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Abstract
Post-traumatic stress disorder is a prevalent disorder within 
the USA and worldwide with a yearly diagnosis rate of 2–4% 
and affecting women more than men. One of the primary 
methods for study of this stress disorder relies on animal 
models as there are few noninvasive methods and few rep-
licated peripheral biomarkers for use in humans. One area of 
active research in psychiatric neuroscience is the field of epi-
genetics – how the chemical modifications of the genetic 
code regulate behavior. The dynamic changes in histone 
acetylation and deacetylation in the brain are not fully re-
flected by the study of peripheral biomarker. In this review, 
we aim to examine the role of histone acetylation and 
deacetylation in memory formation and fear memory learn-
ing. The studies discussed here focus largely on the role of 
histone deacetylases (HDACs) in animal models of trauma 
and fear response. Many studies used HDAC inhibitors to 
elucidate the effects after inhibition of these enzymes after 

trauma or stress. These studies of memory processing and 
cued fear extinction in animal can often shed light on human 
disorders of cued fear responses and memory dysregulation 
after stress or trauma such as in PTSD. These results provide 
strong evidence for a role of these enzymes in PTSD in hu-
mans. The few clinical studies that exist with HDAC inhibitors 
also suggest a fundamental role of these enzymes in the 
neurobiology of the stress response. Further study of these 
enzymes in both clinical and pre-clinical settings may help 
elucidate the neurobiology of stress-related pathology like 
PTSD and provide a foundation for novel therapy to treat 
these disorders. © 2022 S. Karger AG, Basel

Introduction

Post-traumatic stress disorder [1, 2] is a clinical disor-
der associated with intrusive fear and fear-conditioned 
behaviors that have been ascribed to an inability to extin-
guish fear-based memories [3]. However, broader views 
of the pathophysiology of PTSD are emerging from initial 
transcriptomic studies of postmortem tissue compari-
sons from individuals with and without PTSD [4]. PTSD 
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has a high prevalence rate within the USA at roughly 2.5–
3.5% per year and more than 1 in 11 Americans experi-
encing this illness during their lifetime. Women are diag-
nosed at a rate more than two times that of men, with a 
prevalence of 10–12% prevalence, as compared to 4–5% 
prevalence in men after an equivalent traumatic event [5]. 
As with many psychiatric illnesses, PTSD is diagnosed 
and treated based solely on clinical symptoms [6] as no 
diagnostic testing exists. Furthermore, despite its preva-
lence, the neurobiology of PTSD remains poorly under-
stood.

It is hypothesized that PTSD arises from a failure in 
memory consolidation and reconsolidation processes af-
ter a traumatic event that renders these memories inex-
tinguishable from an individual’s long-term memory and 
cued fear responses. Four major centers of the brain have 
been particularly implicated in the processing of PTSD-
related fear memories: the hippocampus, insula, amyg-
dala, and prefrontal cortex (PFC). When a traumatic 
stressor occurs, it is processed through the hippocampus 
and amygdala into a stable memory, and when this mem-
ory is brought up through similar stimuli (cue), the mem-
ory becomes destabilized [7]. At this time, it may be re-
consolidated through a CREB-mediated gene expression 
pathway within the hippocampus and amygdala or un-
dergo extinction through a similar process in the PFC and 
amygdala [7, 8]. This conceptual framework suggests that 
destabilization of a memory represents an important 
point where a conditioned fear response and fear memo-
ry may either begin to extinguish through PFC or become 
solidified as a new memory via the limbic system. The 
neuroplasticity required for these processes within the 
amygdala, hippocampus (predominantly CA1), and PFC 
is primarily driven through glutamatergic signaling 
changes as demonstrated through pre-clinical ketamine-
related studies [9]. On a long-term basis, these patholog-
ical memories may be stored through changes to regula-
tion of gene expression, including via epigenetics [10]. 
While others have reviewed DNA methylation (DNAm) 
as a key epigenetic mechanism relevant to PTSD [11, 12], 
this review aims to elucidate the specific implications of 
histone acetylation and deacetylation for both the neuro-
biology of PTSD and novel therapeutic drug discovery.

Overview of Epigenetics in PTSD

Epigenetics refers to changes in genomic expression 
without changing the DNA code itself, quite literally, “on 
top (epi) of genetics.” These changes include DNAm, 

long noncoding RNA, small interfering RNA, microRNA 
(miRNA), piwi-interacting RNA, histone acetylation, 
and transcription factor acetylation. Thus far, studies 
have demonstrated a role for epigenetics in fear learning 
and memory as well as in PTSD through genomic studies 
of peripheral tissue and in limited cases ex vivo brain tis-
sue analysis [1, 10, 11, 13–19]. However, despite this 
progress, there are still gaps in the knowledge of epigen-
etic regulation disruptions in PTSD [10, 15]. Epigenome-
wide association studies (EWASs) [1] have been conduct-
ed on individuals with PTSD and trauma-exposed con-
trols to study DNAm. One of the largest EWASs of 
military cohorts recently found the gene with the highest 
impact to be MAD1L1 which is a key component to the 
mitotic spindle assembly necessary for cell replication [1]. 
Another EWAS study demonstrated positive associations 
for DNAm in individuals with PTSD at cg19534438 in the 
gene G0S2. Another significant association (cg04130728 
in CHST11) was found between peripheral tissue (blood) 
and brain tissue (PFC) though not genome wide [16]. An-
other study has reported 20 methylation site changes in 
PTSD but two with the highest level of significance: 
5-methylcytosine [20] and 5-hydroxymethylcytosine 
[21]. Among individuals with PTSD, the biggest changes 
in DNAm were noted among immune system regulatory 
genes [10]. These studies suggest strongly that DNAm 
changes are involved in the development of trauma-asso-
ciated PTSD, particularly in the military setting.

