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A conserved signaling pathway activates
bacterial CBASS immune signaling in response to
DNA damage
Rebecca K Lau1 , Eray Enustun2 , Yajie Gu1 , Justin V Nguyen2 & Kevin D Corbett1,*

Abstract

To protect themselves from the constant threat of bacteriophage
(phage) infection, bacteria have evolved diverse immune systems
including restriction-modification, CRISPR-Cas, and many others.
Here, we describe the discovery of a two-protein transcriptional
regulator module associated with hundreds of CBASS immune sys-
tems and demonstrate that this module drives the expression of
its associated CBASS system in response to DNA damage. We show
that the helix-turn-helix transcriptional repressor CapH binds the
promoter region of its associated CBASS system to repress tran-
scription until it is cleaved by the metallopeptidase CapP. CapP is
activated in vitro by single-stranded DNA, and in cells by DNA-
damaging drugs. Together, CapH and CapP drive increased expres-
sion of their associated CBASS system in response to DNA damage.
We identify CapH- and CapP-related proteins associated with
diverse known and putative bacterial immune systems including
DISARM and Pycsar antiphage operons. Overall, our data highlight
a mechanism by which bacterial immune systems can sense and
respond to a universal signal of cell stress, potentially enabling
multiple immune systems to mount a coordinated defensive
response against an invading pathogen.
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Introduction

In all organisms, survival depends on the ability of cells to sense

and respond to both internal and external threats. In addition to

environmental stress, bacteria are continually challenged by bacte-

riophages (phages) and have evolved a wide array of immune sys-

tems to protect themselves from phage infection and propagation.

Many antiphage immune systems, including restriction-modification

and CRISPR-Cas systems, specifically recognize and destroy foreign

DNA to prevent phage replication (Makarova et al, 2013; Mohan-

raju et al, 2016). Other immune systems, termed abortive infection

systems, sense phage infection and respond by killing the host cell,

thereby preventing phage propagation and further infection in the

bacterial community (Makarova et al, 2011a; Dy et al, 2014; Doron

et al, 2018; Hampton et al, 2020). In many bacteria, multiple

immune systems coexist in the so-called “defense islands”

(Makarova et al, 2011b; Doron et al, 2018) and may cooperate,

with nonlethal systems acting as a first line of defense and abortive

infection systems becoming activated only as a last resort (Bernheim

& Sorek, 2020; Picton et al, 2021).

The widespread and functionally diverse CBASS antiphage

immune systems use an abortive infection mechanism in which a

cGAS/DncV-like nucleotidyltransferase (CD-NTase) is activated

upon phage infection and synthesizes a cyclic oligonucleotide sec-

ond messenger (Cohen et al, 2019; Whiteley et al, 2019; Lau

et al, 2020; Ye et al, 2020). This molecule in turn activates one of a

variety of effector proteins, including phospholipases, nucleases,

and pore-forming proteins, to kill the host cell (Severin et al, 2018;

Cohen et al, 2019; Lau et al, 2020; Lowey et al, 2020). While the

so-called Type I CBASS systems encode only a CD-NTase and a cell-

killing effector protein, the majority of CBASS systems encode ancil-

lary proteins putatively involved in infection sensing and/or CD-

NTase activation (Burroughs et al, 2015; Millman et al, 2020). Type

II CBASS systems encode two proteins, Cap2 and Cap3, that are

related to eukaryotic ubiquitination machinery and are required for

protection against phage (Cohen et al, 2019; preprint: Ledvina

et al, 2022). Type III CBASS systems, meanwhile, encode peptide-

binding HORMA domain proteins (Cap7 and Cap8) that are pro-

posed to bind specific peptides to sense infection and then activate

their associated CD-NTase (Ye et al, 2020).

All CBASS systems are thought to directly sense phage infection

and respond by triggering cell death. Here, we identify a pair of tran-

scriptional regulators, termed CapH and CapP, that are associated

with hundreds of CBASS systems and upregulate CBASS expression

in response to DNA damage. DNA damage is a universal stress sig-

nal in bacterial cells (Benler & Koonin, 2020) and has been shown
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to activate various bacterial stress responses, including the SOS

response (Sassanfar & Roberts, 1990; Little, 1991). We show that

CapH and CapP are structurally and functionally similar to regula-

tors that mobilize prophages and integrative and conjugative ele-

ments (ICE elements) in response to DNA damage, and to activators

of the DNA damage response in radiation-resistant Deinococcus

species. We also identify CapH- and CapP-like regulators associated

with a variety of known or putative bacterial immune systems,

revealing that these proteins represent a conserved signaling module

that regulates immune system expression in response to DNA dam-

age across bacteria.

Results

Identification of capH and capP genes associated with
CBASS systems

We previously showed that a Type III CBASS system from Escheri-

chia coli strain MS115-1 provides robust protection against bacterio-

phage k through an abortive infection mechanism (Lau et al, 2020;

Ye et al, 2020). Examination of this system’s genomic neighborhood

revealed a pair of genes directly upstream of the core CBASS genes

and encoded on the opposite strand (i.e., sharing a promoter region

with the core CBASS genes), that encode a predicted helix-turn-helix

(HTH) DNA binding protein and a predicted Zn2+ metallopeptidase

(Fig 1A). We term these two genes capH (CBASS-associated protein,

Helix-turn-helix) and capP (CBASS-associated protein, Peptidase). In

their position and orientation relative to the core CBASS genes, capH

and capP are similar to capW, a transcriptional regulator associated

with a distinct subset of CBASS systems (Blankenchip et al, 2022).

BLAST searches revealed that CapP shares strong similarity to IrrE,

a metallopeptidase that regulates the DNA damage response in

Deinococcus by cleaving an HTH-family transcription factor, DdrO

(Vuji�ci�c-�Zagar et al, 2009; Ludanyi et al, 2014). DdrO normally

binds the promoters of DNA damage response genes and suppresses

their expression, but upon DNA damage, IrrE becomes activated

and cleaves DdrO, releasing it from DNA and activating expression

of the DNA damage response genes (Ludanyi et al, 2014; Blanchard

et al, 2017; de Groot et al, 2019). The similarity of CapP to IrrE,

and its association with the HTH protein CapH, suggested that CapH

and CapP may functionally cooperate to control expression of their

associated CBASS system.

We systematically searched the genomic neighborhoods of

6,233 bacterial CBASS CD-NTases (Cohen et al, 2019) for genes

related to capP and identified 408 CBASS systems with a predicted

Zn2+ metallopeptidase within 10 kb of the system’s CD-NTase

gene. In these systems, CapP is most often annotated as a “domain

of unknown function” (DUF) 955 or PFAM06114 protein. We man-

ually inspected each system and identified a gene encoding a CapH

homolog alongside capP in 393 of the 408 systems (in 70 cases,

this gene is not annotated; Fig 1A; Table EV1). The remaining 15

systems encode an apparent fusion of CapH and CapP

(Table EV1). In all cases, the capH and capP genes are encoded

upstream of the core CBASS genes and on the opposite strand

(Fig 1A). We identified capH and capP genes associated with Type

I, Type II, and Type III CBASS systems that encode a variety

of predicted effectors including phospholipases, transmembrane

proteins, and endonucleases (Fig 1B and C; Table EV1). In 24 sys-

tems, capH and capP are encoded alongside a predicted r70-family

r factor (Table EV1).

To determine whether capH and capP control expression of their

associated CBASS operon, we generated a reporter construct with

capH, capP, and the promoter region of the CBASS system from

E. coli MS115-1, plus a gene encoding GFP (green fluorescent pro-

tein) in place of the core CBASS genes. When both capH and capP

were present, the expression of GFP in uninfected log-phase cells

was too low for detection by anti-GFP immunoblotting (Fig 1D).

Expression was also nearly undetectable in a strain lacking capP,

but we observed high GFP expression in a strain lacking capH

(Figs 1D and EV1A). These data suggest that CapH is a transcrip-

tional repressor for its associated CBASS system.

Next, we generated a separate reporter construct encoding the

full six-gene CBASS system of E. coli MS115-1, with a N-terminal

FLAG tag fused to the effector nuclease NucC (Figs 1E and EV1B).

In agreement with our GFP reporter, the expression of FLAG-NucC

was undetectable by Western blot in uninfected cells (Fig 1E).

FLAG-NucC expression was also undetectable after deleting capP in

this construct (Fig 1E). We were unable to delete capH in this con-

struct, with all isolated clones lacking capH also lacking large

regions of the core CBASS genes. Given that deletion of capH in our

GFP reporter construct results in high expression of GFP, our inabil-

ity to isolate a capH-deleted version of the full CBASS system sug-

gests that high expression of the system is toxic to host cells.

