of mBrRNA-0 cluster compared to the other clusters, with additional 

subpopulations captured by the multiome analysis. This phenomenon is exemplified by 

comparable IL1-associated signaling from a subpopulation of cluster mBrMulti-1 and IFNg-

associated signaling from cluster mBrMulti-5, both of which were characterized within 

mBrRNA-0.

We then incorporated the ATAC portion (paired intra-nuclear scATAC-seq) of the multiome 

sequencing to evaluate patterns of chromatin accessibility in these clusters. Analysis of 

chromatin accessibility at transcription factor (TF) binding sites using chromVAR (Schep 

et al., 2017) revealed highly accessible motifs for proinflammatory TFs, such as Stat2, in 

IM fibroblasts. Accessibility of canonical fibrosis-related TF motifs such as TGFB-related 

Smad2::Smad3 was observed in MR fibroblasts (Figure 2I). Interestingly, accessibility 

of Runx1 motifs was found in both IM and MR CAF clusters, suggesting that these 

clusters may represent more differentiated CAFs relative to steady state-like fibroblasts, 

consistent with our prior results. Finally, specific accessibility of Sox6 motifs was found 

in mBrMulti-6 (mechanoresponsive). Sox6 is a TF known to regulate differentiation in a 

variety of tissue types, and recent knockdown studies have suggested potential profibrotic 

and proinflammatory roles (Li et al., 2020). Cluster identities were further supported through 

analysis of Lrrc15, Dpp4, Col1a1, and Cd86 peaks (Figure S3E). CellChat analysis again 

demonstrated prominent signaling networks between MR clusters, while the IM clusters 

mBrMulti-4 and mBrMulti-5 tended to be involved in immune cell interactions (Figure S4A). 

Overall, we observed excellent correlation between our parallel scRNA-seq/scATAC-seq 

and multiome timecourse datasets, supporting the conservation of fibroblast phenotypes 

associated with cancer.

In order to evaluate our results within the framework of the field, we again incorporated a 

label transfer approach using previously defined fibroblast clusters from an atlas of mouse 

perturbed states (Buechler et al., 2021). We observed a high degree of similarity between the 

stemlike Pi16 state and our SSL cluster mBrMulti-2 (Figure S4B). The well-described Lrrc15 
signature was also observed in our highly mechanoresponsive cluster mBrMulti-3, consistent 

with previous findings evaluating myofibroblastic CAFs (Dominguez et al., 2020). The 

Col15a1 signature appeared to localize to both the MR cluster mBrMulti-1 and SSL cluster 

mBrMulti-0, and the Cxcl5 signature was particularly strong in the IM cluster mBrMulti-7. 

Interestingly, we did not observe an analogous group to our IFNg-associated IM cluster 

mBrMulti-4. Overall, however, our findings are in line with previously published fibroblast 

scRNA-seq series in cancer.

Breast CAF subpopulations are spatially distinct

To further explore the significance of CAF heterogeneity in solid tumor biology, we applied 

a spatial transcriptomic platform (Visium, 10x Genomics) to whole tumor endogenous 

mBr samples (Figure 3A). A unique challenge inherent to spatial transcriptomic platforms 

is that each “spot” can capture gene expression information from more than one cell (1–

10 cells characteristically). Tumors feature a complex microenvironment composed of a 
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variety of cell types. As such, to accurately interpret our spatial transcriptomics results 

in the context of our scRNA-seq CAF data, we needed to account for the contributions 

of non-fibroblast cells from each Visium spot (Figure 3B). In parallel with the multiome 

analysis, mouse breast tissue for spatial transcriptomics were obtained from the same mice 

used for multiome and at the same time points (Figure 3C). Using the transcriptional 

profiles from the multiome evaluation, we were able to predict the spatial contributions of 

each of our fibroblast clusters in conjunction with non-fibroblast cell types (Figure 3D–F, 

S5A). We found that the predicted spatial distributions for our scRNA-seq clusters were 

largely congruent with the transcriptional differences observed earlier for SSL, MR, and 

IM fibroblasts (Figure 3G), which we validated using a nearest-neighbor analytic approach 

applied over the timecourse of tumorigenesis. Comparing early tumors with non-tumor 

parenchyma, the mBrMulti-5 antigen-presenting CAFs (IM) co-localized with lymphoid 

immune cells, whereas mBrMulti-3 myofibroblasts (MR) co-localized with epithelial cells. 

Comparing late tumors with early tumors, proximity interactions between mBrMulti-4, 5, and 

7 and myeloid-lineage cells (including macrophage phenotypes) became more prominent 

(Figure S5B). Importantly, similar results were obtained upon applying our mBr scRNA-seq 

(mBrRNA) clusters to the same spatial transcriptomic profiles – high expression of both MR 

and IM genes of interest was observed in a localized manner (Figure S5C–D). In summary, 

spatial transcriptomic analysis localized our fibroblast clusters within the complex tissue 

architecture of endogenous mBr tumors.

Rainbow-CODEX analysis supports plasticity of CAF subpopulations

Based on CytoTRACE analysis, both our mBr scRNA-seq (Figure 1F) and multiome 

(Figure S3F) MR CAF subtypes appeared to be less differentiated relative to IM 

CAFs. To further explore the lineage of these mouse breast CAF subgroups at the 

tissue level, we employed the Rainbow mouse model, a multi-colored lineage tracing 

model that elucidates cell activation and proliferation, using an aSMA Cre driver 

(aSMACreERT2::Rosa26VT2/GK3) (Ransom et al., 2018; Ueno and Weissman, 2006; Yanai 

et al., 2013). aSMA is a well-established marker of myofibroblasts and is strongly expressed 

by this subgroup in our spatial transcriptomic analysis (Figure S6A – left panel). The 

Rainbow background was applied to the endogenous breast cancer mouse transgenic 

(MMTV-PyMT::aSMACreERT2::Rosa26VT2/GK3) (Figure S6A – right panel). These mice 

received systemic Tamoxifen induction between 4–5 weeks of age, which marks a time 

prior to the onset of significant tumorigenesis. On confocal analysis of tumor tissue, CAFs 

proliferate in the tumor stroma in a poly-clonal manner. During early tumor development, 

small clones of CAFs are found throughout the tumor tissue (Figure S6B – left panel), 

which increase in size as the tumor develops (Figure S6B – middle panel). This pattern can 

be further appreciated using Imaris analysis (Figure S6B – right panel). The distribution 

of Rainbow CAF colors was observed to be relatively equal across the tissue sections, 

consistent with the Rainbow model (Figure S6C). We identified similar CAF behaviors 

using allograft tumor models for breast cancer for pancreatic cancer (with injection of 

syngeneic cancer cells into the mammary fat pad or pancreatic parenchyma, respectively) 

(Figure S6D).
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We then assessed the plasticity of myofibroblastic aSMA-expressing populations by 

incorporating CODEX spatial proteomic analysis into the Rainbow mouse model (Figure 

3H, S7A). CODEX analysis of Rainbow mouse breast tumors identified protein expression-

based cell populations. The entire dataset of cell-segmented protein expression was 

projected to a unified UMAP manifold. LRRC15 and PDPN strongly co-localized at the 

upper-right of the manifold (Figure 3H–J). CD26 and Ly6C, on the other hand, localized 

to the bottom right of the manifold, likely representing SSL and IM CAFs. This region of 

the protein UMAP was also predominated by markers such as CD8 and Ly6G, supporting 

an immune-like phenotype (Figure S7B–C). Additionally, Ly6C marked cell populations 

in this region of the manifold that most likely correspond to macrophages, with evident 

co-expression of CD68 (Figure S7C).

CODEX data were subsequently mapped to Rainbow fluorescence imaging using a per-

specimen alignment mask, in which each specimen’s CODEX expression was directly 

overlaid on its corresponding Rainbow image (Figure 3H). Following alignment, individual 

phenotypic filters were applied for SSL and IM CAFs versus MR CAFs to restrict 

fluorescent GFP, membrane (m)Cerulean, mCherry, and mOrange channels to the areas 

co-localized with the respective CAF population. Distributions of clonal expression for 

IM and SSL versus MR CAFs were then analyzed using kernel density plots. Overall, 

both CAF subpopulations demonstrated strong poly-clonality, with heterogeneous clonal 

expression across all rainbow colors. Most interestingly, SSL and IM fibroblasts exhibited 

Rainbow fluorescence associated with aSMA lineage-induced mCerulean, mCherry, 

and mOrange clonal populations, confirming lineage plasticity among aSMA-positive 

fibroblasts. Collectively, these data support the potential capacity for MR CAFs to 

differentiate into SSL or IM CAFs.