Other areas with significant methylation changes are 
within the genes of the aryl-hydrocarbon receptor repres-
sor in individuals with PTSD and associated with de-
creased kynurenine levels leading to immune system dys-
regulation through the kynurenine pathway [22]. To this 
point, significant RNA changes have not been correlated 
with PTSD symptomatology in human clinical studies 
[10]. However, there is growing body of evidence in both 
pre-clinical and clinical models that miRNA changes to 
decrease substance P and interleukin-1α are implicated in 
PTSD and depression [23]. Heritable trauma has also 
been associated with RNA changes in sperm [24].

Importantly, trauma has been associated with short-
ened life span and an increased epigenetic age, derived 
from blood markers, as compared to chronological age 
[25]. Among veterans with PTSD, their epigenetic age 
was directly correlated with their PTSD symptom sever-
ity [17]. The increase in DNAm sites indicates advanced 
epigenetic age [26] also correlated with decreased telo-
mere length, which can correlate with a shortened life 
span [17]. Additionally, these changes have effects on the 
offspring of the trauma-affected individuals and may im-
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pact their mental health through hereditary methylation 
changes [27]. It should be noted one study found changes 
in offspring methylation within FKBP5 to be opposite of 
their parents, which has yet to be completely understood, 
but may be indicative of a compensatory reaction [18]. 
These findings demonstrate the importance of under-
standing the epigenetic changes associated with PTSD 
and developing effective treatment for PTSD symptoms 
and trauma-exposed individuals.

Histone Deacetylase Overview

One type of epigenetic regulation within the human 
genome includes modifications to the histone core pro-
teins that package the DNA. Histone core proteins are 
composed of four subunits termed H2A, H2B, H3, and 
H4, and together with coiled DNA, create chromatin. The 
DNA is uncoiled when needed for “gene expression” 
through transcription of mRNA and translation into pro-
teins. Histone core protein modifications involve numer-
ous chemical modifications including acetylation and 
deacetylation when an acetyl moiety (-COOH) is added 
or removed from an amino acid such as a lysine in the 
histone core protein tails. Enzymatic linkage through de 
novo amide bond formation attaches the acetyl to the ly-
sine-free amino terminus. This creates dynamic changes 
in the DNA/histone binding structure through changes 
in the polarity of the histone/DNA interaction. Thus, the 
density of DNA coiled around these histone core proteins 

regulates whether transcription may occur (Fig. 1). Tight-
er chromatin (heterochromatin) does not allow for tran-
scription of DNA into mRNA, whereas looser chromatin 
(euchromatin) does allow for transcription and ultimate-
ly gene expression. Acetylation of these residues imparts 
a negatively charged acetyl group which is repulsed by the 
negatively charged DNA and promotes opening of DNA 
to facilitate transcription, thus giving histone acetyl trans-
ferases (HATs) the nickname of “writers,” as they pro-
mote gene transcription. Histone deacetylases (HDACs) 
functionally silence areas of the genome, preventing tran-
scription, by removing the negatively charged acetyl 
groups, such that the positive histone tail is more closely 
attracted to the negative DNA and closes the DNA (Fig. 1). 
While the HATs are made up of a wide variety of proteins 
and activators working closely with RNA polymerase and 
transcription factors [28], the HDACs are comprised of a 
much smaller and more focused family of enzymes. Since 
the 1990s, the number and type of distinct HDACs iden-
tified have increased. To date, 18 HDAC enzymes (Fig. 2) 
have been identified in humans and are typically divided 
into four major classes [29]. Class I HDACs include 
HDAC1, HDAC2, HDAC3, and HDAC8, all of which 
have significant sequence and domain organizational 
similarity. Class I HDACs typically localize to the nucleus 
[30] and are involved in the regulation of cellular prolif-
erative activity [31, 32]. Class II HDACs, including 
HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and 
HDAC10, shuttle between the cytoplasm and nucleus and 
are broken down further into Class IIa (HDACs 4, 5, 7, 9) 

Fig. 1. Pictorial description of the role for 
HDACs within the cell. HDAC removing 
acetyl moiety to condense the chromatin 
further, while HATs add the acetyl moiety 
to histone protein tails to expand the chro-
matin.
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and Class IIb (HDACs 6, 10). The primary distinction 
between Classes IIa and IIb is defined as the central do-
main of Class IIb containing a zinc finger motif, while 
Class IIa contains a structural regulatory zinc-binding 
domain [33, 34]. Class IIa is typically able to shuttle more 
readily between the nucleus and the cytoplasm, whereas 
Class IIb is primarily found in the cytoplasm. Class IV 
HDACs are comprised of a single HDAC protein, 
HDAC11, which is primarily nuclear localized and pos-
sesses the unique ability to act as a long-chain fatty acid 
deacetylase and as a regulator of miRNAs and long non-
coding RNAs [35–37]. All the HDAC enzymes, Classes I, 
II, and IV, are dependent on Zn2+ or catalytic activity.