CapP controls CBASS expression but is not required for
phage protection

Our reporter assays indicated that CapH likely acts as a transcrip-

tional repressor for its associated CBASS operon. To determine the

role of CapP in CBASS expression, we first used our FLAG-NucC

reporter system to test for CBASS expression changes upon infection

with an obligately lytic variant of bacteriophage k lacking the cI

gene (k cI�) (Rajagopala et al, 2011). With the wild-type CBASS

system encoding capH and capP, we observed a strong increase in

FLAG-NucC expression starting ~ 60 min after infection and peaking

around 90 min after infection (Fig 1E). In the absence of capP, we

observed no such increase in FLAG-NucC expression (Fig 1E). We

also observed increased FLAG-NucC expression in a system with

catalytically dead CD-NTase (CdnC D72N/D74N), indicating that the

observed expression changes do not depend on CBASS signaling

(Fig 1E). These data suggest that CapP responds to phage infection

by antagonizing CapH, resulting in a loss of repression and an

increase in CBASS expression.

To test the role of CapH and CapP in phage protection, we com-

pared the ability of wild-type E. coli MS115-1 CBASS and a mutant

lacking capP to protect against k cI� infection. We previously

reported that when cloned into an IPTG-inducible expression vector,

the four core genes from E. coli MS115-1 CBASS (cdnC [CD-NTase],

cap7 [HORMA], cap6 [TRIP13], and nucC) provide strong protection

against k cI� (Lau et al, 2020; Ye et al, 2020). We found that the

native six-gene operon encoding capH and capP also provides pro-

tection against k cI�, as measured by both a reduction in viral

plaque numbers (Fig 1F) and a reduction in plaque size compared

with bacteria lacking CBASS (Fig 1G). While our prior study showed

that the core CBASS genes under IPTG expression control reduced
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infection by k cI� by over six logs (more than 106-fold reduction in

viral plaques) (Ye et al, 2020), the full system with capH and capP

provides much more modest protection, with less than a two-log

reduction in viral plaques compared with a control strain (Fig 1F).

Control infections with systems encoding catalytically dead CdnC

(D72N/D74N) or NucC (D73N) (Fig EV1C and D), light microscopy

analysis of infected cells (Fig EV2A and B), and bacterial growth

curves (Fig EV2C) all confirmed that this protection was attributable

to CBASS function.

Unexpectedly, we found that a mutant CBASS system lacking

capP and therefore unable to boost CBASS expression after infection

(Fig 1E) provided protection against phage k equivalent to the wild-

type system (Fig 1F and G). This finding suggests that the boost in

CBASS expression mediated by capP comes too late to affect the

course of an infection, and that the modest protection we observe is

mediated by the low basal levels of CBASS proteins already present

in these cells. To confirm that CBASS genes are expressed in unin-

fected cells, we used qRT–PCR to show that cdnC mRNA is present

at ~ 2% of that of the abundant RNA polymerase gene rpoA

(DCt = �4.8) at basal expression levels (Fig EV1E). As we observe

for protein levels by Western blot, cdnC mRNA levels increase dra-

matically upon infection with k cI� (Fig EV1E). Overall, these data

show that while the native E. coli MS115-1 CBASS system does

provide modest antiphage protection, transcriptional regulation by

CapH and CapP does not directly contribute to this protection.

Thus, capH and capP may enable their associated CBASS system to

play a defensive role other than front-line protection against viral

infection.

A
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Figure 1. Identification of CBASS-associated genes capH and capP and role of CapH and CapP in the CBASS antiviral response.

A Operon schematics of four representative CBASS systems with associated capH (yellow) and capP (pink) genes. See Table EV1 for all identified systems. For each system,
core CBASS genes are colored as in the key: CD-NTases orange, putative regulator(s) blue, and effector(s) green. Dotted outlines indicate unknown theoretical genes.

B Distribution of capH+capP-associated CBASS systems, sorted by system type as defined by Millman et al (2020). Type III (1H) and Type III (2H) refer to Type III systems
with one or two HORMA domain proteins, respectively.

C Distribution of capH+capP-associated CBASS systems, sorted by effector type as defined by Millman et al (2020). 1TM, 2TM, and 4TM refer to effectors with one, two,
or four predicted transmembrane segments, respectively.

D Top: Schematic of GFP expression reporter system, with the CBASS promoter, capH, and capP genes from E. coli MS115-1 and the CBASS core genes replaced with GFP.
Bottom: Western blot showing GFP expression in cells with the wild-type GFP reporter or constructs lacking either capP or capH genes. a-RNAP, anti-RNA polymerase
loading control. See full blot in Fig EV1A.

E Western blots of the CBASS expression reporter system with FLAG-NucC (see Fig EV1B), showing FLAG-NucC expression after infection with phage k cI� (multiplicity
of infection: 10). a-RNAP, anti-RNA polymerase loading control; MPI, minutes postinfection. Low RNAP expression at later time points is due to cell death.

F Quantitative plaque assay showing infectivity of k cI� against cells containing no CBASS system (EV, empty vector), the wild-type E. coli MS115-1 CBASS system (WT),
or a mutant system lacking capP (DcapP). Bars represent average of plaque forming units per ml of purified phage (PFU/ml), from duplicate experiments.

G Size of phage plaques for k CI� infecting cells containing no CBASS system (EV, empty vector; n = 52), the wild-type E. coli MS115-1 CBASS system (WT; n = 20), or a
mutant system lacking capP (DcapP; n = 23). Data are shown as average and standard deviation of all plaques counted in panel (F).

Source data are available online for this figure.
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CapH binds the promoter region of its associated CBASS system

Our reporter assays suggested that CapH acts as a transcriptional

repressor for its associated CBASS system, potentially by directly

binding the CBASS promoter region. In E. coli MS115-1 CBASS, the

182 bp region between the capH and cdnC genes contains strongly

predicted promoter sequences for both forward (toward cdnC) and

reverse (toward capH) transcription (Figs 2A and EV3A). We used

fluorescence polarization to test CapP binding to a panel of 40-bp

DNAs covering this region, and identified two binding sites (Site 1

and Site 2) overlapping the predicted forward and reverse promoter

sequences (Figs 2A and B, and EV3B and F). Both sites are

conserved in the promoter regions of related CBASS operons

(Fig EV3A). Site 2 possesses a perfect 8-bp palindrome separated by

6 bp (Fig EV3A), but Site 1 does not possess any recognizable palin-

dromes or tandem repeats. Nonetheless, CapH binding to both sites

is best fit by a cooperative binding model with a Hill coefficient of

~ 2, suggesting cooperative binding of multiple CapH monomers to

each site (Figs 2B and EV3B).

Sequence analysis and 3D structure predictions indicate that

CapH possesses an N-terminal helix-turn-helix (HTH) DNA binding

domain followed by a short flexible linker and two conserved a-
helices that may constitute an oligomerization domain (Fig 2C).

While we were unable to crystallize full-length CapH, likely due to
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Figure 2. CapH binds the CBASS promoter region.

A Top: Schematic of the region between capH and cdnC genes in E. coli MS115-1 CBASS with predicted �35, �10, and TSS (translation start site) sites for the top (for-
ward) and bottom (reverse) strands, predicted using BPROM (Solovyev & Salamov, 2011). Bottom: Overlapping 40–41 bp DNAs tested for CapH binding by fluores-
cence polarization, denoted as either no binding (dotted line), weak/non-cooperative binding (thin solid line), or strong/cooperative binding (thick solid line). The
inferred boundaries of the two CapH binding sites (Site 1 and Site 2) are noted. See Fig EV3A–F for binding curves.

B Fluorescence polarization assay showing binding of E. coli MS115-1 CapH (His6-MBP tagged) to three 40-bp DNAs: 1–40 (black circles), 31–70 (Site 1; green squares),
and 81–120 (Site 2; orange triangles). Fit Kd and Hill coefficient for each DNA is shown. Error bars indicate standard deviation from three technical replicates.

C Top: Domain schematic of E. coli MS115-1 CapH, and truncation used for crystallization of the N-terminal HTH domain (NTD; residues 2–67). Bottom: Crystal structure
of the CapH NTD (blue), with bound DNA modeled from a structural overlay with a known HTH-DNA complex structure (PDB ID 3CLC; McGeehan et al, 2008). Shown
in sticks are three conserved residues (S32, R40, and R44) putatively involved in DNA binding. See Fig EV3G for sequence conservation of the CapH NTD.

D Fluorescence polarization assay showing binding of E. coli MS115-1 CapH (His6-MBP tagged; wild-type or indicated point mutants) to the Site 2 DNA (bases 81–120 in
panel (A)). Fit Kd and Hill coefficient for each DNA is shown. Error bars indicate standard deviation from three technical replicates.

E GFP expression reporter assay showing loss of suppression upon mutation of CapH. a-RNAP, anti-RNA polymerase loading control. See full blot in Fig EV1A.