Single-cell transcriptomic analysis of CAFs in human breast cancer

We next sought to evaluate the extent to which local fibroblast responses to tumors are 

evolutionarily conserved between mice and humans. We examined cells isolated from three 

breast cancer patients (Table S2). Single cells from these samples were tagged with unique 

oligonucleotides, followed by scRNA-seq evaluation (Figure 4A). We identified populations 

of cells corresponding to CAFs, epithelial cells, endothelial cells, and immune cells (Figure 

4B – left panel).

We again focused our analysis on CAFs, which were isolated in silico and re-clustered to 

delineate fibroblast subsets (Figure 4B – right panel). Human breast cancers demonstrated 

six transcriptionally-defined CAF clusters (hBrRNA-0 - hBrRNA-5) (Figure 4C). Similar to 

mBrRNA-2, hBrRNA-3 CAFs exhibited significantly elevated expression of genes associated 

with mechanotransduction and fibrosis, including MGP and FOSB (Figure 4D), as well as 

“Focal Adhesion” pathways, suggesting that these represent an MR subpopulation. CAFs 

from hBrRNA-1 and 2 were also associated with elevated expression of fibrosis-related genes 

such as PDGFRB and vitamin-K-dependent matrix proteins such as POSTN. By contrast, 

hBrRNA-0 cells were characterized by elevated expression of SSL genes such as FAP (which 

shares significant homology with DPP4 expressed in the SSL MBr clusters) and TIMP2, 

and CAFs from hBrRNA-4 and 5 were associated with expression of cytokines and other 
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signaling elements such as CXCL12 and STAT1 consistent with IM identity (Figure 4D). 

The distribution of the clusters was not significantly different among tumors from three 

different patients despite their differences in age, tumor type, and stage (Figure 4E, Table 

S2).

Cross-species integration of cancer associated fibroblasts

To further evaluate whether the human breast (hBrRNA) CAF clusters were analogous to 

those identified in mouse breast (mBrRNA) CAFs, we performed an integrated cross-species 

analysis using ortholog mapping in conjunction with Seurat’s label transfer approach, as 

previously described (Stuart et al., 2019). This allowed us to project our six mBrRNA 

CAF clusters onto the hBrRNA embedding in a nearest neighbor fashion. These projections 

supported strong similarities between specific hBrRNA and mBrRNA clusters, such as 

hBrRNA-2 with mBrRNA-4 (MR), as well as hBrRNA-0 with mBrRNA-1 and mBrRNA-3 

(SSL). We also observed broad overlap of transcriptional programs for hBrRNA-1 and 

hBrRNA-3 with mBrRNA-2 and mBrRNA-5 (MR), as well as hBrRNA-4 and hBrRNA-5 with 

mBrRNA-0 (IM) (Figure 4F).

To further explore these findings, we performed multiome analysis on three human breast 

tumors (Figure S8A–B, Table S2) and compared these findings with our mouse multiome 

(mBrMulti) clusters. Fibroblasts were again isolated in silico, generating six human multiome 

(hBrMulti) CAF clusters (Figure S8C–D). Applying CytoTRACE, MR CAFs were the 

least differentiated of the superclusters (Figure S8E), consistent with the aforementioned 

CytoTRACE analyses of other datasets. In terms of the ATAC-seq results, accessibility 

was seen near genes congruent with the RNA-seq data (Figure S8F). We then mapped 

hBrMulti clusters to the aforementioned mBrMulti UMAP using an anchor-based label 

transfer approach. Again, we found striking similarities: hBrMulti-0 mapped to the MR 

mBrMulti-3, indicative of a highly mechanoresponsive state (Figure S8G), hBrMulti-3 mapped 

to the SSL mBrMulti-1, and hBrMulti-5 mapped to the IM mBrMulti-4 and mBrMulti-5 (Figure 

S8G). Thus, each supercluster was consistently represented in both mouse and human CAF 

datasets. These findings suggest strong evolutionary conservation of the fibroblast response 

to breast tumors in the form of three transcriptionally-delineated superclusters.

Cross-tumor integration of cancer associated fibroblasts

We next sought to evaluate whether the local fibroblast response to epithelial neoplasia 

was conserved across different tumor types. Having characterized CAFs in both mouse and 

human breast cancer, we next examined another epithelial cancer type, pancreatic ductal 

adenocarcinoma (PDAC).

We examined three resected pancreaticoduodenectomy tumor specimens from patients who 

had residual pancreatic cancer following neoadjuvant chemotherapy for locally advanced 

PDAC (Table S2). CAFs isolated from these tumors showed strong protein expression 

of ASMA and COL1, consistent with pro-fibrotic fibroblast activation (Figure S9A–B). 

Single cells from these samples were isolated followed by scRNA-seq evaluation (Figure 

4G). We again focused our analysis on the CAFs within the resulting data (Figure 4H). 

Relatively similar to our human breast cancer findings (Figure 4I–J), we identified seven 
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transcriptionally-defined subgroups among human pancreatic (hPaRNA) CAFs (Figure 4K–

L).

In order to compare these seven subgroups to the six subgroups previously identified in 

our human breast (hBrRNA) CAF dataset, we performed a label-transfer-based integration 

using Seurat as previously described (Stuart et al., 2019). The resulting integrated dataset 

containing both human breast (hBrRNA) and human pancreatic cancer (hPaRNA) CAFs was 

further processed to determine variable features spanning the combined data object (Stuart 

et al., 2019). Partitional analysis, blinded to tissue of origin, resulted in the identification 

of six transcriptionally-defined hBrRNA-hPaRNA CAF subgroups (Figure 4M). Five of these 

six clusters were present in each of the six patients (three breast and three pancreas) (Figure 

4N–O). In contrast, one cluster (hBrRNA-hPaRNA-3) was comprised of cells entirely from 

pancreatic CAFs.

We found that CAFs within hBrRNA-hPaRNA-0, 2, and 4 demonstrated increased expression 

of matrix proteins such POSTN and mechanotransduction features such as FOSB (Figure 

4O – top right panels). Whereas CAFs from hBrRNA-hPaRNA-1 and 5 exhibited elevated 

expression of immune-related genes, including CXCL12 (Figure 4O – top left panels). 

hBrRNA-hPaRNA-3 CAFs, unique to pancreatic cancer, were characterized by expression 

of WT1 and TWIST1 (Figure 4O – bottom panels). Based on studies of pancreatic 

fibroblasts during development, this subpopulation may represent a lineage of mesothelium-

derived CAFs (Garcia et al., 2020). However, TWIST1 expression is also associated with 

epithelial mesenchymal transition (EMT) and CAF transdifferentiation (Lee et al., 2015). 

On immunofluorescent staining of the PDAC tissue specimens, FAP+ IM CAFs appeared 

separate from MR CAFs (aSMA/COL1+) (Figure S9A–B).

To evaluate whether these six human integrated hBrRNA-hPaRNA CAF clusters were 

analogous to the mBrRNA CAFs, we performed a similar cross-species analysis using 

ortholog mapping in conjunction with label-based transform, as above (Stuart et al., 2019). 

This allowed us to project our original six mBr CAF clusters onto the integrated hBrRNA-

hPaRNA CAF embedding (Figure 4P). The resulting overlay demonstrated strong similarities 

between the putative MR mBrRNA- 2, 4, 5 and MR hBrRNA-hPaRNA-0, 2, and 4 clusters. 

Furthermore, we observed similarities between the putative IM mBrRNA- 0 and IM hBrRNA-

hPaRNA-1 and 5 clusters. Finally, SSL mBrRNA-1 and 3 demonstrated similarity with a 

comparably smaller population in hBrRNA-hPaRNA-3. These results support evolutionary 

conservation of the fibroblast response to epithelial tumors across disparate tissue types.

Functional modulation validates MR and IM CAF subgroups

Next, we established allograft breast cancer in FAK-knockout (FAK−/−) and FAK-wildtype 

(FAK+/+) Rainbow mice, using a ubiquitous Cre driver (ActinCreERT2::Rosa26VT2/GK3) 

to capture all CAFs irrespective of cell surface marker expression. We used florescence-

activated cell sorting (FACS) with lineage-negative gating to isolate rainbow-colored CAFs, 

representing fibroblasts that expand in the tumor milieu during cancer growth. Phospho-

flow cytometry was then applied to delineate MR CAF subgroups versus SSL and IM 

CAFs based on protein expression. When FAK signaling was knocked out, MGP, which 

was highly expressed at the gene expression level by MR CAF clusters, CAF protein 
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expression was significantly decreased (Figure S10A–C), and, conversely, CAF DPP4 

(CD26) protein expression, expressed by SSL and IM CAF clusters, was increased (Figure 

S10C). Furthermore, we saw a significant difference in tumor aggressiveness between our 

FAK−/− and FAK+/+ models: with FAK-knockout among cells in the stromal compartment, 

tumors grew significantly larger (Figure 5A, Figure S10D – bottom panel) compared with 

FAK-wildtype. Of note, FAK expression was unaffected in the transformed cancer cells 

using the allograft model, so the effect of FAK modulation was felt primarily by CAFs in 

this circumstance.