HDACs Class III is comprised of HDAC enzymes 
termed “silent information regulators” (sirtuins, SIRTs) 
[38], representing a family of closely related deacetylases 
that are Zn2+-independent but NAD+-dependent. This 

family was first discovered as SIR2 (silent information 
regulator) in mouse [38], and thus far, seven sub-types of 
SIRTs (SIRT 1–7) have been identified in humans [29]. 
Sirtuins are implicated in a variety of cellular processes 
including gene silencing, cell cycle regulation, metabo-
lism, apoptosis, life span extension, and the effects of cal-
orie restriction, as well as circadian rhythms [39–47]. 
Each of the SIRT isoforms plays a unique role in the reg-
ulation of cellular processes through SIRT-mediated epi-
genetics. Accordingly, the SIRT isoforms vary in their cel-
lular localization, with SIRTs 1, 2, 6, and 7 being primar-
ily located in the nucleus and SIRTs 3, 4, and 5 located in 
mitochondria. While SIRT enzymes cleave the acetyl 
moiety from a lysine residue, much like their fellow 
HDAC counterparts, it has recently been recognized that 
the SIRT isoforms are capable of cleaving other chemical 
groups (i.e., succinylation, myristoylation, etc.) [48]. Fur-

Fig. 2. Description of HDAC enzymes and abbreviations used within the manuscript.
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thermore, these enzymes act on other target proteins out-
side of histone core proteins including TNF-a, FOXO, 
p53, a-tubulin, and others [38] and thus act far outside the 
traditional scope of histone deacetylases.

The contributions of histone acetylation and deacety-
lation to the pathophysiology of psychiatric disorders are 
not well understood and understudied. Histone modifi-
cations regulate memory formation and fear memory 
processing. However, it has been extremely difficult to 
study these enzymes in humans due to their plasticity and 
lack of surrogate peripheral biomarker. Therefore, the 
gold standard for studying these enzymes is pathologic 
analysis of human brain tissue. Much of what is known 
about the role of HDACs in PTSD is based on animal 
studies of PTSD-like models and fear memory processing 
models. These pre-clinical data provide a starting point 
to understand the role that these enzymes may play in 
stress and PTSD.

For example, it is known that histone acetylation 
changes aid in forming strong fear conditioning in the 
early stages of fear memory consolidation processes; 
therefore, many pre-clinical studies have demonstrated 
improved fear responses through HDAC inhibition [49, 
50]. Multiple HDAC inhibitors such as trichostatin A 
(TSA), tubastatin A, sodium butyrate (NaBu), suberoyl-
anilide hydroxamic acid (SAHA/vorinostat), MS275, and 
others have been studied for possible treatments to de-
crease cued fear extinction and improve fear response. 
This work is supported by evidence that memory forma-
tion positively correlates with increased levels of H3 acet-
ylation in CA1 and in lateral amygdala during times of 
fear conditioning [51]. Furthermore, common clinical 
psychiatric treatments of PTSD, such as selective sero-
tonin reuptake inhibitors (SSRIs), also influence levels of 
histone acetylation within the hippocampus and amyg-
dala [52]. HDACs are primary contributors to dynamic 
acetylation change during periods of memory formation 
and cued fear response. Therefore, investigation into the 
roles of each HDAC may help to promote further treat-
ments for primary fear response and memory disorders, 
such as PTSD.

Herein, we will focus on HDACs within Classes I, II, 
and IV and their role within memory formation and fear 
extinction, as they are known to play a role in the pathol-
ogy of PTSD as evidenced primarily from animal studies 
of PTSD models. We will discuss implications from in-
hibitor studies demonstrating significant influences of 
HDAC inhibition on memory and fear extinction and 
provide updates and expansion from a similar review in 
2014 [12]. Last, we will provide a brief overview of the 

current state for epigenetic imaging in neuropsychiatric 
illness and why development in this area is so critical for 
PTSD.

HDAC Class I: HDACs 1, 2, 3, 8

Within HDAC Class I, the four isoforms have many 
similarities in their structure and function, reducing the 
within-class selectivity of HDAC inhibitors, particularly 
for HDACs 1–3. HDAC 1 was originally thought to 
deacetylate lysine residues on all four histone core pro-
teins (H1–H4). However, it was later established that 
HDAC1 deacetylates H4K5, and K12 as well as H2aK5 
[53] preferentially. HDAC2 deacetylates H4K12 and 
H3K9 particularly within the hippocampus [54], while 
HDAC3 deacetylates H2bK12, H3K14, H3K9, and H4K8, 
while also functioning as co-regulators to transcription 
factors such as CREB and P300.

HDAC1 functions in memory consolidation can be 
difficult to tease apart because few HDAC-1-specific 
blocking agents exist. Thus, we must rely on data ob-
tained from blocking multiple HDACs. Overall, HDAC1 
appears to be closely tied to H3 and H4 acetylation levels, 
whether through direct deacetylation or co-deacetylation 
with another HDAC Class I enzymes [55, 56]. It has been 
noted that levels of HDAC1 decrease following fear con-
ditioning and increase again after extinction in normal 
animals [57]. Furthermore, HDAC1 and HDAC3 appear 
to co-regulate H3K9 acetylation and hippocampal Sox-2 
expression changes, leading to astriogliogenesis in neuro-
nal development [56].