Source data are available online for this figure.
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flexibility of the interdomain linker, we crystallized and determined

a 1.02 �A-resolution crystal structure of the protein’s isolated HTH

domain (residues 2–67; Fig 2C; Appendix Table S1). The CapH

HTH domain forms a canonical HTH fold, and modeling a DNA-

bound complex based on known HTH-DNA complexes revealed sev-

eral conserved residues on the DNA-binding face that that may be

involved in DNA binding, including Ser32, Arg40, and Arg44

(Figs 2C and EV3G). We found that mutation of Ser32 completely

eliminated CapH binding to the Site 2 DNA, and that mutation of

either Arg40 or Arg44 reduced, but did not eliminate, binding

(Fig 2D). We tested the same mutations in our GFP reporter system,

and found that mutation of Ser32 resulted in high expression of GFP

(Fig 2E). These data are consistent with CapH acting as a transcrip-

tional repressor for its associated CBASS operon.

CapH oligomerization is required for DNA binding

In the Deinococcus DdrO-IrrE system, DdrO forms a homodimer

through its C-terminal domain and this dimerization is required for

DNA binding and transcriptional repression by the protein

(Ludanyi et al, 2014; de Groot et al, 2019). To test whether CapH

forms an oligomer, we used size exclusion chromatography cou-

pled to multi-angle light scattering (SEC-MALS). We found that

full-length CapH forms an oligomer with an overall size consistent

with either a homotrimer or a mixture of dimers and tetramers

(Fig 3A and B; Appendix Fig S1A). The isolated C-terminal region

of CapH (residues 67–107; CapHCTD) forms a similar oligomer,

while the isolated N-terminal HTH domain is monomeric (Fig 3B).

These data show that CapH oligomerizes through its C-terminal

domain. To determine the mechanism of oligomerization, we crys-

tallized and determined a 1.75 �A-resolution crystal structure of

CapHCTD (Fig 3C; Appendix Table S1). In the structure, four

CapHCTD protomers form a homotetramer with a dimer-of-dimers

architecture. Each CapHCTD protomer forms two a-helices that fold

into a V shape, with the homodimer assembled by two protomers

arranged antiparallel to one another with the V shapes interlocked.

The CapHCTD homodimer is stabilized by a hydrophobic core com-

prising Phe81, Tyr85, Leu96, and Leu100 of each protomer

(Fig 3C). The CapHCTD homodimer resembles the C-terminal dimer-

ization domains of other dimeric bacterial transcription factors,

including Mycobacterium tuberculosis EspR, Bacillus subtilis SinR,

and Citrobacter C.Csp231I (Lewis et al, 1998; Gangwar et al, 2014;

Shevtsov et al, 2015). The CapHCTD homotetramer is assembled

through a separate hydrophobic interface between the C-terminal

a-helices of four protomers, involving residues Ile99 and Phe103

(Fig 3C).

During the course of structure determination for CapHCTD, we

generated a construct with a mutation of Ile99 to methionine

(CapHCTD(I99M)). We determined a 1.26 �A-resolution structure of

this mutant, revealing a CapH homodimer equivalent to our struc-

ture of wild-type CapHCTD, but lacking the tetrameric assembly

(Appendix Fig S1B). Consistent with this finding, SEC-MALS

showed that CapH(I99M) forms a stable homodimer in solution,

rather than the larger oligomer observed with wild-type CapH

(Appendix Fig S1A). Thus, the I99M mutant disrupts CapH

tetramerization, but not dimerization.

We next tested the role of CapH oligomerization in DNA bind-

ing. We used fluorescence polarization to compare the DNA

binding affinity of full-length wild-type CapH to that of the CapH

HTH domain (residues 2–67; CapHNTD), which forms a monomer;

and to the CapH(I99M) mutant, which forms a homodimer. We

observed no binding of CapHNTD to DNA, demonstrating that CapH

oligomerization is required for DNA binding (Fig 3D). With both

Site 1 and Site 2 DNAs, CapH(I99M) showed only a slight reduc-

tion in DNA binding affinity and cooperativity compared with wild-

type CapH (Fig 3E). An electrophoretic mobility shift assay (EMSA)

with Site 2 DNA showed that while wild-type CapH shows two

shifted bands, CapH(I99M) shows only one (Appendix Fig S1C).

Despite the reduced DNA binding affinity and inability to form

tetramers, CapH(I99M) effectively suppressed expression of our

GFP reporter system (Fig EV1A). Together, these data suggest that

CapH can form tetramers and that tetramer formation does play a

minor role in DNA binding, but tetramer formation is not necessary

for high-affinity DNA binding and suppression of CBASS gene

expression.

The structure of CapP reveals an internal cysteine switch

In the Deinococcus DNA damage response pathway, cleavage of

DdrO by the metallopeptidase IrrE results in loss of DNA binding by

DdrO, enabling increased expression of DNA damage response

genes (Ludanyi et al, 2014; de Groot et al, 2019). Our data on DNA

binding and CBASS repression by CapH, and in particular the impor-

tance of CapH oligomerization for DNA binding, suggest a func-

tional parallel between DdrO-IrrE and CapH-CapP. To better

understand this relationship, we purified and determined a 1.35 �A-

resolution crystal structure of CapP from a CBASS system in

Thauera sp. K11 (56% identical to E. coli MS115-1 CapP; Fig EV4A).

The overall structure of CapP resembles that of IrrE, with the pro-

tein folding into three domains: an N-terminal Zn2+ metallopepti-

dase domain, a central linker domain with topology resembling a

helix-turn-helix domain, and a C-terminal GAF domain (Fig 4A and

B). The N-terminal domain closely resembles other HEexxH Zn2+

metallopeptidases including IrrE, with five a-helices and a three-

stranded b-sheet. A Zn2+ ion is coordinated in the conserved active

site by residues His96, His100, and Glu129 (Fig 4C–E). The pre-

dicted active-site glutamate residue, Glu97, is positioned close by

but not directly coordinating the bound Zn2+ ion. Instead, a con-

served cysteine residue, Cys113, completes the coordination of the

bound Zn2+ ion. Cys113 is located on an insertion in the metallopep-

tidase domain, on a fourth b-strand that drapes over the active site

in the same position that substrate peptides bind in related Zn2+

metallopeptidases (Cerda-Costa & Gomis-Ruth, 2014). We term this

region the cysteine switch loop, after the cysteine switch motif

found in matrix metalloproteases. These enzymes are synthesized

as inactive precursors with an N-terminal domain bearing a con-

served cysteine residue (the cysteine switch) that coordinates the

active-site Zn2+ ion and inhibits activity (Fig EV4B and C). The pro-

tease is only activated upon proteolytic cleavage and dissociation of

the cysteine switch domain (Springman et al, 1990; Van Wart &

Birkedal-Hansen, 1990; Cerda-Costa & Gomis-Ruth, 2014). Of the

408 CapP proteins associated with CBASS systems, 134 (33%) pos-

sess the cysteine switch loop, including E. coli MS115-1 CapP

(Figs 4F and EV4D).

The presence of the cysteine switch loop in CapP suggests that

the protein’s peptidase activity is tightly controlled, perhaps by a
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conformational change that induces dissociation of the cysteine

switch from the CapP active site and allows substrate binding. In

Deinococcus IrrE, the protein’s peptidase activity is thought to be

activated upon DNA damage by the binding of an unknown ligand

to the protein’s C-terminal GAF domain, although IrrE does not con-

tain a cysteine switch loop (Vuji�ci�c-�Zagar et al, 2009). In other pro-

teins, GAF domains are known to bind nucleotide-based second

messengers including cyclic GMP, which binds the GAF domain of

phosphodiesterase 6C and allosterically regulates its enzymatic

activity (Ho et al, 2000; Martinez et al, 2002a, 2002b, 2008; Gross-

Langenhoff et al, 2006; Levdikov et al, 2009). When we compared

the structure of CapP to that of cyclic GMP-bound

phosphodiesterase 6C, we observed that CapP possesses a large

number of surface-exposed aromatic residues near the putative

ligand-binding site (Appendix Fig S2). If CapP is allosterically regu-

lated through the GAF domain, these residues may be involved in

the binding of nucleotide-based ligand(s).

CapP cleaves CapH when stimulated by single-stranded DNA

We next sought to directly test whether CapP cleaves CapH. Our ini-

tial tests using purified proteins in vitro showed no CapP-mediated

cleavage of CapH, so we instead developed an assay to detect CapP

activity in E. coli cells. We coexpressed CapP with a fusion protein
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A Domain schematic of E. coli MS115-1 CapH, showing the truncations used for oligomeric state determination.
B Size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) determination of CapH oligomeric state. For each construct, measured molecular

weight and inferred oligomer are indicated. MBP-fused full-length CapH (monomer MW = 57.0 kDa) is shown in brown; SUMO-fused CapHCTD (monomer
MW = 19.1 kDa) is yellow, and SUMO-fused CapHNTD (monomer MW = 22.0 kDa) is cyan. See Appendix Fig S1A for SEC-MALS analysis of untagged CapH.

