Skip to main content
. Author manuscript; available in PMC: 2022 Nov 17.
Published in final edited form as: IEEE Trans Med Imaging. 2022 Oct 27;41(11):3003–3015. doi: 10.1109/TMI.2022.3176598

TABLE III. Ablation Studies on the Feature Extractors in 3-Label (Normal vs. Luad vs. Lscc) Classification Task.

We Used Different Feature Extractors for Graph Construction and Evaluated Their Role on the Overall Classification Task. Here, Resnet* Indicates the Use of a Pre-Trained Resnet18 Network Without Fine-Tuning, Resnet† Indicates With Fine-Tuning. Cae is a Convolutional Auto Encoder. CL Represents Contrastive Learning on STL10 or Nlst by Our Method. Mean Performance Metrics Are Reported Along with the Corresponding Values of Standard Deviation in Parentheses

(a) Precision, Recall/Sensitivity, and Specificity (Percentage (%) values are reported).

Method Data Precision Recall/Sensitivity Specificity
Normal LUAD LSCC Normal LUAD LSCC Normal LUAD LSCC

Resnet* CPTAC 88.3(4.2) 63.8(2.7) 76.4(5.0) 81.1(5.9) 71.0(4.1) 73.6(7.6) 94.0(3.1) 80.9(1.8) 88.4(3.6)
TCGA 56.2(7.2) 42.6(3.1) 35.6(10.3) 50.9(11.3) 31.3(24.4) 50.1(22.8) 79.7(8.6) 77.7(19.8) 58.3(11.3)

Resnett CPTAC 88.1(5.1) 77.6(5.6) 77.7(4.1) 89.4(3.5) 72.2(6.6) 80.1(6.6) 93.3(3.6) 89.6(3.8) 88.3(3.6)
TCGA 62.1(2.1) 51.8(3.6) 66.6(5.6) 77.8(3.2) 49.5(9.3) 52.5(6.4) 77.6(2.9) 76.3(5.9) 85.6(4.8)

CAE CPTAC 90.6(1.7) 77.8(2.2) 73.2(2.7) 88.5(4.2) 65.6(4.5) 85.8(3.6) 95.1(1.0) 91.1(1.2) 84.3(2.9)
TCGA 61.6(2.3) 42.3(2.5) 57.2(2.1) 78.3(3.2) 35.9(1.6) 51.1(5.7) 76.9(2.7) 75.1(2.1) 80.0(1.8)

CL (STL10) CPTAC 95.3(1.6) 87.6(3.5) 91.7(3.4) 96.2(1.6) 90.5(4.2) 87.3(3.7) 97.5(0.9) 93.8(2.2) 95.9(1.8)
TCGA 76.9(2.7) 66.5(3.3) 73.8(3.5) 82.2(5.5) 73.4(1.5) 61.0(4.1) 88.4(1.8) 81.0(3.1) 88.5(2.8)

CL (NLST) CPTAC 93.2(3.0) 88.4(3.9) 87.8(3.0) 95.9(2.2) 83.9(4.5) 89.2(4.0) 96.2(1.7) 94.7(1.9) 93.8(1.7)
TCGA 89.2(2.8) 74.4(2.7) 84.4(0.7) 92.6(2.7) 79.8(1.9) 75.2(1.6) 94.7(1.6) 86.0(2.3) 92.7(0.4)

(b) Accuracy and AUC (Percentage (%) values are reported).

Method Data Accuracy AUC

Resnet* CPTAC 75.4(2.0) 88.9(0.4)
TCGA 44.0(2.8) 60.4(3.0)

Resnett CPTAC 80.8(1.1) 92.2(0.9)
TCGA 59.6(1.1) 76.2(0.8)

CAE CPTAC 80.2(1.6) 93.2(0.9)
TCGA 54.7(2.2) 72.9(1.6)

CL (STL10) CPTAC 91.4(1.1) 98.0(0.9)
TCGA 71.9(1.9) 86.4(1.6)

CL (NLST) CPTAC 91.2(2.5) 97.7(0.9)
TCGA 82.3(1.0) 92.8(0.3)

(c) DeLong’s test to compare the AUCs of models generated using different feature extractors. log10(0.05) = −1.301.

Method Data log10(P-value)

Resnet* CPTAC −3.711(2.044)
CPTAC −3.711(2.044)

Resnett CPTAC −2.336(0.592)
TCGA −4.041(0.418)

CAE CPTAC −2.325(2.573)
TCGA −4.532(0.652)

CL (STL10) CPTAC −1.773(1.397)
TCGA −2.962(1.482)