HDAC2 is primarily expressed within glutamatergic 
neurons of the hippocampus and is activated during stress 
states [58]. It acts as a histone and protein deacetylase, 
regulating transcription factors, such as COX-2 and JNK 
[54, 57, 59]. HDAC2 is upregulated in periods of neuronal 
stress and is proposed to directly regulate cognitive and 
memory impairments following stress [58]. Therefore, 
HDAC2 selective inhibition (BRD6688 and BRD4884) 
can rescue memory deficits in impaired mice, primarily 
through increased H4K12 and H3K9 acetylation [54]. In-
terestingly, this inhibition has no effect on episodic mem-
ory. It is possible that the increased rate of fear extinction 
occurring after HDAC2 inhibition is due in part to in-
creased COX-2 activation and phosphorylated JNK levels, 
rather than histone acetylation alone [59]. Data suggests 
that selective HDAC2 inhibition, particularly after peri-
ods of stress, improves memory and cued fear extinction 
without altering episodic memory consolidation [59].
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HDAC3 deacetylates specific histone lysine amino ac-
ids to regulate key areas of the genome within the in-
fralimbic cortex, hippocampus, and nucleus accumbens 
which may help regulate memory formation [60]. How-
ever, inhibition studies with a pan-HDAC Class I inhibi-
tor demonstrated significant blunting of the cued fear re-
sponse in traumatized animals, whereas inhibition of 
HDAC3 shows a significantly less robust response. There-
fore, it is more likely that HDAC1 and 2 are mediating 
this response [61]. While HDAC3 inhibition does signif-
icantly impact levels of H4K8 acetylation [62], it does not 
correlate with large changes in fear extinction behaviors 
[61].

HDAC8 is a member of HDAC Class I, though its role 
within neuronal pathology is less clear than that of its 
counterparts. Furthermore, HDAC8 is disproportionate-
ly uninhibited by pan-HDAC class drugs such as SAHA 
[63], with the IC50 significantly higher for HDAC8 than 
HDACs 1, 2, 3, or even 6. Interestingly, HDAC6 (HDAC 
Class IIB) and HDAC8 share catalytic site activity with 
inhibitors often unable to differentiate between the two. 
This is further supported by different patterns of hyper-
acetylation seen when HDAC-specific inhibitors were 
used versus a pan-HDAC inhibitor, TSA [64]. Due to the 
similarity between HDAC8 and 6, several independently 
selective inhibitors of these isoforms have been devel-
oped, such as BRD73954 [65] and C4-benzyl SAHA [63] 
analogues. However there have yet to be many published 
studies using these inhibitors in models of neuropsychi-
atric disorders.

Unfortunately, it is not possible to differentiate the ef-
fects of individual HDAC isoforms in memory formation 
and fear learning based on many of the inhibitor results 
due to their nonspecificity. The following is an overview 
for the role of HDAC Class I in memory formation, as 
interpreted through analysis of studies using HDAC in-
hibitors. Increased levels of H3 and H4 acetylation have 
been identified in the hippocampus after treatment with 
HDAC Class I inhibitor (pre-clinical, Compound 60) 
[66]. This change causes increased levels of CREB and 
phosphorylated (activated) CREB to promote new gene 
transcription for cued fear extinction [50]. CREB itself is 
an important regulator of long-term potentiation and 
hippocampal-dependent learning, at least in part through 
HDAC-mediated pathways [50, 67]. Increased transcrip-
tion through CREB promoter sites can promote fear 
memory extinction and decrease cued fear response [68]. 
Therefore, increased H3 and H4 acetylation levels are 
correlated with neuronal activation and decreased fear 
memory consolidation (promoting long-term extinc-

tion) when increased specifically in the amygdala [57, 67]. 
The converse also holds true with increased HDAC ex-
pression and downregulation of CREB promoting fear 
memory consolidation and decreased extinction, specifi-
cally with increased HDAC8 expression [12]. Addition-
ally, genes involved in the cAMP-PKA-CREB pathway 
for long-term memory learning and encoding are upreg-
ulated via acetylation of histone tails at their key promot-
er sites [50]. These genes include NR4A1 and NR4A2, the 
nuclear receptor subunits, which are responsible for in-
creasing expression of target genes including brain-de-
rived neurotrophic factor production (BDNF) and tyro-
sine protein kinases, which are all necessary for long-term 
memory formation [69]. Therefore, inhibition of HDACs 
Class I may help promote CREB downstream effects, in-
cluding cued fear extinction.

One of the primary downstream effects of CREB acti-
vation is NMDA receptor expression through its sub-
classes NR2b transcription. One of the most robust cel-
lular responses to stress, particularly within the hippo-
campus, includes increased glutamatergic transmission 
and NMDA receptor upregulation [70]. Typically, when 
a cell responds to stress activation, the NMDA receptor 
undergoes restructuring to increase expression and acti-
vation [71]. SAHA (pan-HDAC inhibitor) administra-
tion within the hippocampus leads to increased levels of 
activated CREB bound to the promoter site for NR2B, 
thus promoting transcription for the NMDA receptor 
genes [72] through HDAC inhibition. Overall, this sug-
gests that increased histone acetylation is associated with 
increased NR2B levels within the hippocampus, thus pro-
moting long-term extinction or reconsolidation [68, 72].

HDAC Class II

HDAC Class II, comprised of HDACs 4, 5, 7, 9 and 6, 
10, plays a large role in the limbic system. In fact, many 
studies point to HDAC Class II as the most influential 
HDACs within the hippocampus and amygdala due to 
their prevalence and multifactorial roles [73]. Of these 
enzymes, HDAC4 and HDAC5 are most abundant with-
in the hippocampus, PFC, and amygdala [74] and interact 
with transcription factors of MEF2, SRF, and CREB. 
HDAC4 is a potent deacetylase for H3K9, 14, 18, 23 and 
H4K5, 8, 12, 16 within the brain, and it is most well known 
for its contribution to acetylation levels of H4K5, 8, 12, 16 
within the PFC during memory extinction and H3K9 and 
14 within the hippocampus during memory reconsolida-
tion [75]. Furthermore, HDAC4 and 5 were downregu-



Role of Histone Deacetylases in  
Post-Traumatic Stress Disorder

19Complex Psychiatry 2022;8:13–27
DOI: 10.1159/000524079

lated following stress induction in adolescent rats, with a 
specific protocol modeling adolescent stress in young 
adults [76]. This may indicate that these enzymes play a 
role in neurobiological changes occurring in early life 
stress – a strong predictor of future PTSD diagnosis in 
humans (need refs) [76].