C Crystal structure of the CapHCTD homotetramer. Residues comprising the hydrophobic core of each dimer (Phe81, Tyr85, Leu96, and Leu100) are shown as sticks, and
residues comprising the hydrophobic tetramerization interface (Ile99 and Phe103) are shown as sticks and labeled. See Appendix Fig S1B for structure of the
CapHCTD(I99M) homodimer.

D Fluorescence polarization assay showing binding of E. coli MS115-1 CapH (His6-MBP tagged; full-length [black circles] or NTD [green squares]) to the Site 2 DNA. WT
Kd = 0.30 � 0.08 lM, Hill coefficient = 2.0 � 0.7; no binding detected for CapHNTD. Error bars indicate standard deviation from three technical replicates.

E Fluorescence polarization assay showing binding of E. coli MS115-1 CapH (His6-MBP tagged) to the Site 1 (bases 31–70) and Site 2 (bases 81–120) DNAs. Wild-type
CapH binding Site 1 is shown in orange triangles, and binding Site 2 is shown in blue diamonds. CapH(I99M) binding Site 1 is shown in black circles, and binding Site
2 is shown in green squares. Fit Kd and Hill coefficient for each combination is shown. See Appendix Fig S1C for EMSA analysis of CapH WT and I99M binding to the
Site 2 DNA. Error bars indicate standard deviation from three technical replicates.

Source data are available online for this figure.
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comprising CapH with an N-terminal maltose binding protein (MBP)

tag and a C-terminal GFP tag, and used an anti-GFP Western blot to

detect CapP activity. We detected a minor band representing a CapP

cleavage product in the presence of wild-type CapP, but not when

the CapP active site was mutated (Glu98 to glutamine; E98Q;

Fig 5A). At ~ 32 kDa, this band likely represents a product of CapP

cleavage near the C-terminus of CapH.

Since we observed CapP-mediated CapH cleavage in cells, but

not with purified proteins, we theorized that a soluble ligand pre-

sent in cells is responsible for activating CapP. To test this idea, we

performed in vitro cleavage assays with purified CapP and MBP-

CapH-GFP in the presence of E. coli cell lysate. We observed robust

activation of CapP in the presence of E. coli lysate, and stronger acti-

vation after the lysate was boiled and centrifuged to remove all pro-

teins (Fig EV5A). By fractionating boiled cell lysate using anion-

exchange and size-exclusion chromatography, we found that CapP

was most likely activated by a large, negatively charged macro-

molecule (Fig EV5B). Based on this finding, we tested whether DNA

and/or RNA could directly stimulate CapP. We found that single-

stranded DNA strongly activates CapP (Fig 5B), while double-

stranded DNA weakly activates CapP (Fig 5B), and single-stranded

RNA does not activate CapP (Fig EV5C). We found that single-

stranded DNA as short as 5 bases long stimulate CapP, and that

pyrimidines—particularly thymine—have the strongest stimulatory

effect (Fig EV5C). Finally, we found that CapP directly binds a

single-stranded DNA oligonucleotide in vitro, but not an equivalent-

length double-stranded DNA (Fig EV5D). Furthermore, CapP

strongly binds poly-T DNA, weakly binds poly-C, and does not bind

poly-A (Fig EV5E). These data support a model in which CapP’s

peptidase activity is stimulated by the binding of single-stranded

DNA, particularly T-rich DNA.

We isolated the C-terminal product from CapP-mediated cleavage

of MBP-CapH-GFP, and subjected it to Edman degradation to map

the CapP cleavage site (Fig 5C; Appendix Fig S3). We identified the

cleavage site as between Phe82 and Arg83, within the first a-helix
of the CapH C-terminal dimerization domain (Fig 5C and D).

Confirming this finding, we found that a CapH Arg83 to alanine

(R83A) mutant is not cleaved by CapP in vitro (Fig 5E). Finally, we

found that in cells, truncation of CapH at residue 82—mimicking

CapP-cleaved CapH—resulted in strong expression as measured by

both our GFP reporter system (Fig 5F) and our FLAG-NucC reporter

(Fig 5G).

CapP is activated by DNA damage

Our data showing that CapP is directly stimulated by single-

stranded DNA in vitro suggests that in cells, it is activated by DNA

damage. To test this idea, we coexpressed CapP and MBP-CapH-

GFP in E. coli in the presence or absence of DNA damaging drugs.

We found that in the presence of zeocin, a drug that induces DNA

double-strand breaks (Chankova et al, 2007), CapH cleavage was

stimulated (Fig 6A). Using our FLAG-NucC reporter system, we

found that both zeocin and mitomycin C, which causes DNA

double-strand breaks through a separate mechanism (Kidane
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Figure 4. Structure of CapP reveals an internal cysteine switch.

A Domain schematic of Thauera sp. K11 CapP, with N-terminal Zn2+ peptidase domain pink, central HTH domain yellow, and C-terminal GAF domain orange. See
Fig EV4A for comparison of the Thauera sp. K11 and E. coli MS115-1 CBASS operons.

B Structure of Thauera sp. K11 CapP with domains colored as in panel (A). Shown in sticks are active-site residues H96, E97, H100, and E129, and a bound Zn2+ ion is
shown as a gray sphere. Shown in blue is the internal cysteine switch loop, with C113 (shown as sticks) coordinating the bound Zn2+ ion.

C Close-up view of the Thauera sp. K11 CapP active site. See Fig EV4B and C for comparison with a cysteine switch-containing matrix metalloprotease.
D Close-up view of the Thauera sp. K11 CapP active site as in panel (C), with transparent cysteine switch loop to show the position of the catalytic glutamate residue

E97.
E Equivalent close-up view of the Deinococcus deserti IrrE active site (PDB ID 3DTI; Vuji�ci�c-�Zagar et al, 2009), showing the active site residues and bound Zn2+ ion.
F Sequence alignment of representative CBASS-associated CapP proteins, showing the cysteine switch loop present in a subset of these proteins. See Table EV1 for full

list, and Fig EV4D for evolutionary tree of CapP with the presence/absence of the cysteine switch annotated.
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et al, 2004; Ayora et al, 2011), strongly stimulate CBASS expression

within 60–120 min of adding the drugs (Fig 6B and C). qRT–PCR for

cdnC mRNA confirms this finding, and shows that addition

of zeocin boosts CBASS expression more strongly than phage k in-

fection (Fig EV1E). This boost in CBASS expression was not

observed in cells lacking capP (Fig 6B and C). Thus, CapH and CapP

mediate increased CBASS expression upon DNA damage, even in

the absence of phage infection. Curiously, this increased CBASS

expression does not result in increased cell death, as measured by

minimum inhibitory concentration (MIC) analysis of zeocin for cells

with and without the E. coli MS115-1 CBASS system (Fig EV1F).

This finding suggests that despite being highly expressed upon DNA

damage, the CBASS system may still require a phage trigger to acti-

vate second messenger production and in turn activate NucC.

CapH and CapP are members of a broadly conserved family of
DNA damage response proteins

CapH and CapP show strong structural and functional similarity to

the Deinococcus proteins DdrO and IrrE, with both systems inducing

expression of target genes upon DNA damage through metallopepti-

dase cleavage of a transcriptional repressor (Fig 6D and E). DNA

damage is a universal signal of cell stress, and as such is a major

signal to induce lysogenic phage (prophage) to switch to the lytic

life cycle, and to induce mobility of integrative and conjugative ele-

ments (ICE elements) (Baek et al, 2003; Auchtung et al, 2005).

Strikingly, the use of an HTH family transcriptional repressor cou-

pled with a DNA damage-stimulated metallopeptidase is shared in

some prophages and ICE elements. For example, Bacillus subtilis
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Figure 5. CapP cleaves CapH and is stimulated by single-stranded DNA.

A Anti-GFP Western blot showing coexpression in E. coli of an MBP-CapH-GFP fusion construct with wild-type or catalytic-dead (E98Q) CapP. Full-length MBP-CapH-
GFP is indicated with a yellow arrowhead, and the C-terminal product of CapP cleavage is indicated with a white arrowhead. a-RNAP, anti-RNA polymerase loading
control.

B In vitro cleavage of purified MBP-CapH-GFP (yellow arrowhead) into N-terminal and C-terminal products (white arrowheads) by CapP is stimulated by DNA. For both
ssDNA and dsDNA, the highest concentration is 350 ng/ll, followed by three fivefold dilutions. Red asterisk indicates the band that was analyzed by Edman degrada-
tion. See Fig EV5 for analysis of DNA binding and sequence-specificity for cleavage activation.

C Results of Edman degradation of CapH C-terminal cleavage product (red asterisk from panel (B)), showing cleavage at residue R83. See Appendix Fig S3 for full data.
D Cartoon view of the CapHCTD67-107 dimer, with R83 colored white and shown as sticks.
E In vitro cleavage of MBP-CapH-GFP (wild-type or R83A mutant) by CapP, in the presence of 10 lM ssDNA.
F GFP reporter assay showing effect of a CapP E98Q catalytic-dead mutant, CapH R83A mutant, or removal of CapH residues 83–107 (capH 1–82) on GFP expression.

a-RNAP, anti-RNA polymerase loading control. See full blot in Fig EV1A.
G CBASS expression reporter system with FLAG-NucC, showing effect of a CapH R83A mutant, or removal of CapH residues 83–107 (capH 1–82) on FLAG-NucC expres-

sion. a-RNAP, anti-RNA polymerase loading control. See full blot in Fig EV1B.