To further validate these results, we applied the aforementioned model to FAK−/− and 

FAK+/+ mice using CAF-specific Cre drivers (aSMACreERT2 and Col1CreERT2). In these 

mice, FAK expression is only modulated in cells expressing Acta2 or Col1, respectively. 

scRNA-seq of these tumors 10 days after tumor establishment demonstrated a loss of two 

prominent CAF clusters (Figure 5B–C). Cluster 6 expressed MR genes, such as Acta2, 
Lrrc15, Col12a1, Col7a1, and Col5a2 (Figure 5B–C). Interestingly, Cluster 5 was also lost 

with FAK knockout and appeared to be composed of primarily IM CAFs, expressing Il1b, 
Tnf, Cxcl1, and Cxcl2 (Figure 5B–C). Thus, we see a loss of both MR and IM CAFs 

associated with conditional FAK knockout early after tumor establishment. Similar to our 

ubiquitous Cre driver data noted previously, when FAK signaling is eliminated, tumors 

grow significantly larger using either of these CAF-specific Cre drivers (Figure S10D) and 

showed less dense fibrosis in the ECM (Figure S10E). Taken together, these data suggest 

that the ratio of CAF subpopulations can direct tumor growth.

Finally, we asked whether perturbations in our master CAF subgroups occurred clinically 

in the setting of an inflammatory stimulus. To do this, we analyzed our group’s published 

scRNA-seq data from human basal cell carcinoma (hBcRNA) from a cohort of patients 

before and after they received treatment with immune checkpoint blockade (Yost et al., 

2019). Pooling fibroblast transcriptional profiles from these two data subsets, we identified 

5 CAF clusters (Figure 5D), two of which (hBcRNA-3 and 4) were represented by CAFs 

only seen in the pre-treatment context (Figure 5E). Next we projected our six mBrRNA CAF 

clusters onto the hBcRNA CAF embedding in a nearest neighbor fashion (Figure 5F). We 

identified that the clusters only seen in the pre-treatment context (hBcRNA-3 and 4) were 

overwhelmingly ascribed to the steady state-like mBrRNA-1 and 3. By contrast, hBcRNA- 0, 

1, and 2 remained present at largely stable quantities before and after immune checkpoint 

blockade and shared the most similarity with the MR clusters mBrRNA-2 and 4 (exemplified 

by Lrrc15 expression as in our other datasets, Figure 5F pop-out) as well as the IM cluster 

mBrRNA-0. Taken together, these results suggest that immunotherapy may stimulate more 

functional roles for CAFs in the TME, namely MR or IM programming associated with 

perturbed states. These data further support a “push-pull” relationship among the shared 

CAF phenotypes identified across tumor datasets (Figure 5G).

DISCUSSION

CAFs are often the most numerous cell type in solid tumors, representing an understudied 

therapeutic target. In order to effectively target CAFs, a more comprehensive understanding 

of the heterogeneity and function of these cells is warranted.
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We identified six transcriptionally distinct clusters of CAFs in endogenous mouse breast 

tumors. Based on gene expression profiles, we characterized three of these clusters 

as “mechanoresponsive” (MR), two of these clusters as “steady state-like” (SSL) and 

the largest single cluster as “immunomodulatory” (IM). Prior work has suggested two 

subgroups of CAFs in pancreatic cancer (so called “myCAFs”, myofibroblast, and “iCAFs”, 

inflammatory) (Steele et al., 2021; Yang et al., 2016). Importantly, recent work from 

Buechler et al definitively identified steady state phenotypes for fibroblasts across multiple 

tissue types. The Pi16 signature in this investigation mapped to our steady state-like clusters 

in both the mBrRNA and the mBrMulti data sets, supporting this separate supercluster 

(Buechler et al., 2021). Our data validate the preservation of these clusters across tumor 

types and species.

Using Visium spatial transcriptomics applied over the timecourse of tumorigenesis, we 

further analyzed endogenous mouse breast tumor tissue and identified that MR, SSL, and 

IM CAF subtypes are located in spatially distinct regions of the tumors. Integration of 

the mBrRNA CAF data with mBrATAC data from the same tumors suggested that these 

phenotypes emerge as the result of changes at the chromatin accessibility level, which are 

then carried downstream.

Functionally, we found that genetic ablation of FAK function in the stromal cell 

compartment leads to accelerated tumor growth. Previous studies have demonstrated mixed 

functional results from CAF-specific FAK suppression (Demircioglu et al., 2020) (Wu et 

al., 2020). Interestingly, we observed a loss of both MR and IM CAF subpopulations as 

a result of CAF-specific FAK loss, suggesting a role for FAK in inflammatory signaling. 

Taken together, FAK signaling has a complex role in non-transformed stromal cells, which 

may have clinical implications for the continued pursuit of FAK-centered therapies.

We further investigated the CAF subtypes identified in human basal cell carcinoma (BCC) 

using an independently processed, published dataset and found that our proposed CAF 

subtypes were once again largely recapitulated (Yost et al., 2019). When these patients 

were treated with immune checkpoint blockade, the proportion of SSL CAF subtypes nearly 

disappeared, whereas the proportions of MR and IM CAF subtypes were largely unaffected 

in terms of numbers by this therapy. These findings may be due to increased inflammatory 

and/or mechanical stimuli in responding tumors, leading to functional differentiation of 

steady state-like CAFs into the other groups.

Given the expanding body of publicly available scRNA-seq cancer datasets, and the trend 

toward “in silico” isolation of cell subtypes (as opposed to prospective FACS isolation using 

marker-based strategies), it has become increasingly feasible to compare CAFs and other 

fibroblast types over diverse studies. Buechler et al. examined fibroblasts across many tissue 

types (most from benign disease samples) as well as from three cancer sets (Buechler et al., 

2021). As the authors addressed, there are inherent decision points in any such broad survey, 

ranging from inclusion-exclusion criteria to algorithm selection and parameterization. While 

our work highlights only a handful of CAF transcriptional programs conserved across 

humans and mice, this integrated approach has the potential to simplify how the field of 

CAF heterogeneity is interpreted. Moreover, our fibroblast findings from both internal and 
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publicly available datasets in this study are broadly congruent with data reported by other 

groups examining CAF subgroups in the context of pancreatic cancer (Biffi et al., 2019; 

Elyada et al., 2019; Ohlund et al., 2017). The identification of shared CAF subtypes across 

tumor types and species expands the potential of effective CAF-targeting therapy.

In terms of limitations of the study, the Visium approach is incorporated without a 

higher resolution confirmatory analysis, such as MERFISH. Rather, we incorporated spatial 

proteomic methodology in the form of CODEX to further examine architectural features 

of the tissue. Although aSMA is a widely accepted marker for myofibroblastic CAFs, 

there is a possibility for co-labeling of myoepithelial cells, a relatively rare cell type but 

inherent limitation of the aSMA Cre driver. To help with validation in this regard, we 

applied CODEX to cells that co-express CAF markers (LRRC15, PDPN, CD26, Ly6c etc.), 

whereas myoepithelial cells would not be expected to demonstrate such strong expression 

of these markers. Additionally, we used a label transfer-based method for data integration, 

rather than techniques more grounded in information theory such as Harmony or LIGER 

(Korsunsky et al., 2019; Lee et al., 2017). Label transfer is comparatively limited in its 

ability to reject combinations of dissimilar data, but was selected due to its significantly 

elevated stability relative to parametric variation. As increasing numbers of tools become 

available for the integration of heterogeneous data (Osorio et al., 2021; Zou et al., 2021), 

cross-study endeavors of this type may provide a conceptual framework for the study of both 

benign and malignant fibrotic diseases (Phan et al., 2021).

In summary, we present a comprehensive investigation of CAF single-cell gene expression 

and paired chromatin accessibility in conjunction with spatial transcriptomics across 

multiple solid tumor types and species. Our data identify that CAF subpopulations fall 

into three broad categories, which are maintained over the course of tumorigeneses and are 

spatially distinct. These are remarkably conserved across tumor type and tissue of origin. 