HDACs 4 and 5 also influence BDNF and subsequent 
neuroplasticity. BDNF production is also a key compo-
nent to memory regulation and fear extinction as it allows 
for neuronal growth and plasticity during these critical 
periods [73, 77]. This may indicate a link to the changes 
seen in HDAC expression following SSRI use. HDAC in-
hibition with valproic acid (VPA) (relatively nonselective 
HDAC Classes I and II inhibitor) enhances histone acet-
ylation at the transcription site for BDNF to promote in-
creased synaptic plasticity, thereby facilitating fear ex-
tinction learning [72]. When comparing four different 
inhibitors head to head to look at their in vitro effects on 
BDNF production, SAHA (Class I/IIb), MS275 (Class I 
only), and MC1568 (Class II only) and tubacin (HDAC6 
inhibitor), it was found all upregulated BDNF produc-
tion, but the temporal distribution and quantity of mRNA 
upregulation was not equivalent [73]. MS1568 produced 
the most robust early increase in BDNF transcription, 
while SAHA produced quantitatively the largest differ-

ence with MS275 producing a significantly smaller differ-
ence than MC1568 [73]. Lastly, HDAC6 inhibition pro-
duced the smallest change in mRNA transcription. Over-
all, this study concluded that the HDAC II inhibitors 
exhibited larger and faster effects on BDNF than Class I 
inhibitor, MS275 [73].

HDAC7 (HDAC Class IIA) is neuroprotective through 
inhibition of c-jun expression to avoid neuronal death 
[78], and therefore, inhibition of HDAC7 may be detri-
mental to neuron health. Within the hippocampus, 
HDAC7 plays a role in contextual fear learning through 
deacetylation of Nur77 protein and inhibition of contex-
tual fear memory formation [78, 79]. As a result, increased 
ubiquitination and degradation of HDAC7 within the 
hippocampus are linked to long-term fear memory con-
solidation [79]. While selective HDAC7 inhibition effects 
have not been extensively studied, it is likely that inhibi-
tion of this enzyme contributes to results seen when using 
HDAC Class II inhibitors. However, it stands to reason 
that HDAC7 plays a smaller role than other Class II en-
zymes, as it is less abundant within the limbic system.

Within the human brain, HDAC6 (HDAC Class IIB) 
is largely expressed in the temporal cortex [80], amyg-
dala, hippocampus, and PFC [81]. In the murine brain, 
the highest expression of HDAC6 is within serotonergic 

Fig. 3. Visual representation of the complex formed with HDAC6 and Hsp90 to translocate the GR within the 
cell. When HDAC6 does not function appropriately, the GR complex is disabled.
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neurons, where genetic and molecular evidence demon-
strates HDAC6 plays an important role in regulation of 
glucocorticoid receptor (GR)-heat shock protein 90 
(Hsp90) [82, 83] interaction, thereby mediating the stress 
response within key areas of the brain (i.e., amygdala and 
hippocampus) [84, 85]. Overall, GR function has been 
closely linked to stress resilience in both humans [86] and 
animals [85], with HDAC6 implicated as a player in this 
pathway (Fig. 3) [84]. There is a well-described interplay 
between HDAC6 and Hsp90, whereby HDAC6 functions 
as a deacetylase for Hsp90. The acetylation of Hsp90 at 
k294 enables GR translocation from the nucleus after 
transcription [87]. HDAC6 then deacetylates Hsp90 to 
activate the chaperone complex for mobilization of GR. 
Therefore, overactivity or underactivity of HDAC6 leads 
to Hsp90 dysregulation and interferes with the assembly 
or activation of the GR chaperone complex (Fig. 3) [82]. 
Consequently, HDAC6 inhibition causes changes in GR 
expression which improves neuron excitability and sero-
tonergic activity within the dorsal raphe neurons of the 
hippocampus [84]. As a result, the interplay of HDAC6 
and the GR might contribute to the dysregulation of GR 
expression in stress responses such as in PTSD [88].

In rodents, maternal licking of offspring causes in-
creased levels of GR expression through a variety of epi-
genetic mechanisms, including histone acetylation, and 
results in greater nerve growth factor inducible protein A 
within the hippocampus. This change can be reversed, 
thus decreasing the nerve growth factor, through use of 
HDAC inhibitor TSA [89]. Furthermore, selective inhibi-
tion of HDAC6 using tubastatin A has also resulted in 
rescuing memory loss in rodents [90]. In animal studies, 
knockout of the HDAC6 gene prevented the expression 
of stress-related behaviors including avoidance of social 
and nonsocial anxiogenic stimuli [84, 91]. HDAC6 dele-
tion does not interfere with normal mouse development, 
and it promotes an antidepressant response to chronic 
stress and PTSD-like models, such as social defeat [84]. 
Increased nuclear levels of HDAC3, HDAC6, and GR 
have been found in animals more susceptible to a depres-
sive-like feature after social defeat and in fact are reversed 
with the use of HDAC inhibitor, SAHA [92]. Therefore, 
in animal stress models, HDAC6 may contribute to the 
expression of stress-related behavior and these stress re-
sponses are attenuated by HDAC6-selective inhibitors 
[93].