Source data are available online for this figure.
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Figure 6. CapH and CapP induce CBASS expression in response to DNA damage.

A Anti-GFP Western blot showing coexpression in E. coli of an MBP-CapH-GFP fusion construct with wild-type CapP after exposure to zeocin (100 lg/ml). Full-length
MBP-CapH-GFP is indicated with a yellow arrowhead, and the C-terminal product of CapP cleavage is indicated with a white arrowhead. a-RNAP, anti-RNA poly-
merase loading control.

B Western blot of the CBASS expression reporter system with FLAG-NucC, showing FLAG-NucC expression after exposure to zeocin (100 lg/ml). a-RNAP, anti-RNA poly-
merase loading control.

C Western blot of the CBASS expression reporter system with FLAG-NucC, showing FLAG-NucC expression after exposure to mitomycin C (1 lg/ml). a-RNAP, anti-RNA
polymerase loading control.

D Proposed signaling pathway for DNA damage-responsive transcriptional control systems in bacteria.
E Diverse systems in bacteria that include an HTH transcriptional repressor (yellow) and a DNA damage-activated Zn2+ metallopeptidase (pink) that targets the tran-

scriptional repressor for cleavage.
F Known or likely bacterial defense systems associated with CapH (yellow) and CapP (pink)-like genes. See Materials and Methods for accession numbers for each gene.

Source data are available online for this figure.
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mobile element ICEBs1 and prophage ɸ105 each encode an HTH-

family transcriptional repressor (ImmR and cɸ105, respectively) that
strongly represses the expression of genes responsible for excision

of these elements from the genome, and a Zn2+ metallopeptidase

(ImmA) that cleaves the HTH protein upon DNA damage to relieve

repression and induce excision (Fig 6E; Bose et al, 2008; Bose &

Grossman, 2011).

The structural and functional parallels between CapH/CapP,

DdrO/IrrE, and ImmR/ImmA suggest that these proteins represent a

broadly conserved family of DNA damage-responsive transcriptional

regulators. We used the FlaGs (Flanking Genes) server to search for

other instances of CapH/CapP-like proteins and identify their associ-

ated operons (Saha et al, 2021). We identified a broad range of

operons associated with capH- and capP-like genes, with all of them

sharing the location of capH and capP upstream of, and oriented on

the opposite strand as, the associated operon (Fig 6F). Most of these

systems represent known or putative defense systems, notably

including a group of DISARM antiphage systems associated with a

capH-capP fusion gene, and a group of Pycsar systems associated

with separate capH and capP genes. We identified three sets of oper-

ons encoding proteins of the DUF2188 or DUF3892 families, which

are uncharacterized but have been previously linked to bacterial

defense (Burroughs & Aravind, 2020). Both DUF2188 and DUF3892

proteins have also been identified in operons containing HTH and

metallopeptidase genes, paralleling our findings (Burroughs &

Aravind, 2020). We also identified operons encoding proteins

related to eukaryotic ubiquitin signaling machinery, including the

so-called Ub-6a systems that encode a predicted metallo-b-lactamase

and a large protein with E2-like, E1-like, and JAB protease-like

domains (Iyer et al, 2006; Burroughs et al, 2009). Notably, this

protein shares strong homology to the Cap2 protein in Type II

CBASS systems (also classified as Ub-6b systems), which conjugates

the C-terminus of its cognate CD-NTase to an unknown target to reg-

ulate antiphage signaling (preprint: Ledvina et al, 2022). We also

identified CapH- and CapP-like proteins associated with Ub-6e.2 sys-

tems, which encode a protein predicted to possess multiple

ubiquitin-like b-grasp domains and an E1-like protein, plus an

uncharacterized protein (DUF6527; Fig 6F). Thus, CapH- and CapP-

like regulators are associated with a broad range of bacterial signal-

ing pathways with known or predicted roles in antiphage or stress

responses.

Discussion

Here, we identify a pair of proteins—CapH and CapP—that are asso-

ciated with hundreds of CBASS antiphage systems, and show that

they function together to regulate CBASS expression. In the basal

state, the helix-turn-helix protein CapH forms oligomers and binds

the promoter region of its associated CBASS system to repress tran-

scription. With its distinctive cysteine switch motif, CapP is main-

tained in an inactive state in this mode. In E. coli MS115-1 CBASS,

the resulting low-level basal expression of the CBASS core genes is

apparently sufficient to provide modest protection against bacterio-

phage k infection. Despite the extremely low levels of the core

CBASS proteins in this repressed state, phage infection is sensed by

the system’s HORMA domain proteins, activating CdnC to produce a

cyclic tri-AMP second messenger. Cyclic tri-AMP in turn activates

NucC, which destroys the host genome to kill the cell and abort the

infection (Fig 7A; Lau et al, 2020; Ye et al, 2020).
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Figure 7. Model for CapH/CapP function in CBASS-mediated immunity.

A In the basal state, CapH dimers (depicted) or tetramers (not shown) bind their cognate CBASS promoter and repress transcription. Low-level CBASS expression is suffi-
cient for detection of a lytic phage infection, CD-NTase activation, and second messenger production (in E. coli MS115-1 CBASS, cyclic tri-AMP/cAAA), followed by effec-
tor activation (in E. coli MS115-1, NucC) and cell death.

B Upon DNA damage, activation of other antiphage immune systems, or environmental stimuli, CapP is activated and cleaves CapH. CapH cleavage and release from
the CBASS promoter mediates a dramatic increase in CBASS activation, resulting in ectopic CD-NTase activation, second messenger production, effector activation,
and possibly cell death.
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We find that DNA damage strongly activates CapP-mediated

CapH cleavage through the production of T-rich single-stranded

DNA, and that this activation results in a dramatic increase in

CBASS expression. Since deletion of capP did not affect the system’s

ability to directly protect against bacteriophage k infection, this

expression boost likely plays a role other than primary response to

phage infection. We propose that this pathway represents a second

path for CBASS activation that directly responds to DNA damage

instead of, or in addition to, phage infection. DNA damage is a uni-

versal signal of bacterial cell stress and is sensed by diverse stress

response pathways including the SOS response, which is broadly

similar but mechanistically distinct from the CapH/CapP system we

describe. A mechanism to boost expression of immune systems

upon DNA damage may enable these systems to sense and respond

to a broader set of stimuli than they could without this regulation.

For example, DNA damage could arise from the activation of a

DNA-targeting restriction-modification or CRISPR-Cas system after

phage infection. If this damage is sufficiently severe or sustained, it

could activate a CapH/CapP-linked secondary immune system to

aid the defensive response (Fig 7B). Alternatively, a CapH/CapP-

linked immune system could piggyback on the same stress signal

that activates a latent prophage to become lytic, and suppress the

production of virions by preemptively killing the host cell or other-

wise restricting the phage.

Supporting the idea that DNA damage signaling could represent

a broad mechanism for activation of bacterial immune systems, we

identified a diverse set of known or putative defense systems associ-

ated with CapH- and CapP-like regulators. These include groups of

DISARM and Pycsar systems, which function similarly to restriction-

modification systems (Ofir et al, 2018) and CBASS systems

(Tal et al, 2021), respectively. CapP and CapH also appear in oper-

ons encoding DUF2188 and DUF3892 proteins, which have both

been predicted to participate in antiphage defense (Burroughs &

Aravind, 2020). Finally, the association of CapH and CapP with

uncharacterized operons encoding proteins related to ubiquitin sig-

naling machinery suggests that these operons, too, may play a role

in defense against phage infection or other stresses.

Our identification of a mechanism enabling a single defense sys-

tem to respond to multiple stimuli parallels the recent discovery and

characterization of BrxR/CapW transcriptional regulators, which are

associated with a variety of immune systems including BREX and

CBASS antiphage systems (Blankenchip et al, 2022;Luyten

et al, 2022; Picton et al, 2022). CapW drives increased expression of

its associated CBASS systems upon phage infection, but as with

CapH/CapP-associated systems, this increased expression is not

specifically required for protection against lytic phage (Blankenchip

et al, 2022). Similarly, BrxR controls expression of its associated

BREX systems, but is not required for antiphage immunity (Luyten

et al, 2022). While the activating signal of BrxR/CapW is not known,

these data suggest that the protein controls activation of CBASS and

BREX systems in response to signals other than phage infection. As

with CapH and CapP, BrxR/CapW may enable its associated defense

system to act as a second line of defense in coordination with

restriction-modification or CRISPR-Cas systems (Luyten et al, 2022;

Picton et al, 2022). More broadly, there may exist a range of signal-

ing mechanisms that enable cross talk between distinct defense sys-

tems in bacteria, mediating these systems’ cooperation and

integration into a comprehensive, multifaceted immune system.