Each of these categories also shows functional relevance with a clear “push-pull” dynamic 

between superclusters. Taken together, we define the temporal and spatial dynamics of 

CAF biology, delineate key regulatory pathways determining CAF differentiation, identify 

CAF subpopulation functions with potential for further translational and clinical exploration, 

and introduce a multimodal -omics framework with application to the next steps in CAF 

investigation.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Additional information regarding resources and reagents will be fulfilled 

by the Lead Contact, Michael T. Longaker (longaker@stanford.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The gene expression and chromatin accessibility datasets 

generated during this study are publicly available and can be found through Gene 

Expression Omnibus (GEO) web portal using accession listing GSE212482 and its subseries 

(GSE212461, GSE212481, GSE212706, GSE212707, GSE212708), which includes our 
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scRNA-seq, scATAC-seq, single cell multiome, and also spatial transcriptomics data. The 

CODEX spatial proteomics data will be made available by the authors upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines—Cell lines used for allograft tumor experiments included Py8119 and Pan02. 

All cells were maintained under sterile conditions in a humidified incubator under 5% CO2 

at 37°C. A phase-contrast microscope (Leica) was used to image cells. Cells were grown 

to 70–80% confluence in DMEM-Glutamax after minimal passage prior to implantation in 

the mammary fat pad or pancreas of mice. 10,000 cells were implanted per site under sterile 

conditions.

Animal Models—The following mouse strains were purchased from Jackson Laboratories: 

Black/6 (C57BL/6J), Actin-CreERT2 (Tg(CAG-cre/Esr1)5Amc/J), MMTV-PyMT (FVB/

N-Tg(MMTV-PyVT)634Mul/J), Col1-CreERT2 (Tg(Col1a2-cre/ERT,-ALPP)7Cpd/J), and 

FAKfl/fl (B6.129P2(FVB)-Ptk2tm1.1Guan/J) mice. αSMA-CreERT2 were courtesy of Dr. Ivo 

Kalajzic, University of Connecticut. Rainbow mice (ROSA26VT2/GK3) were courtesy of 

the Weissman Laboratory, Stanford University School of Medicine. All of the mice were 

genotyped as per manufacturer’s recommendations. Mice were housed at the Stanford 

University Comparative Medicine Pavilion (CMP) and Research Animal Facility (RAF). 

The facilities provided light- & temperature-regulated housing. Mice were given rodent 

chow and water ad libitum. A minimum sample size of three animals (three biological 

replicates) was used for all experiments (additional details noted in figure legends). 

Animals with appropriate genotypes for a given experiment were randomly allocated to the 

various experimental conditions. All experiments were completed according to the Stanford 

University Animal Care and Use Committee standards of care.

METHOD DETAILS

Tissue Processing and Histology—4% paraformaldehyde (Electron Microscopy 

Sciences) was used to fix human and mouse tumor samples for 20 h at 4 °C. Standard 

protocol was used to embed the tissues into paraffin. For cryopreservation, specimens 

were protected from cryofreeze in 30% sucrose (Sigma) then until saturation at 4 °C 

following fixation, followed by OCT until saturation at 4 °C, and then embedded in 

OCT. Representative tissue specimens were stained with hematoxylin and eosin (H&E, 

Sigma–Aldrich), Picrosirius Red Stain (Abcam), or Masson’s trichrome (Sigma–Aldrich) 

per manufacturer’s protocols.

Immunocytochemistry (ICC)—Fibroblasts were seeded onto coverslips coated with 

1% Embryomax gelatin (EMD Millipore). The following day, cells were fixed with 4% 

with paraformaldehyde for 10 minutes, permeabilized with 0.5% Triton-X-100 (Sigma) 

for 15 minutes, and then incubated with 1X Powerblock (Biogenex) for 1 hr. Cells were 

then stained with primary antibody at 4 °C overnight. Cells were then washed with 

0.1% Tween-20 (PBST; Sigma–Aldrich), stained with secondary antibody for 1 h at room 

temperature, and then mounted using Prolong Gold Antifade Mountant with DAPI (Life 

Technologies).
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Immunofluorescence (IF)—Cryopreserved specimens were cryosectioned at 8um onto 

Superfrost Plus microscope slides (FisherSci). Samples were permeabilized with 0.5% 

Triton-X-100 (Sigma) for 15 minutes, and then incubated with 1X Powerblock (Biogenex) 

for 1 hr. Primary antibodies were applied to tissue specimens for 1 h at room temperature, 

and then rinsed three times with 0.1% Tween-20 (Sigma). Secondary antibodies were 

applied for one hour at room temperature. The antibody incubation and washing steps 

were repeated if multiple proteins were stained for in one specimen section. Slides were 

then mounted using Prolong Gold Antifade Mountant with DAPI (Life Technologies). 

Antibodies used for ICC and IF included: anti-aSMA (Abcam, ab32575, lot: GR282976–

32, used at 1:100), anti-COL3 (Abcam, ab7778, lot: GR3234897–1, used at 1:100), 

anti-COL1 (Abcam, ab34710, lot: GR3244041–2, used at 1:100), anti-CD26 (Abcam, 

ab222716, lot: GR3220836–1, used at 1:100), anti-phospho-FAK (Thermo Fisher, 799255, 

lot: RG240925A, used at 1:100), IgG Alexa-Fluor 488 (Invitrogen, A32731, lot: SH251139, 

used at 1:1000), IgG Alexa-Fluor 555 (Invitrogen, A32732, lot: SH251140, used at 1:1000), 

IgG Alexa-Fluor 647 (Invitrogen, A32733, lot: SI231745, used at 1:1000).

Tissue Clearing—Tissue clearing optimized to preserve expression of endogenous 

fluorophores as previously described by our laboratory (Foster et al., 2019) was pursued 

on selected sectioned Rainbow specimens. In brief, for dehydration, tert-butanol (FisherSci) 

was buffered to a pH 9.5 with triethylamine (FisherSci). Fixed tissue specimens were 

placed into increasing gradients of tert-butanol (33%, 66%, and 100%) at room temperature 

for 30 minutes each and then left in 100% tert-butanol overnight. Tert-butanol and 

benzoic acid:benzyl benzoate (Sigma Aldrich) at a 1:2 ratio were buffered to pH 9.5 with 

triethylamine (FisherSci). Cleared sectioned tissue specimens were stored in BABB solution 

at 4°C.

Confocal Imaging and Analysis—Tissues were fixed and prepared in the dark 

to minimize bleaching of endogenous fluorophore expression. Laser scanning confocal 

microscopy was performed using a Leica WLL TCS SP8 Confocal Laser Scanning 

Microscope (Leica Microsystems) located in the Cell Sciences Imaging Facility (Stanford 

University, Stanford, CA). The ×10, ×20, and ×40 objectives were used (×10 HC PL APO, 

air, N.A. 0.40; ×20 and ×40 HC PL APO IMM CORR CS2, H2O/Glycerol/oil, N.A. 0.75). 

Precise excitation and hybrid detection of the Rainbow fluorophores (mCerulean, eGFP, 

mOrange, and mCherry) was captured when applicable. Raw image stacks were imported 

into Fiji (Image-J, NIH) or Imaris (Bitplane) software for analysis. Fiji was used to make 

two-dimensional micrographs of the confocal data and to quantify fluorophore expression 

intensity. For analysis of clonality from Rainbow mouse tissue, surfaces were created for 

each color of the Rainbow construct expressed using the volume surface and thresholding 

tools in using Imaris software.

Mouse Induction and Tumor Growth—Animal models as previously described 

received 5 days of 200ml (20mg/ml in corn oil) tamoxifen induction for activation of 

Cre recombinase (per the protocol provided by Jackson Labs). MMTV-PyMT model mice 

received systemic tamoxifen induction between 4–5 weeks of age, which marks a time 
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prior to the onset of significant tumorigenesis. Mouse tumors were monitored and measured 

several times per week. Prior to tumor harvest, mice were sacrificed.

Sample Preparation—Mouse tumor tissue specimens (n=3 biological replicates per 

timepoint per condition) were minced on ice and digested for 3× 30 min in a 37 °C 

water dry agitator in 0.5 mg/mL collagenase (collagenase type IV, ThermoFisher) digest 

buffer in Medium 199 (HyClone, GE Healthcare) consisting of 5% fetal bovine serum 

(Gibco FBS, ThermoFisher), DNase I (Worthington), Poloxamer 188 (Cat. P5556–100ML, 

Sigma), HEPES, and CaCl2. For human tissue, the MACS human tumor dissociation kit was 

used according to the manufacturer’s specifications. The digest was quenched with quench 

media (DMEM (Gibco DMEM, ThermoFisher) with 15% FBS), then centrifuged at 500 × 

g for 5 min at 4 °C, resuspended in quench media, and filtered through 100, 70, and 40 

μm cell strainers (Falcon cell strainer, ThermoFisher). Red blood cell lysis was performed 

using Hybri-Max (Sigma) per the manufacturer’s protocol. Histopaque was performed using 

Histopaque-1119 (Sigma–Aldrich), per the manufacturer’s protocol. Cells were counted and 

re-suspended for further processing.