TSA is a pan-HDAC inhibitor, which has demonstrat-
ed efficacy in enhancing memory consolidation resulting 
from H4 hyperacetylation in the hippocampus and amyg-
dala after administration [94]. TSA demonstrated an abil-

ity to enhance memory consolidation and increase BDNF 
within the hippocampus when injected into the basolat-
eral amygdala [95] with concurrent effects on CRE-de-
pendent transcription [96]. Additionally, this inhibitor 
has demonstrated anti-anxiolytic effects within animals 
pre-disposed to anxiety from lack of maternal care in the 
young through hippocampal-mediated effects [97]. How-
ever, this “pan-HDAC” inhibitor contains two enantio-
mers, R and S, where the S-enantiomer shows moderate 
specificity to HDAC6 [98]. Therefore, the effects of TSA 
may disproportionately represent HDAC6 inhibition 
over other HDAC Class I and II enzymes. While it is dif-
ficult to say how much of these effects can be attributed 
to inhibition of HDAC6, it is possible that mixed enan-
tiomer TSA may be disproportionately affecting HDAC6 
more than other Class I and II HDAC isoforms.

Class I and IIA Inhibitor Studies

NaBu, a short-chain fatty acid, inhibits Class I and II 
HDACs, with nanomolar potency [99]. In animal studies, 
NaBu mitigated the negative impact of single prolonged 
stress (SPS) on the spatial memory testing (i.e., Morris 
water maze) [100]. Similarly, NaBu produced neuropro-
tective effects in mice after cerebral ischemia event, sug-
gesting that increased acetylation of H3K9 was neuropro-
tective [101]. Animals with increased H3 acetylation lev-
els within the hippocampus have improved memory after 
ischemia or provocation of inflammation by administra-
tion of lipopolysaccharide [101]. While these studies in-
directly support HDACs as key players in mediating 
memory reserves following neurologic insults, they indi-
cate the importance of mediating acetylation levels to re-
duce neuronal cell death via apoptosis.

VPA targets Class I and Class IIa HDACs. Although it 
is often studied as a “pan-HDAC” inhibitor, it only reach-
es the catalytic site in HDAC1-3 and 7. VPA binds but 
does not catalytically inhibit HDAC4 and 8 [102]. Fur-
thermore, VPA has no inhibitory action on HDAC5, 6, or 
10 [103]. Therefore, the epigenetic effects of this inhibitor 
are likely occurring only through inhibition of HDAC 
Class I. Use of VPA further supports evidence of a sig-
nificant role for HDAC Class I in memory reconsolida-
tion and extinction within the PFC [104]. VPA may en-
hance fear memory consolidation and potentiate fear 
memories if used immediately prior to the first condi-
tioned fear exposure [105]. However, when administered 
during fear extinction learning, within the PFC there is a 
decrease in HDAC Class I enzyme expression and may 
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promote long-term fear extinction [57]. VPA also may 
reduce stress-related apathy in rodents, as measured in 
response to the novel object recognition test and sucrose 
consumption, possibly through an HDAC3-dependent 
mechanism [106]. Furthermore, a meta-analysis for four 
small clinical trials conducted using VPA to treat PTSD 
symptoms demonstrated decreased symptoms burden 
(i.e., hyperarousal, irritability, mood lability, improved 
mood) [2]. Given the small number of studies and rela-
tively limited number of patients, it is difficult to say this 
is a robust effect but suggests that targeting epigenetic 
mechanisms may be useful in PTSD therapeutic interven-
tion.

Other HDAC inhibitors were tested for their ability to 
alter behaviors and memory processes that are typically 
associated with PTSD and MDD. MS275 a selective Class 
I inhibitor with little HDAC Class II activity [107] dem-
onstrates significantly improved ability to potentiate 
long-term memory formation within the hippocampus 
over pan-HDAC inhibitor such as TSA [108]. This may 
indicate that HDAC Class I is preferentially involved in 
LTP over HDAC Class II, like the findings in the PFC 
[108]. An HDAC Class I and II inhibitor, SAHA, also 
shows antidepressant-like effects in mice [92], coinciding 
with significant increases in H3 and H4 acetylation levels. 
However, these results are difficult to interpret mechanis-
tically, as SAHA acts on many HDAC isoforms. Similarly, 
chronic acetate treatment lowers the levels of HDACs 2, 
5, 7, and 8 while notably increasing the transcription lev-
el of HAT and P300. This combined with increased acetyl 
coenzyme A levels produced increased H3 and H4 global 
acetylation [109]. These changes produced antidepres-
sant-like effects and improved synaptic plasticity within 
the hippocampus [109].