Materials and Methods

Bioinformatics

To comprehensively search CBASS systems, we exported the

genomic DNA sequences within 10 kb of 6,233 previously reported

CD-NTases (Cohen et al, 2019) using the Integrated Microbial

Genomes (IMG) database at the DOE Joint Genome Institute

(https://img.jgi.doe.gov). We used NCBI Genome Workbench

(https://www.ncbi.nlm.nih.gov/tools/gbench/) to perform custom

TBLASTN searches for proteins related to E. coli MS115-1 CapP

(NCBI sequence ID WP_001290439.1; Table EV1). CBASS system

type and effector assignments for each hit were taken from Cohen

et al (2019) and manually updated. Each hit was manually

inspected for the presence of CapH and CapP.

For identification of other bacterial defense systems with associ-

ated CapH- and CapP-like regulators, we used the FlaGs (Flanking

Genes) server (Saha et al, 2021) to search for groups of genes asso-

ciated with CapP (using E. coli MS115-1 CapP as a search sequence).

We manually inspected each result to search for known or putative

defense-related genes. For Fig 6F, the noted DISARM system from

Nocardia wallacei FMUON74 encodes a vapC-like gene (NCBI acces-

sion # WP_187684394.1), a CapH-CapP fusion-like protein (WP_

197986914.1), drmD (WP_187684395.1), drmMI (WP_187684396.

1), drmA (WP_187684397.1), drmB (WP_187684398.1), drmC (WP_

187684399.1), and a AAA+ ATPase (WP_232110603.1). The noted

Pycsar system from Tsuneonella flava MS1-4 encodes a CapP-like

protein (WP_102155989.1), a CapH-like protein (WP_102155988.1),

a DUF2188 protein (WP_007013875.1), a predicted guanylate

cyclase (WP_102155986.1), a hypothetical protein (WP_123639961.

1), a predicted cyclic nucleotide monophosphate binding domain

(cNMPBD) plus TIR domain protein (WP_102155984.1), and a pre-

dicted adenylate/guanylate cyclase (WP_102155983.1). The noted

DUF2188 + hypothetical protein system from Extensimonas perlu-

cida HX2-24 encodes a CapP-like protein (WP_144728453.1), a

CapH-like protein (WP_144728455.1), two hypothetical proteins

(WP_144728457.1 and WP_144728459.1), and a DUF2188 protein

(WP_144729358.1). The noted DUF3892 system from Sulfitobacter

sp. CW3 encodes a CapP-like protein (WP_037275352.1), a CapH-

like protein (WP_037275354.1), and two DUF3892 proteins (WP_

037275364.1 and WP_037275356.1). The noted metallo-b-lactamase

(Ub-6a) system from Methylobacterium oxalidis NBRC 107715

encodes a CapP-like protein (WP_147028642.1), a CapH-like protein

(WP_147028643.1), a hypothetical protein (WP_147028644.1), a

predicted metallo-b-lactamase (WP_147028653.1), a protein with

predicted E2, E1, and JAB domains (WP_147028645.1), and a sec-

ond hypothetical protein (WP_147028646.1). The noted DUF6527

(Ub-6e.2) system from Mixta intestinalis SRCM103226 encodes

a CapP-like protein (WP_160622475.1), a CapH-like protein (WP_

048227226.1), a predicted multi-ubiquitin domain protein (WP_

053069300.1), a predicted E1-like protein (WP_160622476.1), and a

DUF6527 protein (WP_18149987.1).

Cloning, expression, and protein purification

Proteins were cloned into UC Berkeley Macrolab vector 2-BT

(Addgene #29666; encoding an N-terminal TEV protease-cleavable

His6-tag), 2-ST (Addgene #29711, encoding an N-terminal TEV
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protease-cleavable His6-SUMO tag), or 2-CT (Addgene #29706,

encoding an N-terminal TEV protease-cleavable His6-MBP tag).

Proteins used were as follows: E. coli MS115-1 CapH (NCBI

sequence ID WP_001515173.1), E. coli MS115-1 CapP (NCBI

sequence ID WP_001290439.1), and Thauera sp. K11 CapP (NCBI

sequence ID WP_096453114.1). Proteins were expressed in E. coli

strain Rosetta 2 (DE3) pLysS (EMD Millipore, Billerica, MA). Cul-

tures were grown at 37°C to A600 = 0.5, then induced with 0.25 mM

IPTG and shifted to 20°C for 15 h. Cells were harvested by centrifu-

gation and resuspended in buffer A (20 mM Tris pH 7.5, 10% glyc-

erol) plus 300 mM NaCl, 10 mM imidazole, and 5 mM b-
mercaptoethanol (10 lM ZnCl2 was added to buffers for CapP).

Proteins were purified by Ni2+-affinity (Ni-NTA agarose, Qiagen)

then passed over an anion-exchange column (Hitrap Q HP, Cytiva)

in Buffer A plus 5 mM b-mercaptoethanol and 0.1–1 M NaCl, col-

lecting flow-through or peak fractions. Tags were cleaved with TEV

protease (Tropea et al, 2009), and cleaved protein was passed over

another Ni2+ column (collecting flow-through fractions) to remove

uncleaved protein, cleaved tags, and tagged TEV protease. The pro-

tein was passed over a size exclusion column (Superdex 200,

Cytiva) in buffer GF (buffer A plus 300 mM NaCl and 1 mM dithio-

threitol [DTT]), then concentrated by ultrafiltration (Amicon Ultra,

EMD Millipore) to 10–20 mg/ml and stored at 4°C. For selenome-

thionine derivatization, protein expression was carried out in M9

minimal media supplemented with amino acids plus selenomethion-

ine prior to IPTG induction (Van Duyne et al, 1993), and proteins

were exchanged into buffer containing 1 mM tris(2-carboxyethyl)

phosphine (TCEP) after purification to maintain the selenomethion-

ine residues in the reduced state.

Crystallization and structure determination

For crystallization of E. coli MS115-1 CapHNTD (residues 2–67), pro-

tein was concentrated to 18 mg/ml in crystallization buffer (20 mM

Tris–HCl pH 8.5, 150 mM NaCl, 1 mM DTT) then mixed 1:1 with

well solution containing 0.1 M Ammonium acetate pH 4.5 and 2 M

Ammonium sulfate in hanging-drop format. Crystals were cryopro-

tected with an additional 25% sucrose and flash-frozen in liquid

nitrogen. Diffraction data to 1.02 �A resolution were collected at

Advanced Light Source beamline 5.0.2 (see support statement

below) and processed with the DIALS data-processing pipeline

(https://dials.github.io) (Beilsten-Edmands et al, 2020). We deter-

mined the structure by molecular replacement in PHASER (McCoy

et al, 2007), using an ideal a-helix as a search model. We manually

rebuilt the initial model in COOT (Emsley et al, 2010) and refined in

phenix.refine (Afonine et al, 2012) using individual positional and

anisotropic B-factor refinement for nonhydrogen atoms, and riding

hydrogens (Appendix Table S1).

For crystallization of E. coli MS115-1 CapHCTD(I99M) (residues

67–107 with Ile99 to Met mutation), protein was concentrated to

8 mg/ml in crystallization buffer (20 mM Tris–HCl pH 8.5, 150 mM

NaCl, 1 mM DTT) then mixed 1:1 with well solution containing

0.1 M HEPES pH 7.5, 25 mM MgCl2, and 30% PEG 550 monomethyl

ether in hanging-drop format. Crystals were cryoprotected with an

additional 13% PEG 550 monomethyl ether and 10% glycerol, and

flash-frozen in liquid nitrogen. Diffraction data to 1.26 �A resolution

were collected at Advanced Photon Source beamline 24ID-C (see

support statement below) and processed with the RAPD data-

processing pipeline, which uses XDS (Kabsch, 2010) for data index-

ing and reduction, AIMLESS (Evans & Murshudov, 2013) for scal-

ing, and TRUNCATE (French & Wilson, 1978) for conversion to

structure factors. We determined the structure by molecular replace-

ment in PHASER, using an ideal a-helix as a search model. We man-

ually rebuilt the initial model in COOT, and refined in phenix.refine

using individual positional and anisotropic B-factor refinement for

nonhydrogen atoms, and riding hydrogens (Appendix Table S1).

For crystallization of E. coli MS115-1 CapHCTD (residues 67–107),

protein was concentrated to 21 mg/ml in crystallization buffer

(20 mM Tris–HCl pH 8.5, 150 mM NaCl, 1 mM DTT) then mixed

1:1 with well solution containing 0.1 M sodium citrate pH 3.0 and

1.6 M lithium sulfate in hanging-drop format. Crystals were cry-

oprotected with an additional 20% ethylene glycol and flash-frozen

in liquid nitrogen. Diffraction data to 1.75 �A resolution were col-

lected at Advanced Light Source beamline 5.0.2 (see support state-

ment below) and processed with the DIALS data-processing

pipeline. We determined the structure by molecular replacement in

PHASER, using the structure of CapHCTD(I99M) as a search model.