Florescence Activated Cell Sorting (FACS) Analysis—Cells were counted and 

resuspended in FACS buffer. Primary antibodies were applied, and cells were stained in 

the dark with gentle agitation for 30 min. Cells were then washed thoroughly. Staining 

with secondary antibodies was conducted in the same manner. Propidium iodine (PI, 

Thermofisher, Cat. P3566, lot: 1755970, 3 μg/mL) or DAPI (Thermofisher, Cat. 3571) 

were used as a viability marker. Fibroblasts were isolated using the FACS Aria II system. 

Flow-cytometry plots shown are representative of at least three independent experiments.

Antibodies against the following cell surface markers primarily or secondarily conjugated 

to the same fluorophore were used for exclusion of “lineage” cells in mouse and human 

specimens in order to isolate fibroblasts in an unbiased manner: CD45, CD31, Ter119, Tie2, 

CD324, and CD326. This approach has been previously validated by our laboratory in other 

fibrotic pathologies.

For phospho-specific flow-cytometry analysis, a single-cell suspension was prepared using 

manual tissue dispersion rather than enzymatic digestion to preserve phosphorylated 

signal, and then prepared using the BD Biosciences Cytofix/Cytoperm™ kit according to 

manufacturer’s instructions. Phosphorylated protein analysis was conducted using the FACS 

Aria II system.

Recruitment of Human Subjects—Human tumor tissue specimens were obtained from 

patient’s undergoing surgery at the Stanford Hospital under Stanford University’s IRB 

approval. The patients were approached in the pre-operative area by one of the manuscript 

authors. The aims of the study were discussed with the patient. Participation was entirely 

voluntary. Written, informed consent was obtained from all the patients included in this 

study prior to surgery. Tissue specimens were collected by one of the authors on this 

manuscript from the pathologist once the tumor specimen had been inked (from a non-

critical part of the tumor), placed directly into sterile saline, and kept on ice for transport. 

Tissue specimens were processed immediately to form a single cell suspension (details 
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discussed above). Cells were either immediately processed or frozen in Bambanker. This 

study complies with all relevant ethical regulations for research with human participants.

Single Cell Barcoding, Library Preparation, and Sequencing—Cell suspensions 

from individual mouse or human samples were labeled with TotalSeq Series B hashtag 

oligonucleotide-labeled antibodies (BioLegend). Single-cell RNA-seq (scRNA-seq) was 

then performed at the Stanford Genomics Facility (SGF) for droplet-based microfluidics 

using the 10x Chromium Single Cell platform (Single Cell 3’ v3, 10x Genomics, USA). 

Droplets of the cellular suspensions, reverse transcription master mix, and partitioning oil 

were mixed, loaded onto a single cell chip, and processed on the Chromium Controller. 

Reverse transcription was performed, and cDNA was amplified using a BioRad C1000 

Touch thermocycler, with cDNA size selected using SpriSelect beads (Beckman Coulter, 

USA). An Agilent Bioanalyzer High Sensitivity DNA chip was used to analyze cDNA for 

qualitative control purposes; cDNA was then fragmented using the proprietary fragmentation 

enzyme blend for 5min at 32°C, followed by end repair and A-tailing at 65°C for 30 

min. DNA was double-sided size selected using SpriSelect beats. Sequencing adaptors were 

ligated to the cDNA at 20°C for 15min. cDNA was amplified using a sample-specific index 

oligo as primer, followed by another round of double-sided size selection using SpriSelect 

beads. Final libraries were analyzed on an Agilent Bioanalyzer High Sensitivity DNA 

chip for qualitative control purposes. Libraries were sequenced on a HiSeq 4000 Illumina 

platform targeting 50,000 reads per cell.

Base calls were converted to reads using the Cell Ranger (10X Genomics; version 

3.1) implementation mkfastq and then aligned against either the Cell Ranger mm10 

reference genome or GRCh38 v3.0.0 human reference genome, available at: http://

cf.10xgenomics.com/supp/cell-exp/, or using Cell Ranger’s count function with SC3Pv3 

chemistry and 5,000 expected cells per sample. Hashtag oligos (HTOs) for human and 

mouse samples were demultiplexed using Seurat’s implementation HTODemux. Briefly, 

k-medoid clustering is performed on the normalized HTO values, after which a ‘negative’ 

HTO distribution is calculated. For each HTO, the cluster with the lowest average value is 

treated as the negative group and a negative binomial distribution is fit to this cluster. Using 

the 0.99 quantile of this distribution as a threshold, each cell is classified as positive or 

negative for each HTO. Since each sample for this dataset contained exactly three pooled 

biological replicates (i.e., tumors from different mice or tumors from different humans), 

cells for which ambiguous HTO identity could not be clearly established were preserved and 

assigned to the hashtag for which it was most highly expressed.

Cell barcodes representative of quality cells were differentiated from apoptotic cell barcodes 

or background RNA based on a threshold of having at least 200 unique transcripts profiled, 

less than 100,000 total transcripts, and less than 10% of their transcriptome of mitochondrial 

origin. Unique molecular identifiers (UMIs) from each cell barcode were retained for 

all downstream analysis, normalized with a scale factor of 10,000 UMIs per cell, and 

subsequently natural log transformed with a pseudocount of 1 using the R package Seurat 

(version 3.1.1) (Chen et al., 2013). The first 15 principal components of the aggregated data 

were then used for uniform manifold approximation and projection (UMAP) analysis (Gulati 

et al., 2020). Cell annotations were ascribed using SingleR (version 3.11) against either the 
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Mouse-RNAseq reference dataset, available at https://rdrr.io/github/dviraran/SingleR/man/

mouse.rnaseq.html, or human primary cell atlas dataset, available at https://rdrr.io/github/

dviraran/SingleR/man/hpca.html, and further refined based on inspection. Cell-type marker 

lists were generated using Seurat’s native FindMarkers function with a log fold change 

threshold of 0.25 using the ROC test to assign predictive power to each gene.

scATAC-seq and Multiome Data Preparation—Single-cell ATAC sequencing 

(scATAC-seq) and multiome sequencing were performed at the Stanford Genomics Facility 

(SGF) using the 10x Genomics platform. The relevant protocols were followed per 

manufacturer’s guidelines. Nuclei isolation was pursued as for scATAC-seq and multiome 

sequencing using 0.1x lysis buffer with 3-minute incubation.

CellChat Receptor-Ligand Analysis—To evaluate the potential for cell-cell 

interactions between our fibroblast populations and other cell types, including immune 

cells, we applied the recently developed CellChat platform (Jin et al., 2021). This 

was implemented using our scRNA-seq Seurat object in R, in conjunction with the 

standalone CellChat Shiny App for its Cell-Cell Communication Atlas Explorer. Cells 

were binned according to the SingleR-defined cell type classifications, with fibroblast cells 

subsetted based on their location within either our scarring or regenerative arms. Default 

parameterizations were used throughout, and Secreted Signaling, ECM-Receptor, and Cell-

Cell Contact relationships were considered.

Analysis of Published scRNA-seq Datasets—Published scRNA-seq datasets from 

the Buechler et al. study were downloaded from their FibroXplorer website (https://

www.fibroxplorer.com) as .RDS files containing Seurat objects. These were re-processed 

from the level of raw UMI counts, while maintaining cluster label and UMAP coordinate 

information for each cell.

Prediction of Differentiation States—We utilized the recently developed 

bioinformatics tool CytoTRACE to compare differentiation states among cells in our dataset 

(https://cytotrace.stanford.edu/) (Gulati et al., 2020). This tool analyzes the number of 

uniquely expressed genes per cell, as well as other factors like distribution of mRNA content 

and number of RNA copies per gene, to calculate a score assessing the differentiation and 

developmental potential of each cell. This algorithm then place the cells along a trajectory 

corresponding to cell differentiation by taking advantage of each cell’s asynchronous 

progression under the platform’s unsupervised framework. This analysis was performed 

using default parameters for each cell in our dataset.

scATAC-seq Data Processing and Analysis—Raw base call (BCL) files were 

demultiplexed to fastq files using the 10x Genomics Cell Ranger tool cellranger-atac 
mkfastq. These files were then aligned to the mouse genome (mm10) using cellranger-atac 
count with default parameters. Downstream analysis of scATAC-seq data were performed 

using ArchR, a tool developed by our collaborators (Granja et al., 2020) (Granja et al., 

2021). Single cell ATAC-seq data were integrated with scRNA-seq data using ArchR’s 

unconstrained implementation of Seurat’s label transfer algorithm, as previously described 

(Foster et al., 2021).
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Multiome Data Analysis—Data generated using the 10X Multiome platform were 

processed using 10X’s cellranger-arc toolkit in Linux per the manufacturer’s instructions. 

