TABLE III. Ablation Studies on the Feature Extractors in 3-Label (Normal vs. Luad vs. Lscc) Classification Task.
We Used Different Feature Extractors for Graph Construction and Evaluated Their Role on the Overall Classification Task. Here, Resnet* Indicates the Use of a Pre-Trained Resnet18 Network Without Fine-Tuning, Resnet† Indicates With Fine-Tuning. Cae is a Convolutional Auto Encoder. CL Represents Contrastive Learning on STL10 or Nlst by Our Method. Mean Performance Metrics Are Reported Along with the Corresponding Values of Standard Deviation in Parentheses
(a) Precision, Recall/Sensitivity, and Specificity (Percentage (%) values are reported). | ||||||||||
| ||||||||||
Method | Data | Precision | Recall/Sensitivity | Specificity | ||||||
Normal | LUAD | LSCC | Normal | LUAD | LSCC | Normal | LUAD | LSCC | ||
| ||||||||||
Resnet* | CPTAC | 88.3(4.2) | 63.8(2.7) | 76.4(5.0) | 81.1(5.9) | 71.0(4.1) | 73.6(7.6) | 94.0(3.1) | 80.9(1.8) | 88.4(3.6) |
TCGA | 56.2(7.2) | 42.6(3.1) | 35.6(10.3) | 50.9(11.3) | 31.3(24.4) | 50.1(22.8) | 79.7(8.6) | 77.7(19.8) | 58.3(11.3) | |
| ||||||||||
Resnett | CPTAC | 88.1(5.1) | 77.6(5.6) | 77.7(4.1) | 89.4(3.5) | 72.2(6.6) | 80.1(6.6) | 93.3(3.6) | 89.6(3.8) | 88.3(3.6) |
TCGA | 62.1(2.1) | 51.8(3.6) | 66.6(5.6) | 77.8(3.2) | 49.5(9.3) | 52.5(6.4) | 77.6(2.9) | 76.3(5.9) | 85.6(4.8) | |
| ||||||||||
CAE | CPTAC | 90.6(1.7) | 77.8(2.2) | 73.2(2.7) | 88.5(4.2) | 65.6(4.5) | 85.8(3.6) | 95.1(1.0) | 91.1(1.2) | 84.3(2.9) |
TCGA | 61.6(2.3) | 42.3(2.5) | 57.2(2.1) | 78.3(3.2) | 35.9(1.6) | 51.1(5.7) | 76.9(2.7) | 75.1(2.1) | 80.0(1.8) | |
| ||||||||||
CL (STL10) | CPTAC | 95.3(1.6) | 87.6(3.5) | 91.7(3.4) | 96.2(1.6) | 90.5(4.2) | 87.3(3.7) | 97.5(0.9) | 93.8(2.2) | 95.9(1.8) |
TCGA | 76.9(2.7) | 66.5(3.3) | 73.8(3.5) | 82.2(5.5) | 73.4(1.5) | 61.0(4.1) | 88.4(1.8) | 81.0(3.1) | 88.5(2.8) | |
| ||||||||||
CL (NLST) | CPTAC | 93.2(3.0) | 88.4(3.9) | 87.8(3.0) | 95.9(2.2) | 83.9(4.5) | 89.2(4.0) | 96.2(1.7) | 94.7(1.9) | 93.8(1.7) |
TCGA | 89.2(2.8) | 74.4(2.7) | 84.4(0.7) | 92.6(2.7) | 79.8(1.9) | 75.2(1.6) | 94.7(1.6) | 86.0(2.3) | 92.7(0.4) | |
| ||||||||||
(b) Accuracy and AUC (Percentage (%) values are reported). | ||||||||||
| ||||||||||
Method | Data | Accuracy | AUC | |||||||
| ||||||||||
Resnet* | CPTAC | 75.4(2.0) | 88.9(0.4) | |||||||
TCGA | 44.0(2.8) | 60.4(3.0) | ||||||||
| ||||||||||
Resnett | CPTAC | 80.8(1.1) | 92.2(0.9) | |||||||
TCGA | 59.6(1.1) | 76.2(0.8) | ||||||||
| ||||||||||
CAE | CPTAC | 80.2(1.6) | 93.2(0.9) | |||||||
TCGA | 54.7(2.2) | 72.9(1.6) | ||||||||
| ||||||||||
CL (STL10) | CPTAC | 91.4(1.1) | 98.0(0.9) | |||||||
TCGA | 71.9(1.9) | 86.4(1.6) | ||||||||
| ||||||||||
CL (NLST) | CPTAC | 91.2(2.5) | 97.7(0.9) | |||||||
TCGA | 82.3(1.0) | 92.8(0.3) | ||||||||
| ||||||||||
(c) DeLong’s test to compare the AUCs of models generated using different feature extractors. log10(0.05) = −1.301. | ||||||||||
| ||||||||||
Method | Data | log10(P-value) | ||||||||
| ||||||||||
Resnet* | CPTAC | −3.711(2.044) | ||||||||
CPTAC | −3.711(2.044) | |||||||||
| ||||||||||
Resnett | CPTAC | −2.336(0.592) | ||||||||
TCGA | −4.041(0.418) | |||||||||
| ||||||||||
CAE | CPTAC | −2.325(2.573) | ||||||||
TCGA | −4.532(0.652) | |||||||||
| ||||||||||
CL (STL10) | CPTAC | −1.773(1.397) | ||||||||
TCGA | −2.962(1.482) |