We manually rebuilt the initial model in COOT, and refined in

phenix.refine using individual positional and B-factor refinement,

and riding hydrogens (Appendix Table S1).

For crystallization of Thauera sp. K11 CapP, protein was concen-

trated to 9 mg/ml in crystallization buffer (20 mM Tris–HCl pH 7.5,

100 mM NaCl, and 1 mM DTT) then mixed 1:1 with well solution

containing 0.1 M CHES pH 9.5, 0.3 M NaCl, and 1.8 M lithium sul-

fate in hanging-drop format. Crystals were cryoprotected with an

additional 30% glycerol and flash-frozen in liquid nitrogen. Diffrac-

tion data for both native and selenomethionine-derivatized crystals

were collected at the Stanford Synchrotron Radiation Lightsource

beamline 9–2 (see support statement below) and processed with the

autoxds data-processing pipeline, which uses XDS for data indexing

and reduction, AIMLESS for scaling, and TRUNCATE for conversion

to structure factors. We determined the structure by single-

wavelength anomalous diffraction (SAD) methods in PHASER using

a 1.6 �A resolution dataset from selenomethionine-derivatized pro-

tein. We manually rebuilt the initial model in COOT, and refined

against a 1.35 �A resolution native dataset in phenix.refine using

individual positional and anisotropic B-factor refinement, and riding

hydrogens (Appendix Table S1).

Beamline support statements

ALS beamline 5.0.2
The Berkeley Center for Structural Biology is supported in part by

the Howard Hughes Medical Institute. The Advanced Light Source is

a Department of Energy Office of Science User Facility under Con-

tract No. DE-AC02-05CH11231. The Pilatus detector on 5.0.1. was

funded under NIH grant S10OD021832. The ALS-ENABLE beamlines

are supported in part by the National Institutes of Health, National

Institute of General Medical Sciences, grant P30 GM124169.

APS beamline 24ID-C
This work is based upon research conducted at the Northeastern Col-

laborative Access Team beamlines, which are funded by the National

Institute of General Medical Sciences from the National Institutes of

Health (P30 GM124165). This research used resources of the

Advanced Photon Source, a U.S. Department of Energy (DOE) Office
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of Science User Facility operated for the DOE Office of Science by

Argonne National Laboratory under Contract No. DE-AC02-

06CH11357.

SSRL beamline 9-2
Use of the Stanford Synchrotron Radiation Lightsource, SLAC

National Accelerator Laboratory, is supported by the U.S. Depart-

ment of Energy, Office of Science, Office of Basic Energy Sciences

under Contract No. DE-AC02-76SF00515. The SSRL Structural

Molecular Biology Program is supported by the DOE Office of Bio-

logical and Environmental Research, and by the National Institutes

of Health, National Institute of General Medical Sciences

(P30GM133894). The contents of this publication are solely the

responsibility of the authors and do not necessarily represent the

official views of NIGMS or NIH.

SEC-MALS

For characterization of oligomeric state by size exclusion chro-

matography coupled to multi-angle light scattering (SEC-MALS),

100 ll of purified protein/complex at 2–5 mg/ml was injected onto

a Superdex 200 Increase 10/300 GL column (Cytiva) in a buffer con-

taining 20 mM HEPES pH 7.5, 300 mM NaCl, 5% glycerol, and

1 mM DTT. Light scattering and refractive index profiles were col-

lected by miniDAWN TREOS and Optilab T-rEX detectors (Wyatt

Technology), respectively, and molecular weight was calculated

using ASTRA v. 8 software (Wyatt Technology).

DNA-binding assays

For characterization of DNA binding by fluorescence polarization

assays, 40–41 bp double-stranded DNAs were produced by anneal-

ing complementary oligos, one of which was 50-6-FAM labeled (the

same oligonucleotide was used without annealing for ssDNA binding

studies). Binding reactions (10 ll) contained 25 mM Tris pH 7.5,

50 mM NaCl, 5% glycerol, 5 mM MgCl2, 1 mM DTT, 0.01% Nonidet

p40 substitute, 50 nM DNA, and the indicated amounts of His6-MBP-

tagged protein. After a 10-min incubation at room temperature, fluo-

rescence polarization was read using a Tecan Infinite M1000 PRO

fluorescence plate reader, and binding data were analyzed with

Graphpad Prism v.9.2.0 using a single-site binding model.

CapP cleavage assays

For detection of CapP activity in cells, E. coli MS115-1 CapP was

coexpressed with a construct of E. coli MS115-1 CapH fused to an

N-terminal His6-maltose binding protein (MBP) tag and a C-terminal

green fluorescent protein (GFP) tag (MBP-CapH-GFP) in E. coli

Rosetta 2 (DE3) pLysS cells at 37°C. Protein expression was induced

with 0.25 mM IPTG for 2–4 h, and then samples were removed for

analysis by Western blot (see below). For CapP activity in cells in

response to zeocin, E. coli Rosetta 2 (DE3) pLysS cells were grown

at 37°C until reaching an OD600 of 0.3. Protein expression was

induced with 0.25 mM IPTG for 1 h, and then zeocin was added at

a concentration of 100 lg/ml. 500 ll of sample was taken at 1 and

2 h postantibiotic and centrifuged 10,000 g for 1 min. Pelleted cells

were resuspended in 50 ll of 2xSDS sample buffer and analyzed by

Western blot (see below).

For detection of CapP activity using purified proteins, 20 ll reac-
tions containing 10 lM purified CapP and 10 lM purified MBP-

CapH-GFP in a buffer containing 50 mM Tris pH 7.5, 300 mM NaCl

and 5 lM ZnCl2 were incubated at 37°C for 2 h, then added to 20 ll
2xSDS sample buffer. 10 ll of each sample was loaded and separated

by SDS–PAGE and Coomassie-stained for visualization. For reactions

containing E. coli cell lysate, log-phage E. coli Rosetta 2 (DE3) pLysS

cells were lysed by sonication in a minimum volume of buffer A, then

centrifuged to remove cell debris. Optionally, the lysate was incu-

bated in a boiling water bath for 10 min, then centrifuged again to

remove denatured proteins. For the experiment shown in Fig EV5B,

lysate was fractionated on a 5 ml HiTrap Q HP column (Cytiva).

10 ll of cell lysate was added to reactions with purified CapP and

MBP-CapH-GFP. For reactions containing DNA, nucleic acid was

added at a concentration of 350 lg/ml and subsequent serial fivefold

dilutions, then incubated in the buffer as above for 2 h. For reactions

containing DNA or RNA oligos, nucleic acid was added at a concen-

tration of 10 lM, then incubated in the buffer as above for 2 h.

Edman degradation

For Edman degradation, MBP-CapH-GFP was treated with CapP plus

single-stranded DNA, separated by SDS–PAGE, then transferred to a

PVDF membrane and visualized with Coomassie staining. The band

representing the C-terminal cleavage product of MBP-CapH-GFP was

cut out and analyzed by Edman degradation at the UC Davis Molec-

ular Structure Facility (http://msf.ucdavis.edu).

Western blots

For CapH repressor assays, cells containing plasmids with the

MS115-1 system were grown in 5 ml of LB plus the selection marker

at 37°C until they reached an OD600 of 0.3–0.5. Cultures were

adjusted to an OD600 of 0.3, and then an aliquot of 500 ll was

removed and centrifuged for 1 min at 10,000 g to pellet the cells.

The supernatant was removed, and the cells were resuspended in

50 ll of 2xSDS sample buffer (125 mM Tris pH 6.8, 20% Glycerol,

4% SDS, 200 mM DTT, 180 lM bromophenol blue). 10 ll of each
sample was loaded onto a 12% SDS–PAGE gel for separation and

transferred to a PVDF membrane using the Bio-Rad Trans-Blot Turbo

Transfer System. Membranes were blocked for 1 h in 5% milk in

TBST (100 mM Tris pH 7.5, 150 mM NaCl, 0.1% Tween-20) at room

temperature with shaking, then incubated with mouse anti-FLAG M2

antibody (Sigma-Aldrich #F3165) or mouse anti-GFP antibody

(Roche #11814460001) at 1:3,000 diluted in 5% milk in TBST for 1 h

at room temperature with shaking. Membranes were washed three

times with 10 ml of TBST then incubated with goat anti-mouse IgG

antibody conjugated to horseradish peroxidase (Millipore Sigma #12-

349) at 1:30,000 diluted in 5% milk in TBST for 1 h at room tempera-

ture with shaking. Membranes were again washed three times with

10 ml TBST then incubated with Pierce ECL Plus substrate for 2 min

and then imaged on a Bio-Rad ChemiDoc imager. Membranes were

stripped with a solution of 200 mM glycine pH 2.2, 0.1% SDS, and

1% Tween 20 for 20 min at room temperature, then washed with

TBST and reblocked with 5% milk overnight at 4°C. Membranes

were reblotted using the same procedure as initial blot, but replacing

primary antibody with anti-RNA polymerase B mouse antibody

(clone NT63; BioLegend #10019–878).
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CBASS plasmid construction

The full CBASS operon was PCR-amplified from E. coli MS115-1

genomic DNA (BEI Resources #HM-344), using NCBI nucleotide

accession number CP073624.1 (E. coli AW1.7) as a reference

because of ambiguous sequence in the nucleotide record for E. coli

MS115-1 (NCBI accession number GG771785.1). An insert spanning

bases 2,861,237–2,866,476 of NCBI accession number CP073624.1

was cloned between the EcoRI and BamHI sites of plasmid pBR322

using isothermal assembly. PCR-based mutagenesis was used for all

point mutants, gene deletions, and to insert an N-terminal FLAG tag

and short linker (DYKDDDDK-ASAS) at the N-terminus of the nucC

gene. For the GFP reporter strain, the region encoding the core

CBASS genes was replaced by a gene encoding msfGFP.