This included (1) an ATAC matrix computer step of barcode processing, read trimming, 

read alignment, duplicate marking, peak calling, and peak-barcode matrix generation using 

either the mm10 mouse or GRCh38 human reference genome; (2) a gene expression (GEX) 

Matrix Computer step of read trimming, genome alignment, transcriptome alignment, UMI 

correction, and UMI counting; and joint cell calling. Downstream secondary analysis 

for ATAC and GEX included dimensionality reduction, clustering, peak annotation, 

transcription factor analysis, differential expression analysis, differential accessibility 

analysis, and feature linkage as described above using the Seurat, Signac, and ArchR 

toolkits.

The three human breast multiome samples were initially evaluated in R using a 

modified implementation of Signac’s “Joint RNA and ATAC analysis: 10x multiomic” 

vignette (compiled May 31, 2022) in conjunction with the EnsDb.Hsapiens.v86 and 

BSgenome.Hsapiens.UCSC.hg38 genomic libraries. ATAC quality control (QC) thresholds 

of nucleosome_signal < 2 & TSS.enrichment > 1 were used for all three samples. RNA 

QC thresholds of nFeature_RNA > 200 were used for all three samples. For sample 

1, additional RNA thresholds of nFeature_RNA < 3000 & nCount_RNA < 15.0e3 & 

nCount_ATAC < 4500 were employed. For sample 2, additional cutoffs of nFeature_RNA 

< 5000 & nCount_RNA < 15.0e3 & nCount_ATAC < 10000 were used. For sample 3, 

thresholds of nFeature_RNA < 6000 & nCount_RNA < 25.0e3 & nCount_ATAC < 50000 

were employed. Following completion of QC, each sample underwent peak calling with 

MACS2 using the Signac CallPeaks() function, followed by keepStandardChromosomes() 

with “coarse” pruning, and subsetByOverlaps() using the blacklist_hg38_unified, after 

which a “peaks” assay was created the Signac CreateChromatinAssay() function. The RNA 

portions of each sample were then log-normalized with a scale factor of 10,000, followed 

by variable feature identification, and PCA identification using default Seurat parameters. 

FindNeighbors(dims = 1:15), FindClusters (resolution = 0.2), and FindUmap() were then 

applied in a standard fashion, followed by SingleR (version 3.11) against the human 

primary cell atlas dataset, available at https://rdrr.io/github/dviraran/SingleR/man/hpca.html, 

as above, and further refined based on inspection to focus on cancer associated fibroblasts, 

which were subsequently re-clustered using a resolution parameter of 0.6.

The nine mouse breast multiome samples were initially evaluated in R using a 

modified implementation of Signac’s “Joint RNA and ATAC analysis: 10x multiomic”, 

using the EnsDb.Mmusculus.v79 annotation. ATAC quality control (QC) thresholds of 

nucleosome_signal < 2 & TSS.enrichment > 1 were used for all nine mouse samples. RNA 

QC thresholds of nFeature_RNA > 200 were also used for all nine samples. The following 

additional thresholds were used for specific samples:

C1: nFeature_RNA < 2500 & nCount_RNA < 5.0e3 & nCount_ATAC < 1.5e4

C2: nFeature_RNA < 2500 & nCount_RNA < 5.0e3 & nCount_ATAC < 1.5e4

C3: nFeature_RNA < 1500 & nCount_RNA < 5.0e3 & nCount_ATAC < 1.5e4

L1: nFeature_RNA < 2600 & nCount_RNA < 5.0e3 & nCount_ATAC < 1.5e4
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L2: nFeature_RNA < 2000 & nCount_RNA < 5.0e3 & nCount_ATAC < 1.5e4

L4: nFeature_RNA < 3000 & nCount_RNA < 5.0e3 & nCount_ATAC < 1.5e4

S1: nFeature_RNA < 6000 & nCount_RNA < 5.0e5 & nCount_ATAC < 2.5e6

S2: nFeature_RNA < 3000 & nCount_RNA < 5.0e4 & nCount_ATAC < 2.5e4

S3: nFeature_RNA < 2500 & nCount_RNA < 5.0e4 & nCount_ATAC <1.0e5

Following completion of QC, each sample underwent peak calling with MACS2 using 

the Signac CallPeaks() function, followed by keepStandardChromosomes() with “coarse” 

pruning, and subsetByOverlaps() using the blacklist_mm10, after which a “peaks” assay was 

created the Signac CreateChromatinAssay() function. The RNA portions of each sample 

were then log-normalized with a scale factor of 10,000, followed by variable feature 

identification, and PCA identification using default Seurat parameters. FindNeighbors(dims 

= 1:15), FindClusters (resolution = 0.2), and FindUmap() were then applied in a standard 

fashion, followed by SingleR (version 3.11) against the Mouse-RNAseq reference dataset, 

available at https://rdrr.io/github/dviraran/SingleR/man/mouse.rnaseq.html, as above, and 

further refined based on inspection to focus on cancer associated fibroblasts, which were 

subsequently re-clustered using a resolution parameter of 0.3 to arrive at the resulting 8 CAF 

clusters.

Spatial Transcriptomics—Mouse tissue was processed according to the Visual Spatial 

Protocol-Tissue Preparation Guide by 10X Genomics. In brief, we flash froze tissue samples 

in OCT using a Thermo Scientific Thermo-Flask benchtop container filled with liquid 

nitrogen and a small, round, metal bowl with 1-inch height worth of isopentane. A pair 

of sturdy needle-drivers was used to maneuver the isopentane bowl in and out of the 

Thermo-Flask. The isopentane bowl was incubated in liquid nitrogen for about 10 minutes. 

Tissue was completely frozen in approximately 30 seconds, wrapped in aluminum foil, 

stored immediately in a box containing dry ice, and transferred to a −80°C freezer. Tumor 

tissues were cryosectioned at −20 degrees onto gene expression slides. The Gene Expression 

Slide & Reagent kit was followed per the 10X Genomics protocol and used to produce 

sequencing libraries. The libraries were then sequenced using NextSeq (Illumina), and 

Bcl files were demultiplexed. Raw FASTQ files and histology images were processed by 

sample with the Space Ranger software, which uses STAR v.2.5.1b (Dobin et al., 2013) 

for genome alignment, against the Cell Ranger mm10 reference genome, available at: http://

cf.10xgenomics.com/supp/cell-exp/ (Dobin et al., 2013).

To analyze the spatial distribution of cell types in Visium data, pairwise cell-cell neighbor 

interactions were quantified by extracting a feature matrix, f, of the probability of cell 

type representation in each Visium spot. An adjacency matrix, j, was then used to identify 

neighboring Visium spots within k=5 nearest neighbors. For each possible cell-cell pairing, 

a pairing score was calculated as the dot product of individual cell type vectors in f with 

the adjacency matrix (i.e. f1·j·f2) using AdjacencyScore in R (Govek et al., 2021). Scores 

were averaged at the group-level, then subtracted between groups to quantify the magnitude 

of differential cell pairings in early tumor vs. native breast tissue and late tumor vs. early 

tumor.
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Rainbow-CODEX Analysis—Breast tumor specimens from Rainbow mice were 

sectioned at 6 μm and spatially phenotyped for fibroblast subtypes using Co-Detection 

by indEXing (CODEX), a spatial sequencing and quantification technique for protein 

expression (Black et al., 2021). Prior to CODEX processing, Rainbow fluorescence was 

imaged as previously mentioned, after which native fluorescence was photobleached to 

enable CODEX staining and phenotyping. A 7-plex CODEX antibody panel was used to 

define specific fibroblast markers of interest, including CD26, Ly6C, Ly6G, LRRC15, and 

PDPN. Antibody conjugation and cyclic imaging of n=3 Rainbow breast tumor specimens 

were performed by Stanford’s Cell Sciences Imaging Facility, using a Keyence BZ-X 

(Akoya Biosciences). Raw imaging data were processed for graphical rendering and cell 

segmentation using the standardized Akoya Biosciences pipeline, then exported to RStudio 

for computational analysis. CODEX expression data were pre-processed in STvEA with 

default settings (Govek et al., 2021), and the resulting single-cell protein expression matrices 

were batch corrected between n=3 specimens using Batchelor (Haghverdi et al., 2018). After 

batch correction, protein expression matrices were projected to a UMAP manifold in Seurat 

to visualize protein-defined cell populations.