Neuropeptide-Y (NPY) is a peptide neurotransmitter 
highly regulated within the amygdala and contributes to 
stress resilience and response pathway in part through 
changes in histone acetylation [110]. Animals with alco-
hol use disorder and anxiety had increased levels of his-
tone acetylation, particularly H3K9 and H4K8, in the 
amygdala and in concordance with NPY levels. These 
changes were correlated to the animal’s anxiolytic re-
sponse [111, 112]. However, animals with reduced NPY 
after trauma-associated traumatic brain injury also had 
lower H3K9 acetylation in arcuate nucleus and subse-
quent deacetylation (silencing) of the NPY promoter 
gene. This is hypothesized to be a primary cause of de-
creased NPY expression following brain trauma [113]. 
This may provide direct evidence for feeding changes 
seen after traumatic events through a histone deacety-

lation-driven mechanism. In humans, plasma NPY levels 
correlate positively with stress resilience and negatively 
with PTSD-like symptoms in a study of US soldiers [114]. 
Further, reductions in basal and yohimbine-stimulated 
plasma NPY levels are found in association with PTSD 
within clinical studies [115]. These effects may be due in 
part to modifications of histone acetylation. Based on 
these data, NPY, itself, is being studied as a potential 
treatment for PTSD and major depression [116, 117].

HDAC Class IV

HDAC Class IV is comprised of HDAC11, which has 
received relatively little study. Recent studies suggest that 
HDAC11 may play an important role in fatty acid deacet-
ylase and cellular metabolism functions in the body and 
the brain [37]. HDAC11 is inhibited by SAHA (pan-
HDAC inhibitor) and possibly MS275 (HDAC Class IIa 
inhibitor) albeit with less potency than other HDAC iso-
forms [118]. Therefore, reported findings using these 
HDAC inhibitors may demonstrate effects due to 
HDAC11 inhibition as well as other Class I and II HDACs 
[118]. HDAC11 is important to neuronal survival and has 
been associated with other markers linked to neuronal 
plasticity and hippocampal-dependent memory forma-
tion through NeuN-dependent mechanism in neuropro-
genitor cells [119]. When studying memory enhance-
ment using vagal nerve stimulation, there is an inverse 
relationship between HDAC11 with hippocampal mem-
ory formation [120]. Further study of HDAC11 may pro-
vide insight into these physiological mechanisms and the 
role that this enzyme plays in memory formation and dys-
regulation of fear response network.

Need for Imaging the Epigenetic-Related Stress 
Response in Living Humans

Currently, the study of in vivo neurochemical changes 
and neuronal plasticity following stressful events relies 
primarily on animal models and peripheral tissue analysis 
in patients. While multiple animal models resemble the 
sequelae of PTSD behaviorally and biochemically, there 
are limitations to these models. An extensive review and 
comparison between animal and human stress disorders 
demonstrate that most models reliably reproduce anxiety 
and depressive-like behaviors of PTSD, as well as hyper-
active fear circuits and neuronal stress response, but it is 
more difficult to elucidate nuances of the disease includ-
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ing gender differences, though this is beginning to im-
prove [121, 122]. One of the primary models, SPS in rats, 
is widely used for pre-clinical studies of stress-induced 
fear behaviors and fear extinction [123]. Specifically, the 
SPS model has been validated for its similarity to humans 
in the robust neuroendocrine response following stressful 
events [124] and in the hippocampal glutamate receptor 
response [125]. One limitation of SPS is that sex differ-
ences are difficult to measure as only males appear to elic-
it a stress response in this situation, which does not accu-
rately reflect the human experience where females are 
twice as likely as males to develop PTSD after an equiva-
lently traumatizing event [126].

An alternative mouse model of PTSD, chronic social 
defeat stress (CSDS), captures the GR and cortisol chang-
es observed in PTSD [77]. The primary phenotypes in-
clude avoidance, anxiety, decreased grooming, hyperac-
tivity, and susceptibility to addiction, all of which fit well 
within the DSM-5 diagnostic criteria for PTSD in hu-
mans [127]. CSDS has been proven to be an excellent 
PTSD model and displays a mixture of PTSD/MDD phe-
notype in many cases, which often reflects clinical symp-
toms as well [85, 86]. Similarly, chronic mild stress for 
mice has also been experimented with as a possible mech-
anism for inducing PTSD-like symptomatology; howev-
er, this stress appears to promote anhedonia, memory im-
pairment, and appetite suppression [128]. Additionally, 
these symptoms were partially reversed through treat-
ment with an antidepressant and thus the model is used 
primarily to study MDD rather than PTSD. CSDS pro-
duces a robust sympathetic nervous system response in 
mice, which can last for days to weeks from a single trau-
matic event, thereby mimicking much of the robust stress 
response that occurs in humans [129]. Although this 
model is also limited in its ability to elicit sex-specific dif-
ferences, it is improving with wider use of female animals 
and alteration of the odorants and aggression models 
used for stress induction [130, 131]. These improvements 
have demonstrated an ability to achieve similar neuroen-
docrine effects and stress response behaviors in females 
to that of males [132].

The predator scent model has been used reliably with 
rats to produce PTSD symptomatology with robust reli-
ability [133]. This model has also begun to explore the sex 
differences and has successfully reproduced the percent-
age of males versus females that go on to develop PTSD 
after stress, with about 30% of male rats and almost 50% 
of female rats developing PTSD symptoms [133]. This is 
different compared to the predator stress model where 
almost all stressed animals exhibit PTSD-like behaviors 

[134]. Multiple recent full reviews exist depicting the dif-
ferences and similarities between animal PTSD models in 
both mice and rats, with benefits and drawbacks of each 
clearly laid out [134, 135] but both summarize the need 
for further work particularly in sex differentiation.