DNA damage assays

For antibiotic treatment time course Western blots, E. coli JP313

(MC4100 araD714) (Economou et al, 1995) containing reporter plas-

mids were grown at 37°C until reaching an OD600 of 0.1. Cultures

were moved to 30°C for 10 min, then antibiotics were added at a

concentration of 100 lg/ml for zeocin and 1 lg/ml for mitomycin

C. At each timepoint, 1 ml of culture was removed and resuspended

in 2xSDS sample buffer with the volume adjusted to an equal con-

centration of cells per sample.

Bacteriophage infectivity

Phage k cI- was amplified in E. coli JP313 by inoculating cultures

grown in LB with 1 mM MgCl2 and 1 mM CaCl2 to OD600 = 0.3 with

100 ll of high-titer phage. Cells were incubated with shaking at

37°C for 5 h or until clearing was observed. The lysed cultures were

spun at 4,000 g for 20 min, the supernatant was collected and fil-

tered with a 0.2 lm filter, and filtered supernatant was stored at

4°C. Phage was titered in JP313 cells. Cells were grown to

OD600 = 0.3–0.5 at 37°C, then 500 ll was aliquoted into 5 ml

Eppendorf tubes. 10 ll of phage was added to each 500 ll tube, at
10-fold dilutions. Lysate was diluted in phage buffer (150 mM NaCl,

40 mM Tris pH 7.5, 10 mM MgSO4 plus 1 mM CaCl2). Cultures were

incubated with phage for 20 min after which 4.5 ml of 0.35% top

agar with LB was added to each culture and mixed, then poured

onto LB plates. Plates were incubated at 37°C for 16 h, then plaques

were counted. For plaque quantification assays, strains were grown

from single colonies in 5 ml of LB with ampicillin (100 lg/ml) until

reaching log phase (OD600 = 0.3–0.6). 500 ll of culture was trans-

ferred to a 5-ml conical tube to which 10 ll of of k cI� at a concen-

tration of 1.6 × 1010 PFU/ml (and 10-fold dilutions thereof) in

phage buffer (150 mM NaCl, 40 mM Tris pH 7.5, 10 mM MgSO4

plus 1 mM CaCl2) was added. Tubes were incubated at room tem-

perature for 20 min after which 4.5 ml of 0.35% top agar was added

mixed, then poured onto LB plates containing carbenicillin. Plates

were incubated at 37°C for 16 h, then plaques were counted.

For infection time course Western blots, E. coli JP313 cells con-

taining reporter plasmids were grown at 37°C until reaching

an OD600 of 0.3. Cultures were moved to 30°C for 10 min, then k cI�

was added at an MOI of 10. At each time point, 500 ll of sample was

removed and centrifuged 10,000 g for 1 min. Cell pellets were resus-

pended in 50 ll 2xSDS sample buffer and analyzed by western blot.

Microscopy

For fluorescence microscopy imaging, each sample was grown as

liquid culture at 30°C and induced with 0.2 mM IPTG 30 min before

of imaging. Cells were infected with k cI� at MOI 2.5 as 0 MPI. Cells

were harvested at required time points and were briefly centrifuged

(3,300 g for 30 s). After resuspending the cells with 20 ll volume,

5 ll of the samples was transferred onto an agarose pad containing

1% agarose and 20% LB medium for microscopy and stained with

1 lg/ml FM4-64 and 2 mg/ml DAPI. Microscopy was performed

using by a Deltavision Elite System (GE Healthcare). Cells were

quantified through manual examination of at least three replicates

per condition and 30–100 cells per condition.

qRT–PCR

Escherichia coli JP313 cells containing the WT plasmid in pBR322

were grown in 25 ml LB + Ampicillin in 125 ml flasks until log

phase (OD600 0.3–0.5). Cells were diluted to an OD600 of 0.2 in a

final volume of 25 ml, then zeocin (100 lg/ml), k CI� (MOI 10), or

LB at equivalent volumes were added to each flask. Initial time

points were taken at this time. For each time point, 1 ml of cells

was transferred to a 1.5-ml Eppendorf tube and spun down 1 min at

10,000 g. Supernatant was removed and pellets were immediately

flash-frozen in liquid N2. Cells were grown at 30°C and time points

were taken every 20 min in triplicate.

RNA extractions were performed using the Invitrogen PureLink

RNA Mini Kit with on-column DNase treatment (Qiagen). 1 lg of

RNA was reverse transcribed to make cDNA using the Applied

Biosystems High-Capacity cDNA Reverse Transcription Kit. qPCR

was performed in a 384-well format with technical triplicates for

each sample. Each reaction was composed of IDT PrimeTime Gene

Expression Master Mix, 250 nM of each primer, 100 lM of each

probe, and cDNA diluted 1:250 to a final volume of 10 ll. The fol-

lowing primers were synthesized by Integrated DNA Technologies:

RpoA_F: CGTGGCTTTGGCCATACTCT.

RpoA_R: ACGCCTTCTTTGGTGCTGTA.

RpoA probe: /56-FAM/AGCGAATGA/ZEN/TTCCATCAGGTAGTC

TGGC/3IABkFQ/.

CdnC_F: GGAACAGGCCAAGCGATTAC.

CdnC_R: AACGAGCGAAGAGCAGTTCC.

CdnC probe: /5Cy5/AGCAGAATA/TAO/CGGCGCAGTGCGT/3IAb

RQSp/.

56-FAM: 50 6-FAM (Fluorescein); ZEN: ZEN internal quencher

(Integrated DNA Technologies); 3IABkFQ: 30 Iowa Black FQ

quencher; 5Cy5: 50 Cy5; TAO: TAO internal quencher (Integrated

DNA Technologies); 3IAbRQSp: 30 Iowa Black RQ quencher.

qPCR was performed using a Bio-Rad CFX384 Touch Real-Time

PCR Detection System.

Electrophoretic mobility assay (EMSA)

Purified MBP-tagged CapH was mixed with 100 nM 50-FAM-labeled

DNA at concentration stated in figures and twofold dilutions thereof,

then incubated at room temperature for 20 min. Samples were loaded

on to prerun 8% polyacrylamide gels (prerun 250 V for 60 min) made
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with 1× TBE pH 8.5 and run in 0.5 TBE pH 8.5 at 120 V for 80 min at

4°C. Gels were imaged using a Bio-Rad ChemiDoc imager.

MIC assays

MIC assays were performed in a 96-well format. 100 ll of LB + Ampi-

cillin containing different concentrations of zeocin was added to each

well in the top row of the plate. Concentrations of zeocin started from

100 lg/ml and were serially diluted at 1:3 across the plate in fresh

LB + Amp. Cells containing either an empty vector, a plasmid with

the 6-gene E. coli MS115-1 system, or a mutant system with catalytic-

dead NucC (D73N) were grown to OD600 = 0.1 in LB + Amp at 37°C

with shaking. Cells were diluted and 100 ll of culture was added to

each well such that each well contained ~ 2 × 105 CFU/ml. Each con-

dition was run in triplicate. The plate was incubated at 37°C and

OD600 readings were taken after 18 h of growth.

Data availability

The structural data produced in this study are available in the fol-

lowing databases: Primary X-ray diffraction datasets: SBGrid Data

Bank (https://data.sbgrid.org): E. coli MS115-1 CapH NTD: #866;

E. coli MS115-1 CapH CTD: #867; E. coli MS115-1 CapH CTD

(I99M): #868; Thauera sp. K11 CapP: #864, 865. Reduced X-ray

diffraction datasets and refined structures: Protein Data Bank

(http://www.wwpdb.org): E. coli MS115-1 CapH NTD: 7T5U; E. coli

MS115-1 CapH CTD: 7T5W; E. coli MS115-1 CapH CTD (I99M):

7T5V; Thauera sp. K11 CapP: 7T5T.

Expanded View for this article is available online.
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