Rainbow clonal expression was correlated with CODEX-defined fibroblast subpopulations 

by direct spatial alignment of Rainbow and CODEX images on a per-specimen basis. For 

each breast tumor specimen, a transparent overlay of CODEX-defined cell spatialization 

(i.e. an alignment mask) was oriented onto the corresponding Rainbow image. A cell 

phenotypic filter was then applied to the alignment mask to block Rainbow visualization in 

all spaces outside of CODEX cell populations of interest, eliminating Rainbow fluorescence 

not co-localized with the specified cell population. The remaining clonal expression within 

each channel of GFP, mCerulean, mCherry, and mOrange was then analyzed for its intensity 

distribution using kernel density plots in FIJI.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using the software GraphPad Prism v.6 (unless 

otherwise noted). Results are expressed as absolute numbers, percentages, fractions, or 

mean +/− standard deviation (unless otherwise noted). Unpaired t-test assuming two-tailed 

distribution or one-way analysis of variance (ANOVA) and post hoc Tukey correction were 

used to compare groups where relevant. Comparisons of scRNA-seq cluster distribution 

among samples were performed using the DA-seq toolkit in R, with “regions” defined as cell 

clusters and unique “labels” assigned to each tissue sample (Zhao et al., 2021). An adjusted 

p-value of < 0.05 was considered statistically significant for all comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• CAF subpopulations comprise three functional categories (superclusters)

• Subpopulations are conserved across solid tumor types and species

• Disruption of mechanotransduction or ICI yields shifts between CAF 

subpopulations

• Targeting the balance of CAF subpopulations holds therapeutic potential
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Figure 1. Derivation of three CAF superclusters.
A. Schematics illustrating that transformed cancer cells show distinct transcriptional and 

epigenomic programs in accordance with tumor type and tissue of origin (left panel), 
whereas CAF subtypes may be conserved between tumor types (right panel).
B. Schematic showing the procedure of scRNA-seq applied to endogenous mouse breast 

tumors. MMTV::PyMt endogenous mouse tumors (n=3 biological replicates per timepoint 

per condition).
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C. UMAP plot showing all tumor cells sequenced (left panel) → in silico CAF selection 

→ UMAP plot demonstrating 6 distinct CAF clusters: dark grey circle indicates MR CAF 

clusters, medium grey circle indicates SSL CAF clusters and light grey circle indicates IM 

CAF clusters (right panel).
D. Violin plots showing differentially expressed genes characteristic of each mouse breast 

cancer CAF cluster. Colors correspond to the indicated CAF cluster in the UMAP above.

E. UMAP plot showing the sample distribution by hash-oligo data for the endogenous 

mouse breast tumors sequenced. MR, SSL, and IM CAF superclusters indicated as labelled 

in figure panel.

F. UMAP plot showing CytoTRACE analysis of mBrRNA CAF data. Mechanoresponsive 

and immunomodulatory CAF cluster groups are circled as labelled in figure panel.
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Figure 2. Chromatin accessibility of CAF subsets.
A. UMAP plot displaying mouse breast cancer mBrATAC clusters (bottom panel) → 
in silico fibroblast selection → integration with CAF mBrRNA data (top panel). (Data 

represent n=3 biological replicates per timepoint per condition).

B. Anchor based label transfer of scRNA clusters into scATAC data (left panel) results in 

integrated mBr CAF scRNA-ATAC clusters (right panel).
C. Heatmap showing characteristic differential paired chromatin accessibility-gene 

expression for integrated MBr CAF scRNA-ATAC clusters.
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D. UMAP plots showing integrated MBr CAF scRNA-ATAC data for key genes of interest 

characteristic of immunomodulatory and steady state-like CAF clusters (top row) and 

mechanoresponsive clusters (bottom row).

E. Chromatin accessibility peaks for key genes of interest characteristic of 

immunomodulatory CAF clusters (Cxcl12 and Il6) and mechanoresponsive (Gas6 and 

Thbs1).

F. Schematic showing procedure for multiome sequencing of endogenous mouse breast 

tumor tissue. Data represent samples from nonmalignant breast tissue, early breast tumors 

and late breast tumors. Each time point included three biological replicates.

G. UMAP plot includes all cells that underwent multiome sequencing (left panel) → in 
silico CAF selection → UMAP plot demonstrating distinct CAF clusters: MR, IM, and SSL 

superclusters as indicated (right panel). Characteristic genes for each cluster are provided in 

figure labels. (Data represent n=3 biological replicates per timepoint per condition).

H. Violin plots indicate differentially expressed genes characteristic of each mBrMulti CAF 

cluster.

I. Transcription factor (TF) motif analysis was performed on mBrMulti data using the Signac 

and chromVAR packages. Feature plots indicate cells with highly accessible motifs for the 

indicated TF.
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Figure 3. CAF cluster localization and plasticity.
A. Schematic showing 10X Genomics Visium spatial transcriptomic analysis of endogenous 

mouse breast tumors.

B. H&E staining of a representative section of an endogenous mouse breast tumor used for 

Visium analysis (left panel). Visium spatial transcriptomic sequencing panels showing cell 

type represented representation in the representative tumor section (right panels).

C. Representative Visium sections showing CAF representation within normal breast 

parenchyma, early and late endogenous breast tumors.

Foster et al. Page 32

Cancer Cell. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Spatial transcriptomics plots showing “hot spots” containing CAFs with high expression 

of key genes characteristic of mechanoresponsive (Thbs1) and steady state-like CAF clusters 

(Dcn).

E. Cell level mapping of multiome sequencing data to spatial transcriptomics data → Partial 

membership of mBrRNA CAF clusters represented in mBrVisium data.

F. Visium spatial transcriptomics plots showing representation of each of the mBrMulti CAF 

clusters on a representative endogenous mouse breast tumor section.

G. Example co-localization of specific mBrMulti CAF clusters with relevant cell types from 

representative Visium sections, clusters and cell types as labeled in figure, pink circles 

highlight areas of co-localization.

H. Schematic describing the Rainbow-CODEX workflow. Tumor sections are first imaged 

for Rainbow fluorescence followed by CODEX staining and analysis, which included 

spatial analysis at the single cell level. Staining patterns for each cell are represented 

in two-dimensional UMAP plots, identifying populations of CD26+Ly6C+ SSL/IM CAFs. 

Cellular location is then identified on the corresponding confocal image and matched to 

Rainbow fluorophore expression, ultimately confirming the presence of poly-clonal SSL/IM 

CAFs that once expressed aSMA.

I. UMAP of cell populations derived from CODEX staining in Rainbow mouse breast 

tumors.

J. CODEX data feature plots demonstrating distinct localization of MR CAFs (LRRC15+, 

PDPN+) in the upper-right of manifold and SSL/IM CAFs (CD26+, Ly6C+) in the bottom-

right of manifold.
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Figure 4. Cross-tumor integration of CAF phenotypes.
A. Schematic showing scRNA-seq of human breast tumor tissue.

B. UMAP plot showing all tumor cells sequenced (top panel) → in silico CAF selection → 
UMAP plot showing human breast cancer scRNA-seq (hBrRNA) CAF clusters. Clusters as 

labelled in figure panel (bottom panel).
C. Heatmap showing characteristic differential gene expression for hBrRNA CAF clusters.

D. Violin plots showing differentially expressed genes characteristic of each hBrRNA CAF 

cluster. Colors represent clusters visualized in B.

Foster et al. Page 34

Cancer Cell. Author manuscript; available in PMC 2023 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E. UMAP plot showing hash-oligo data for the human breast tumors sequenced. Each 

human sample was stained with two hash-oligos for validation.

F. Label transfer projection of mBrRNA clusters onto hBrRNA CAF clusters. Clusters as 

labeled in figure panel. CAF clusters indicated with colors corresponding to mBrRNA CAF 

data.

G. Schematic showing scRNA-seq of human breast and pancreas tumor tissue.

H. In silico CAF selection.

I. Heatmap showing characteristic differential gene expression for hBrRNA CAF clusters.

J. UMAP plot showing hBrRNA CAF clusters as in B (right panel).
J. Heatmap showing characteristic differential gene expression for hPaRNA CAF clusters. 

(Data represent n=3 unique patient tissue samples as noted).

K. UMAP plot showing hPaRNA CAF clusters.

L. UMAP plot showing integrated human breast-pancreas CAF data (7 clusters). Green 

shading indicates mechano-responsive CAF clusters whereas gold shading indicates 

immuno-modulatory CAF clusters.

M. UMAP plot showing integrated human breast-pancreas CAF data in terms of organ of 

origin.