Animal models do relatively well at modeling stress 
response behaviors and have made great strides toward 
understanding physiologic and behavioral response to 
trauma and subsequent treatment. But the dynamic na-
ture of PTSD and tremendous variation between pheno-
types is difficult to replicate or account for in an animal 
model nor can coping styles and mechanisms be ade-
quately captured. Future studies of PTSD phenotype in 
humans are needed to better understand the full course 
of stress-related pathology within the human brain. To do 
this, in vivo noninvasive imaging modalities are neces-
sary. One possible modality for live human imaging of 
neurochemistry is the use of Positron emission tomogra-
phy (PET) with radiotracers designed to target specific 
proteins within the human brain. Currently, multiple 
HDAC-targeted imaging agents have been developed for 
PET, with encouraging results, both clinically and pre-
clinically.

To date, several PET epigenetic imaging studies have 
been conducted. The radiotracer [11C]Martinostat was 
developed to understand HDAC Class I expression [136], 
and studies have found higher levels of HDAC Class I ex-
pression in patients with bipolar disorder and schizo-
phrenia as compared to controls [137, 138]. A promising 
new imaging agent for HDAC6 has also been developed 
and tested in humans, [18F]Bavarostat; though clinical 
studies have not yet been undertaken, this will be an ex-
citing area of study for memory-related pathologies such 
as PTSD, Alzheimer’s disease, and frontotemporal de-
mentia. Additional HDAC selective radiotracers exist 
and have demonstrated promise pre-clinically in study-
ing psychiatric and neurologic pathologies. Other 11C-la-
beled HDAC inhibitors (VPA and butyric acid) were test-
ed in nonhuman primates but had minimal blood-brain 
barrier penetrance and thus were not fully effective [139]. 
In addition to inhibitor studies, radiotracers developed as 
ligands selective to HDAC Class IIa have been tested pre-
clinically and in nonhuman primates, [18F]FAHA [140] 
and [18F]TFAHA [141] although thus far, they have only 
been used to demonstrate HDAC Class IIA activity in 
glioblastoma and gliosarcoma [142]. Along these lines, 
[18F]fluoroacetate has also been studied in the brain for 
imaging cerebral ischemia and demonstrated wide up-
take among HDAC enzymes of all classes [143]. Though 
many of these imaging agents show promise to better de-
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cipher the role of HDACs within neuropsychiatric illness, 
few have been thoroughly studied and significantly more 
work is needed.

Understanding Epigenetic Response in Stress 
Disorders May Lead to the Development of Novel 
Therapeutics

Current treatment of stress and anxiety disorders in-
volves cognitive behavioral therapy, prolonged exposure 
therapy, or cognitive processing therapy. These therapies 
are often combined with pharmacologic therapy. Addi-
tional pharmacologic agents are often used to control 
nightmares such as the alpha-1 antagonist, prazosin, but 
there are currently no effective pharmacologic agents to 
treat all symptoms of PTSD effectively. The first-line 
pharmacologic therapy is treatment with SSRIs that only 
have a 50–60% response rate [144]. Typically, these med-
ications manage the symptoms of PTSD, but do not treat 
the disease. Developing agents which target histone mod-
ifications to “prime” memories for extinction is an excit-
ing promise for drug development in psychiatric illness. 
Therefore, epigenetics offers a new target for pharmaco-
logic intervention.

One possible innovation inferred from these studies is 
that pre-treatment with an HDAC modulator (i.e., inhibi-
tor) prior to anticipated trauma or immediately following 
trauma could improve fear extinction. This method of 
“priming” epigenetic regulation with HDAC inhibitors 
may provide a better outcome with nonpharmacologic 
therapy as well. A relatively recent review discusses the idea 
that priming with HDAC inhibitors may prove useful in 
cognitive enhancement as well [12]. Research demonstrat-
ed pre-treatment with Class I HDAC inhibitors may im-
prove memory reconsolidation and be most effective at se-
lectively downregulating HDACs within the hippocampus 
and amygdala for increased H3 and H4 acetylation. SAHA 
demonstrated efficacy in this role, promoting remote fear 
attenuation when used prior to memory reconsolidation 
[145]. Though the effects may also be partially counterpro-
ductive as other studies demonstrated selective and potent 
inhibition of HDAC Class I with MS275 leading to poten-
tiation of fear memory formation due to increased H4K8ac 
levels within the cortical hippocampal circuit [146]. VPA, 
although also nonselective for HDAC inhibition, produces 
different inhibitory levels than SAHA and has demonstrat-
ed possible utility as well, when used in adjunct with psy-
chotherapy [57], thus demonstrating improved fear ex-
tinction during exposure-based cognitive behavioral ther-

apy when co-treated with VPA administration [147]. With 
further investigation, alternative novel pharmacologic 
therapies might be possible, such as using an HDAC6 se-
lective inhibitor prior to trauma exposure, if possible, to 
increase GR expression and promote stress resilience.

Conclusion

The literature supports a robust role for HDACs in 
stress pathology and neurobiology within the human and 
murine brain. HDACs Classes I and II are intricately in-
volved in deacetylation of histones, transcription factors 
as well as other proteins, such as Hsp90, to regulate tran-
scription of genes for memory consolidation and cued 
fear extinction. This largely pre-clinical body of work 
demonstrates exciting promise for better understanding 
the pathophysiology of stress-trauma disorders, but 
promise for novel therapeutics is cautionary. HDAC 
modulators offer great promise for novel targeted therapy 
but are not widely studied for safety in vivo and in many 
cases may have wide ranging effects that are not fully 
characterized. Better understanding the role of each indi-
vidual class or isoform of HDACs would allow for more 
selective therapies to be used. Therefore, further study of 
individual HDAC isoforms, as discussed above, may pro-
vide treatment opportunities for PTSD either prior to a 
known stressful event or immediately following the event 
to decrease the cued fear response.
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