N. Violin plots showing selected highest-differentially expressed genes characteristic of 

integrated human breast-pancreas CAF clusters. One cluster is only represented by HPanc 

CAFs, as indicated (blue box).

O. Label transfer projection of mBrRNA CAF clusters onto integrated human breast-pancreas 

CAF scRNA-seq clusters. Clusters as labeled in figure panel. CAF clusters indicated with 

colors corresponding to mBrRNA CAF data.
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Figure 5. Functional modulation affects the balance of CAF subtypes.
A. Average tumor size comparing allograft mouse breast tumors with global FAK knockout 

versus control (ActinCreERT2::FAKKO mice) (top panel). Average tumor weight comparing 

allograft mouse breast tumors with global FAK knockout versus control on day 20 of harvest 

(ActinCreERT2::FAKKO mice) (bottom panel). POD = post-operative day, KO = knockout, 

WT = Wildtype, * = p<0.05 (t-test). (Data represent n=3 biological replicates per timepoint 

per condition unless otherwise noted).

B. UMAP plot showing eight transcriptionally-defined CAF clusters for mouse allograft 

breast cancer specimens from FAK-intact and Col1a2CreERT2::FAKfl/fl mice (data represent 

n=3 biological replicates per group, hash-oligos incorporated to distinguish biological 

replicates) (Top panel). UMAP plot grouped by CAF origin (FAK-intact in red vs 

Col1a2CreERT2::FAKfl/fl in green). Primary clusters (5 and 6) lost with fibroblast-specific 

FAK knockout are highlighted with orange circles (bottom panel).
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C. Violin plots illustrating expression of genes of interest between CAFs (FAK-intact in red 

vs Col1a2CreERT2::FAKfl/fl in green). MR and IM CAF clusters of interest highlighted with 

grey boxes as labelled in the figure panel.

D. UMAP plot showing transcriptionally-defined clusters for human BCC scRNA-seq CAF.

E. UMAP plot from CAF-specific scRNA-seq data colored according to pre- vs post- 

immune checkpoint blockade for human BCC.

F. Label transfer projection of mouse breast CAF scRNA-seq clusters on human BCC CAF 

scRNA-seq clusters. Immunomodulatory CAF cluster 0 is highly represented in post-therapy 

CAFs, while SSL cluster 3 is almost entirely found in pre-therapy samples. These patterns 

are highlighted with yellow shading. Feature plot of LRRC15 expression shown in inset 

corresponds closely with MBr cluster 2 (MR1) correlation as anticipated.

G. Schematic summarizing CAF subpopulation perturbations observed with FAK knockout 

in the context of mouse breast cancer compared with immunotherapy in the context of 

human BCC.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

mAb to alpha Smooth Muscle Actin Abcam Cat# 32575

mAb to FAK Abcam Cat# 40794

pAb to Collagen I Abcam Cat# Ab34710

pAb to Collagen III Abcam Cat# Ab7778

mAb to FAP Cell Signaling Cat# 66562S

mAb to MGP ThermoFisher Cat# 60055-1

Ab to Phospho-FAK (pTyr397) Invitrogen Cat# 700255

Ab to DPP4 (CD26) Abcam Cat# Ab28340

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 488

Invitrogen Cat# A-11008

Goat anti-Mouse IgG2a heavy chain, PE/Cy7 ®preadsorbed Abcam Cat# Ab130787

Donkey anti-Rat IgG H&L, Alexa Fluor 647 preadsorbed Abcam Cat# Ab150155

Anti-mouse CD45, Alexa Fluor 647 Biolegend Cat# 103124

Anti-mouse CD31, Alexa Fluor 647 Biolegend Cat# 102516

Anti-mouse TER-119, Alexa Fluor 647 Biolegend Cat# 116218

Anti-mouse/human CD324, Alexa Fluor 647 Biolegend Cat# 147308

Anti-mouse CD326, Alexa Fluor 647 Biolegend Cat# 118212

Anti-mouse CD202b (TIE2), Biotin Invitrogen Cat# 124006

Streptavidin, Alexa Flour 647 conjugate Invitrogen Cat# S32357

Chemicals, Peptides, and Recombinant Proteins

(Z)-4-Hydroxyta moxifen Millipore Sigma Cat# H7904

Tamoxifen Sigma

Corn oil Sigma

Hematoxylin Sigma Cat# H3136

Acetic Acid EMD Millipore Cat# AX0073

Phosphotungstic Acid Sigma Cat# P4006

Eosin Y solution, alcoholic Sigma Cat# HT1101128

Ethanol Gold Shield Sigma Cat# 64-17-5

BABB (Benzoic acid:benzyl Benzoate) Sigma Cat# B6630

tert-butanol Sigma Cat# 360538

Triethylamine FisherSci Cat# 04885

Permount Fisher Chemicals Cat# SP15

Triton X-100 Sigma Cat# X100

Fluoromount-G SouthernBiotech Cat# 0100-01

Prolong Gold Antifade Mountant with DAPI ThermoFisher Cat# P36935

DAPI (4’, 6-Diamido-2-Phenylindole, Dihydrochloride) ThermoFisher Cat# D1306

Collagenase (Collagenase Type IV) ThermoFisher Cat# 17104019
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REAGENT or RESOURCE SOURCE IDENTIFIER

Liberase Sigma Aldrich Cat# 05401020001

Medium 199 Sigma Aldrich Cat# M2520

Fetal Bovine Serum Thermo Fisher Cat# 10438026

DNase I Worthington Cat# LS006330

Poloxamer 188 Sigma Cat# P5556

HEPES Sigma Aldrich Cat# H3375

Calcium Chloride Sigma Aldrich Cat# 499609

Dulbecco’s Modified Eagle Medium ThermoFisher Cat# 11320082

SYTOX ADvanced Ready Flow Reagent ThermoFisher Cat# R37173

Digitonin Promega Cat# G9441

Tween-20 Sigma/Roche Cat# 11332465001

1X Power Block BioGeneX Cat# HK085-5K

NP40 Sigma/Roche Cat# 11332473001

RNAse Inhibitor Protector Cat# 3335402001

Critical Commercial Assays

Trichrome Stain Kit Abcam Cat# Ab150686

Picro Sirius Red Stain Kit Abcam Cat# Ab150681

Chromium Single Cell Chip B Kit 10X Genomics Cat# 1000154

Chromium Single Cell 3’ GEM, Library & Gel Bead Kit v3 10X Genomics Cat# 1000092

Chromium Next GEM Chip H Single Cell Kit 10X Genomics Cat# 1000161

Chromium Next GEM Single Cell ATAC Library & Gel Bead 
Kit v1.1

10X Genomics Cat#1000175

Single Index Kit N Set A 10X Genomics Cat# 100021289

Visium Spatial Gene Expression Solution v1 10X Genomics Cat#PN-1000184

Visium Spatial Tissue Optimization Slide & Reagent Kit 10X Genomics Cat#PN-1000193

Chromium Next GEM Single Cell Multiome ATAC + Gene 
Expression Reagent Bundle

10X Genomics Cat#PN-1000285

Deposited Data

The gene expression and chromatin accessibility datasets 
generated during this study are publicly available and can be 
found through the GEO web portal using the accession listing at 
right.

Gene Expression Omnibus (GEO) GSE212482 and its subseries 
(GSE212461, GSE212481, 
GSE212706, GSE212707, 
GSE212708)

Experimental Models: Organisms/Strains

Black6 (C57BL/6J) mice The Jackson Laboratory Stock#000664

Actin-Cre-ERT2 (Tg(CAG-cre/Esr1)5Amc/J) mice The Jackson Laboratory Stock#004682

Col1-CreERT2 (Tg(Col1a2-cre/ERT,-ALPP)7Cpd/J) mice The Jackson Laboratory Stock#029235

MMTV-PyMT (FVB/N-Tg(MMTV-PyVT)634Mul/J) mice The Jackson Laboratory Stock#002374

FAKfl/fl (B6.129P2(FVB)-Ptk2tm1.1Guan/J) mice The Jackson Laboratory Stock#031956

αSMA-CreERT2 mice Courtesy of Dr. Ivo Kalajzic, 
University of Connecticut

Rainbow (ROSA26VT2/GK3) mice Courtesy of the Weissman 
Laboratory, Stanford University 
School of Medicine
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Adobe Photoshop CC Adobe RRID:SCR 014199

Adobe Illustrator CC Adobe RRID:SCR 010279

Prism 5 GraphPad RRID:SC R 002798

FIJI/ImageJ National Institutes of Health RRID:SCR 002285

Imaris Oxford Instruments RRID:SCR 007370
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